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Kinetic approach to the asymptotic behaviour

of the solution to diffusion equations

G. TOSCANI

Riassunto: Per mezzo di classici argomenti della teoria cinetica dei gas rare-
fatti, si dimostra che la soluzione dell’equazione del calore tende asintoticamente alla
soluzione fondamentale della stessa equazione in entropia relativa. Il decadimento è
determinato in modo esplicito. Il metodo è successivamente applicato allo studio del
comportamento asintotico della soluzione di una classe di equazioni uniformemente
paraboliche.

Abstract: By classical arguments of kinetic theory of rarefied gases, it is proved
that the fundamental solution to the heat equation gives the asymptotic representation
of the solution of the Cauchy problem for the same equation. Explicit constants for the
decay in relative entropy are found. The method is subsequently applied to study the
asymptotic behaviour of the solution to a class of uniformly parabolic equations.

1 – Introduction

Consider the Cauchy problem for the heat equation in IRn, n ≥ 1,

(1.1)
∂u

∂t
=

k

2
∆u

when the initial data are nonnegative and of compact support. It is a

known result that the solution of this problem behaves asymptotically
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as a fundamental solution of the same equation as time goes to infinity.

(This can be easily proven in the case n = 1 by means of the Poisson

integral formula).

We propose here to prove a similar result by a different method,

based on the monotonicity in time of Boltzmann’s H-functional of the

solution ut(x)

(1.2) H(ut) =

∫

IRn
ut(x) log ut(x) dnx

This approach is classical in kinetic theory of rarefied gases, where the

convergence towards equilibrium of the solution to the spatially homoge-

neous Boltzmann equation is often stated as a consequence of Boltzmann

H-theorem [20], [7]. In analogy with the Boltzmann equation, where the

initial density for the Cauchy problem has finite mass, and in addition

both energy and entropy are finite, we will restrict opportunely the class

of the initial values for (1.1). In more details, we will consider initial val-

ues uo(x) that are probability densities on IRn; namely, u0 is nonnegative

and ∫

IRn
u0(x) dnx = 1 .

Moreover

(1.3)

∫

IRn
xu0(x) dnx = 0 ;

∫

IRn
|x|2u0(x) dnx = nE < ∞

and

(1.4)

∫

IRn
u0(x) log u0(x) dnx = H0 < ∞ .

Let us denote by ωσ the Gaussian function in IRn with second moment

nσ, that is

(1.5) ωσ(x) = (2πσ)−n/2 exp
[
− |x|2

2σ

]

Then ωE+kt is a fundamental solution to the Cauchy problem for (1.1)

with the same second moment of ut.
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The relative entropy D(f |g) of two probability densities on IRn is

defined by

(1.6) D(f |g) =

∫

IRn

[f(x)

g(x)

]
log

[f(x)

g(x)

]
g(x) dnx

By the Csiszar-Kullback inequality [8] [13],

(1.7) ‖u − ωσ‖2
L1(IRn) ≤ 2D(u|ωσ)

the relative entropy provides a strong measure of the distance from u

to ωσ.

In Section 2 we prove the following

Theorem 1. Let u0 be a probability density on IRn that satisfies

(1.3) and (1.4). Then the solution ut to the Cauchy problem for (1.1)

converges in relative entropy to ωE+kt, and

(1.8) D(ut|ωE+kt) ≤ D(u0|ωE)
E

E + kt

The proof of the theorem is based on the following sharp form of the

logarithmic Sobolev inequality in IRn with reference to Lebesgue mea-

sure [2]

For all functions f on IRn that, together with their distributional

gradients ∇f are square integrable,

(1.9)

∫

IRn
|f |2 log

(|f |2/‖f‖2
L2(IRn)

)
dnx +

(
n +

n

2
log a

) ∫

IRn
|f |2 dnx

≤ a

π

∫

IRn
|∇f |2 dnx

for all a ≥ 0. Moreover, there is equality in (1.9) if and only if f is a

multiple and translate of fa(x) = a−n/4 exp[−|x|2/(2a)].

Inequality (1.9) is equivalent to Gross’s logarithmic Sobolev inequal-

ity for IRn equipped with the Gaussian measure dm(x) = exp[−π|x|2]dnx

[12]. This relation has been used in [3] in a proof of Gross’s inequal-

ity. The statement concerning cases of equality is established in [2]. In
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the same paper, (1.9) is derived as a consequence of superadditivity of

Fisher’s functional of a probability density f on IRn.

For
√

f ∈ W 1,2(IRn), we define Fisher’s information of f , L(f), by

(1.10) L(f) = 4

∫

IRn
|∇f1/2(x)|2 dnx =

∫

IRn

|∇f(x)|2
f(x)

dnx

This quantity was introduced by Fisher [10] in his theory od sufficient

statistics. In kinetic theory of rarefied gases, after the paper by McKean

on Kac equation [14], L(f) is often named Linnik’s functional [18], [19].

This functional appears quite naturally in heat equation (1.1) as en-

tropy production for the solution.

