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On variational aspects of a generalized continuum

J. SACZUK

Riassunto: Lo scopo del lavoro è quello di fornire un primo approccio all’applica-
zione di fibrati di Finsler alla meccanica dei continui usando metodi variazionali. Nel-
l’ambito di questo progetto è definita una decomposizione additiva del gradiente di defor-
mazione. Per una data funzione Lagrangiana e una famiglia ad un parametro di tra-
sformazioni delle variabili, si ottiene il principio dei lavori virtuali per un continuo
generalizzato con microstruttura. Le condizioni di stazionarietà dell’integrale di azione
portano all’equazione di bilancio ed alle condizioni al contorno naturali, valide sia nello
spazio di base che in quello fibrato del corpo.

Abstract: The intention of the paper is to sketch the background of the Finsler
bundle approach to the continuum theory of solids using variational arguments. Within
this approach the additive decomposition of the total deformation gradient is defined.
For a given Lagrangian function and an assumed one-parameter family of transfor-
mations of dependent and independent variables, the fundamental variational formula
identified with the virtual work principle of the generalized (microstructural) continuum
is obtained. Stationarity conditions of the action integral lead to the balance equations
and natural boundary conditions valid on both the base space and the fibre space of the
body.

1 – Introduction

The subject of spatio–temporal organization of a solid deformation

(cf. Korbel [1]) seems to require new insights, since our present-day

understanding of its essence is rather problem-oriented. We are not en-
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tirely satisfied with what we have got from theories modelling inelastic be-

haviour of solids; we are still searching for new ways of thinking about the

essence of those phenomena. There are of course methods and procedures

for dealing with certain classes of materials, which are accepted with con-

fidence, because real results calculated from those procedures have been

confirmed by experience. This conviction is not usually clearly expressed

by the fundamental assumptions and their eventual limitations. An as-

sumption of this sort is the notion of stress–free configuration (cf. Lee

[2]); it defines a very specific physical situation which has no place in

reality.

The key concept in deformation physics of solids with microstructure

is the separation of the kinematics of the continuum from its underlying

substructure (cf. Defalias [3]). It leads to many inconsistencies with

experimental facts (Adams and Cottrell [4]), and to many distinct

theories used to describe the yielding, softening, hardening, relaxation,

localization and other effects (cf. Basinski and Basinski [5]). We try

here to supply an alternative and more complete formulation, from which

the conventional solid descriptions can be deduced.

Our proposition of description of the (inelastic) deformation of a solid

is the following:

inelastic behaviour = (behaviour)h ⊕ (behaviour)v ,

where the symbol ⊕ denotes the direct sum of some sets, and components

()h and ()v on the right–hand side are new fundamental horizontal and

vertical components of inelasticity. Here by the horizontal component

of any deformation process one can understand the deformation in the

configuration space, while the vertical one means the deformation in the

internal space. These components do not describe strictly elastic and

inelastic (say, plastic) phenomena (cf. Naghdi [6], Lee [2]). The above

decomposition does not demand any artificial assumptions.

Our main premise for a choice of the Finsler space (Rund [7], Mat-

sumoto [8]), to be a geometric background for the description of solid

deformation, is motivated by a possibility to avoid and/or to reduce the

assumptions like the yield condition, hardening and softening laws, re-

laxed intermediate configuration, multiplicative decomposition of defor-

mation, etc., on which the classical plasticity is formulated. One should
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also stress that the Finsler geometry, which is locally the Minkowskian

one, is categorical and uncontradictory as the Euclidean geometry, and

the latter is only a limit of the former.

In the following, the cited decomposition of inelastic behaviour of

a solid is formulated in the invariant way on the Finsler bundle. The

principal novelty of this approach stems form an observation that the

deformation (kinematics) of a solid and its underlying substructure con-

stitute the structure of the Finsler bundle. Then, using the variational

arguments, a unified description of deformation of a solid both at the

micro- and the macro-level is proposed. In other words, our approach,

being the first–order gradient theory, is formally analogous to the method

of virtual work (or power) in continuum mechanics (cf. Maugin [9]).

Notation which will be used in the paper is slightly different from the

one used in the continuum mechanics (Truesdell and Noll [10]). The

coordinates in the reference configuration we will denote by lower–case

letters. In the actual configuration we will denote them by upper–case

letters. We here opt for the notation, which is to some degree opposite

to the convention used in classical continuum mechanics, but which is

widely used in differential geometry (Rund [7], Matsumoto [8]).

2 – Preliminaries

The space of independent variables for our discussion is taken to

be an n–dimensional Finsler bundle with the Cartan connection (Mat-

sumoto [4]). Generally speaking, the Finsler bundle F (M) (briefly F )

of a manifold M is by definition the principal bundle π−1
T L(M) over the

tangent bundle T (M), induced from the linear frame bundle L(M) by

projection πT of T (M). (The principal fibre bundle is the fibre bundle in

which the typical fibre and the structural group are identical. The bundle

of frames is an example of the principal fibre bundle.) The Finsler con-

nection FΓ, represented by a pair of the horizontal connection Γh and the

vertical connection Γv, spans the horizontal subspace of the tangent space

TF (M). The basic vector fields of Γh and Γv induce the h–derivative

∇h and the v–derivative ∇v, respectively. In turn, the Finsler metric g

is defined by the function L(x,y), positively homogeneous with respect

to y, as

gij(x,y) =
1

2
∂̇i∂̇jL

2(x,y),
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where ∂̇i ≡ ∂/∂yi. The connection FΓ is finally reduced to the Cartan

connection if, among others, ∇hg = 0 and ∇vg = 0. Therefore, as in the

Riemannian geometry, the Cartan covariant derivatives are metric. The

details can be consulted in Matsumoto [8], Rund [7], where additional

bibliography can be found.

3 – Kinematics of generalized continuum

We consider an interacting generalized (microstructural) continuum

(a body B), described by the Finsler bundle structure, i.e. by a space

of internal states (fibre spaces) indexed by the configuration space (the

base space) in static equilibrium. The rationale behind this description

is the fact that the proper setting for continuum theory is the tangent

bundle and not the manifold itself. The familiarity with the internal

structure of a solid is necessary to explain its specific physical properties,

like anisotropy and hysteresis effects. This evident fact cannot in general

be omitted in theoretical investigations. Hence, a mathematical object

which is referred to its physical counterpart must therefore reflect its

appropriate internal structure. For simplicity, we confine ourselves to the

static case of inelastic continuum in which the internal space is identified

with the dislocated state of the solid.

In the first step of our presentation we show how to define the distor-

tion (deformation) tensor within the generalized continuum modelled on

the Finsler space. We start form classical foundations. In this approach

by a body Bc we understand a pair (Bc, χ), where Bc is both an oriented

connected n–dimensional manifold and a measured space whose any el-

ement x is called a (material) particle, and χ is a diffeomorphism of Bc

into Rn. A family of such diffeomorphisms is called a family of configura-

tions of the body. The fact that Bc is a measured space means that it is

endowed with a non–negative scalar measure called a mass distribution

of the body.

If κ : Bc → Rn is a (reference) configuration of B, then κ is character-

ized by n smooth functions xi (the coordinate functions of κ) such that

κ(P ) = (x1(P ), . . . , xn(P )), P ∈ Bc. If φ is any other (current) configura-

tion of Bc, then the deformation from κ to φ, i.e. φ◦κ−1 : κ(Bc) → φ(Bc);

xi *→ φ ◦ κ−1(xi), ∀xi ∈ κ(Bc), is assumed to be a diffeomorphism. In the
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local coordinate system this means

(1) X i = χ(xi) or X = χ(x),

where χ ≡ φ ◦ κ−1 : Rn → Rn. The classical deformation gradient F is

then defined to be the tangent map of χ : F = Tχ.

The geometric relation (1) within the Finsler formalism can be de-

fined analogously

(2) X = χ̂(x,y),

where a diffeomorphism χ̂ : R2n ⊃ F n → F n ⊂ R2n is a deformation of

the body B. The line–element (x,y) = (a position vector, an internal

variable vector) can be identified with an oriented particle of the body

B. For our purpose it is enough to consider the internal vector y as the

micro–displacement, or the deviation from the mean displacement (cf.

Kondo [11]). Other geometric specifications of the internal state vector,

according to physical requirements (cf. Maugin [12]), can be formulated

either within the generalized geometry technique (cf. Čomić [13]), where

system state points (x,y) = (xi, ya), i = 1, . . . , n, a = 1, . . . , m are

elements of a (n + m)–dimensional differentiable manifold, or through a

reduction of components in x and/or y within the presented approach.

To introduce the concept of a deformation gradient in the generalized

continuum, we start from the Finsler space with the Cartan connection

(cf. Rund [7]). First we define the direct sum of covariant derivatives

∇h and ∇v as the following composition

(3) ∇h + ∇v = (1 1)

( ∇h 0

0 ∇v

) (
1

1

)
,

where 1 is the identity tensor on B. Then the map X *→ (∇h + ∇v)(X)

written as

(4) F̂ = Fh + Fv

defines F̂ to be the deformation gradient of B. Its vertical and horizontal

parts are respectively equal to

(5) Fv = vX
i
k∂i ⊗ Dlk, Fh = hX i

k∂i ⊗ dxk ,
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where ∂i is the unit vector in the current configuration φ and ⊗ denotes

the tensor product. We shall denote further horizontal and vertical com-

ponents of any tensor T by hT i...
j... and vT

i...
j... , respectively. The h–derivative

and v–derivative of the position vector X = X(x,y) are defined as follows

(Matsumoto [8], Rund [7])

(Fh)i
k ≡ hX i

k = ∂kX
i − ∂̇lX

i∂̇kG
l + Γ0i

lkX
l,(6)

(Fv)i
k ≡ vX

i
k = L∂̇kX

i + Ai
lkX

l ,(7)

where ∂i ≡ ∂/∂xi, and the remaining unknowns in (6), (7) are defined by

means of the components of the metric tensor g = g(x,y) according to

(8) Γ0
ijk =Γijk − Cjkl

∂Gl

∂yi
=γijk − Ckjl

∂Gl

∂yi
− Cijl

∂Gl

∂yk
+ Cikl

∂Gl

∂yj
,

(9) Γ0
ijk = gjlΓ

0l
ik, Γijk = gjlΓ

l
ik, 2Gl = γl

jky
jyk,

(10) N l
k = ∂̇kG

l =
∂Gl

∂yk
= Γl

jky
j =Γ0l

jky
j, γijk =

1

2

(
∂gij

∂xk
+

∂gjk

∂xi
− ∂gki

∂xj

)
,

(11) Cijk =
1

2

∂gij

∂yk
, Cijky

k = Cijky
j = Cijky

i = 0,

(12) Cijk = gjlC
l
ik, Ai

jk = LCi
jk, Dli = dli − N i

kdxk.

The fundamental function L can be used to define the characteristic

features of the dislocated state in a given solid.

The additive decomposition (4), opposite to the multiplicative one

used in the classical plasticity (Lee [2]), does not demand here any as-

sumptions like a yield rule, an unstressed configuration, etc. We remind

that the question of uniqueness of the unstressed configuration has not

been answered in general yet.
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4 – One-parameter transformations

In this Section we concentrate on the state of B under a system of

external agencies. Suppose that a function L(x,y,X,Fh,Fv), identified

with a Lagrangian density of our problem, is defined as the function of

(x,y) over each subspace of the type

(13) X i = X i(x,y) or X = X(x,y) .

In the language of a vector bundle, a Lagrangian density L is a smooth

map (cf. Chernoff and Marsden [14])

L : F (M) ⊕ J1(F (M)) → R,

where J1(·) is the first jet bundle.

The method of considering the stationarity conditions of L is to apply

standard techniques of the calculus of variations (cf. Rund [15]). First,

we assume for the purpose of discussion that the system (x,y,X) admits

the one–parameter transformation group:

(14)

x̄i = xi + vi
x(x

m, ym, Xn)λ + o(λ),

ȳα = yα + vα
y (xm, ym, Xn)λ + o(λ),

X̄j = Xj + vj
X(xm, ym, Xn)λ + o(λ)

in which λ denotes the scalar parameter, while vi
x(·), vα

y (·) and vj
X(·) are

functions of class C1 of their variables such that

x̄i(0) = xi, ȳα(0) = yα, X̄j(0) = Xj.

Based on (14), by a differentiation process, in which the variables (xk,

yk, Xm) are taken as independent of each other, we obtain the variations

of ∂iX
j and ∂̇iX

j (Saczuk [16])

δ∂iX
j = ∂iδhXj +

∂δhXj

∂Xn
∂iX

n − ∂kX
j

(
∂iδx

k +
∂δxk

∂Xn
∂iX

n

)
,(15)

δ∂̇iX
j = ∂̇iδvX

j +
∂δvX

j

∂Xn
∂̇iX

n − ∂̇kX
j

(
∂̇iδy

k +
∂δyk

∂Xn
∂̇iX

n

)
,(16)

where the matrices of elements ∂iX
n and ∂̇iX

n have the rank n.
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A word of comment is required about subscripts h and v used in

(15) and (16). Using the fact that n–dimensional Finsler space may

always be regarded as a non–holonomic subspace of the 2n–dimensional

Riemannian space R2n (Rund [7, p.251]), one can identify any vector X

on F (M) with the pair (X,X) in R2n. For our purpose we additionally

assume that R2n = Rn ×Rn = hRn × vR
n, where subscripts h and v have

here only a symbolic sense, but will be used in Section 5 to specialize our

consideration to the base space (the configuration space) or to the fibre

space (the internal space), respectively. This specification coincides with

the h-derivative and v-derivative in F (M).

Using (15) and (16) in (6) and (7) we finally obtain the variations of

F v and F h:

(17) δvX
j
i = L

[
∂̇iδvX

j +
∂δvX

j

∂Xn
∂̇iX

n − ∂̇kX
j
(
∂̇iδy

k +
∂δyk

∂Xn
∂̇iX

n
)]

+

+ Aj
ikδvX

k,

(18) δhXj
i = ∂iδhXj +

∂δhXj

∂Xn
∂iX

n − ∂kX
j

(
∂iδx

k +
∂δxk

∂Xn
∂iX

n

)
−

− ∂̇iG
l

[
∂̇lδvX

j +
∂δvX

j

∂Xn
∂̇lX

n − ∂̇kX
j

(
∂̇lδy

k +
∂δyk

∂Xn
∂̇lX

n

)]
+

+ Γ0j
kiδhXk.

In the above relations L, Ak
ij, G

i,Γ0k
ij are treated as constant functions un-

der the action of the one-parameter transformation group (14). The gen-

eralization of the transformation group (14) is discussed by Yasuda [17].

5 – Variational formulation

Under preparation of the Sections 3 and 4 one can form the integral

(the action integral) (cf. Takano[18])

(19) I =

∫

G

L(x,y,X,Fh,Fv)dV ,

where G denotes a fixed, closed and simply-connected region in the 2n-di-

mensional space of (x,y), bounded by a surface ∂G, and dV =
√

ĝ dx dy
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with ĝ = det(gij ⊕ gij) is the volume element. The definition of the

variational derivative of the action functional I (Saczuk [16], Edelen

[19]) gives in our case

δI =

∫

G

[
L(Dkδx

k + Ḋkδy
k) + L|iδx

i + L−1L|i δyi +
∂L
∂Xk

δXk

+
∂L

∂hXk
i

δhXk
i +

∂L
∂vXk

i

δvX
k
i

]
dV ,(20)

where

(21) Di(·) = ∂i(·) +
∂(·)
∂Xn

∂iX
n, Ḋi(·) = ∂̇i(·) +

∂(·)
∂Xn

∂̇iX
n

are the total partial derivatives with respect to xi and yi, and

(22) L|i = ∂iL − ∂̇kL∂̇iG
k − LΓ0k

ik , L|i= L∂̇iL − LAk
ik

are h- and v-derivative of the density function L, respectively.

The direct sum identification enables us to write the term (∂L/∂Xk)

δXk as follows

(23)
∂L
∂Xk

δXk ≡ hfkδhXk + vfkδvX
k ,

where

(24) hfk ≡ (fh)k =
∂L

∂(Xh)k
, vfk ≡ (f v)k =

∂L
∂(Xv)k

denote the components of generalized body forces. Here the h-component

of δXk, i.e. δ(Xh)k, is identified with δhXk, and the v-component of δXk,

i.e. δ(Xv)k, is identified with δvX
k. In other words, fh is identified with

the external body force and f v can be identified with the internal source

of the exchange of momentum between dislocated states (cf. Aifantis

[20]).

In the sequel it is useful to introduce

(25) hT i
k ≡ (Th)i

k = − ∂L
∂hXk

i

, vT
i
k ≡ (Tv)i

k = − ∂L
∂vXk

i
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as the components of generalized stresses. For instance, for the La-

grangian description of the elastic body B, in which xi are the reference

configuration variables and the internal variables yi are neglected, hT i
k

reduce to the components of the first Piola-Kirchhoff stress tensor, and

vT
i
k ≡ 0.

Taking into account the above results, the first variation of I (20),

when it is assumed to be no variations of the independent variables, i.e.

δxi = 0 and δyi = 0, takes the form

(26)

δI =

∫

G

{
[hfk + (DivhT)k]δhXk + [vfk + (DivvT )k]δvX

k
}

dV

−
∫

∂G

[
(nihT i

k − mj ∂̇iG
j
hT i

k)δhXk + miLvT
i
kδvX

k)
]
dS ,

where

(27)
(DivhT)k = Di(hT i

k) − ∂̇iG
jḊj(hT i

k) − hT i
j Γ

0j
ki ,

(DivvT)k = LḊi(vT
i
k) − vT

i
j A

j
ki

are h-divergence and v-divergence of T , and ni, mi are the components

with respect to xi and yi of the unit vectors normal to the boundary

∂G, respectively. In the absolute tensor notation (Truesdell and Noll

[10]) (26) is simplified to

δI =

∫

G

[
(fh + DivhT) · δXh + (f v + DivvT) · δXv

]
dV

−
∫

∂G

[
δXh · (Thn − Th∂̇Gm) + δXv · LTvm

]
dS.(28)

If the internal state is neglected, (28) reduces to

(29) δI =

∫

G′
(f + DivT) · δXdV −

∫

∂G′
δX · Tn dS,

the classical principle of virtual work for the elastic continuum (Ede-

len [11]). Here G′ denotes a fixed, closed and simply-connected region

in the n-dimensional x-space, bounded by a surface ∂G′.
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According to the connections Γh and Γv one can distinguish the base

space approach and the fibre space approach, respectively (cf. Takano

[18]). The identification δX = δXh, δXv = 0 leads to the description on

the base space (the configuration space) of B. The simple case of this is

the equation (29). The fibre space (the internal space) approach demands

then δX = δXv, δXh = 0.

If the subspace given by (13) is to provide an extreme value to I for

all variations δXh and δXv, it is necessary that δI = 0 for all δXh and

δXv. Then, the fundamental lemma of the calculus of variations applied

to (26) gives the field equations

(30) hfk + (DivhT)k = 0, vfk + (DivvT)k = 0,

or in the component forms

hfk +
∂T i

k

∂xi
− ∂Gj

∂yi

∂T i
k

∂yj
− T i

j Γ
0j
ki = 0,

vfk + L
∂T i

k

∂yi
− T i

j A
j
ki = 0,

which should be satisfied in the interior of the inelastic body. The field

equations (30), interrelated at the micro-level, form the equilibrium equa-

tions for both h- and v-ingredients of the inelastic behaviour of solids

and have no counterparts in the plasticity theory so far (Aifantis [20],

Naghdi [6]). For instance, the postulated conservative equation (1)1
in [20] for the dislocated state at the microlevel can be treated as an

example of equation (30)2. The differences between them result mainly

from different kinematic foundations. The cited equation in [20] is used

for macroscopic deductions via a yield condition, a flow rule and kine-

matic assumptions. In our case the equations (30) are expressed in the

internal language of the geometry modelling the solid behaviour, without

additional assumptions like a yield condition and/or a flow rule.

The variational principle δI = 0 leads directly to natural boundary

conditions. The stationary requirements of (26), under satisfaction of

(30) induce the conditions

(31)
(
nihT i

kδhXk − mi∂̇jG
i
hT j

k δhXk
)

∂G
= 0,

(
miLvT

i
kδvX

k
)
∂G

= 0

to be satisfied at all points of ∂G. There are two ways in order to secure

satisfactions of the conditions (31). The first way is through the impo-
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sition of the homogeneous geometric conditions δXh = 0 and δXv = 0

on the boundary ∂G. The second way is equivalent to the satisfaction of

the homogeneous traction boundary conditions Thn − Th∂̇Gm = 0 and

Tvm = 0 on the boundary ∂G. These two specific ways can be grasped

simultaneously by demanding the geometric boundary conditions on one

part of the boundary, while on the other the traction free boundary con-

ditions.

To define the nonzero traction boundary conditions one has to intro-

duce a concept of null Lagrangian. A notion of null Lagrangian is used

to define variationally equivalent Lagrangian functions whose associated

Euler-Lagrange equations are identically satisfied. Variationally equiva-

lent Lagrangian functions are distinguished only by their distinct natural

Neumann data. It means that when it is added to the Lagrangian, it

does not change the Euler-Lagrange equations, but it does change the

natural Neumann data in order to give the appropriate boundary trac-

tions. Characterizations of variationally trivial Lagrangians are given in

a number of places in the literature (Edelen [19], Rund [15]). In turn,

transversality conditions, known as the natural boundary conditions in

the case of moving boundary, are easy to establish from (20). For details

the reader is referred to Edelen [19], Rund [7], Saczuk [16].

In conclusion one should stress that the work, which is conceptu-

ally self-contained, presents an alternative description of (mechanical)

behaviour of solids with microstructure realized by means of Finslerian

methodology. The presented approach is free from the artificial assump-

tions (Lee [2], Naghdi [6]) and is consistent with the physics of solid

deformation observed in experiments (Korbel [1], Basinski and Basin-

ski [5]).
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