In the third section of the paper we will study the asymptotic be-

haviour of the solution to the parabolic equation in IRn

(1.11)
∂u

∂t
=

1

2

n∑

i,j=1

∂

∂xj

{
[δij + aij(x, t)]

∂u

∂xi

}

Our basic assumptions on the matrix A = (aij) are the regularity, aij(x, ·)
∈ C1

b (IRn), and the existence of numbers 0 < λ0, λ1 < 1 and 0 < α, β < 1

such that, for all (t, x) ∈ IRn+1 and all ξ ∈ IRn

(1.12)
λ0|ξ|2

(1 + t)α
≤

n∑

i,j=1

aij(x, t)ξi ξj ≤ λ−1
0 |ξ|2

(1 + t)α

and

(1.13)

∣∣∣∣
n∑

i,j=1

xi

∂aij

∂xi

∣∣∣∣ ≤ n
λ1

(1 + t)β

In addition to condition (1.12), that assures the uniform parabolicity of

equation (1.11), we shall assume enough regularity (Hölder continuity)

of the coefficients aij to have exponential bounds on the fundamental

solution (see the discussion of Section 3).

If the initial data satisfy conditions (1.3), inequality (1.12) implies

the existence of lower and upper bounds on the time evolution of the

second moment of the solution to (1.11). Define

E(t) =

∫

IRn
|x|2ut(x) dnx
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Then, for all t > 0

(1.14)
(
E + t − λ1(1 + t)1−β

1 − β

)
≤ E(t) ≤ n

(
E + t +

λ1(1 + t)1−β

1 − β

)

The main result of Section 3 is the following.

Theorem 2. Let u0 be a probability density on IRn that satisfies

(1.3) and (1.4). Then the solution ut to the Cauchy problem for (1.11)

satisfies

(1.15)

D(ut|ωE(t)) ≤ [D(u0|ωE + A(n, E, λ0, α, t)] exp[λ0I(E, α)]×

× E

E + t
+

nλ1

2(1 − β)

(1 + t)1−β

(E + t)

where

(1.16) A(n, E, λ0, α, t) =
nλ0

2E(1 − α)
[(1 + t)1−α − 1]

and

(1.17) I(E, α) =

∫ ∞

0

ds

(E + s)(1 + s)α

The use of relative entropy (1.6) to investigate the behaviour of the

solutions to diffusion equations for large times is not new. In particular,

by means of the time monotonicity of the relative entropy of two different

solutions to a uniformly parabolic equation, one can show that every two

solutions must coincide for large time. A semi-formal presentation of this

result can be found in the book by Risken [17], but the argument goes

back to Lebowitz and Bergmann [6]. However, in the general case no

decay in time to the asymptotic solution has been derived.

The probabilistic interpretation of both Theorems 1 and 2 is clear.

Given the solution ut(x) to (1.1) let us define

(1.18) ũt(x) = (E + kt)n/2ut(
√

E + kt x) .
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Then, changing variable into the integral, we have

(1.19) D(ut|ωE+kt) = D(ũt|ω1)

and by the Csiszar-Kullback inequality (1.7), L1-convergence of ũt to the

normalized Gaussian density at a rate t−1/2 follows. So we obtain the

central limit theorem for the solution to the classical diffusion equation.

Theorem 2 extends the validity of the central limit theorem to the

case of processes with “weakly dependent” increments. In fact, conditions

(1.12) and (1.13) essentially mean that dependence disappears with time,

and that the dominant term in the second moment is the linear one in

time.

The discrete analogous has been investigated via entropy methods by

Carlen and Soffer [5], that developed an approach to central limit theo-

rems from a dynamical point of view, in which the entropy is a Lyapunov

functional governing approach to the Gaussian limit. Their approach

naturally extends to cover the dependent variables case.

To conclude this introduction, let us remark that logarithmic Sobolev

inequality (1.9) has been recently used in [4] to obtain decay estimates for

viscously damped conservation laws, of which the vorticity formulation

of the Navier-stokes equation on IR2 is a basic example. The problem of

the asymptotic behaviour we treat in this paper has not been dealt with.

It would be certainly interesting to apply the present methods to recover

the rate of convergence to the asymptotic solution of genuine nonlinear

problems.

2 – Decay in relative entropy for the heat equation

We shall study in this section the asymptotic behaviour of the solu-

tion to the initial value problem for the heat equation (1.1), when the ini-

tial value is a probability density that satisfies conditions (1.3) and (1.4).

Given any smooth convex function ϕ(r), r ≥ 0, let us multiply both

sides of equation (1.1) by ϕ′(ut), and integrate over IRn. We obtain

(2.1)

∫

IRn

∂

∂t
ϕ(ut) dnx =

k

2

∫

IRn
ϕ′(ut)∆ut dnx .
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Assume that, for j ≥ 1 , t > 0

(2.2) lim
xj→±∞

ϕ′(ut)
∂ut

∂xj

= 0

and, for a suitable constant c

(2.3)

∫

IRn
ϕ′′(ut)

(∂ut

∂xj

)2

dnx ≤ c

Then, we can integrate by parts the right-hand side of (2.1), and the ex-

change of integral and derivative on the left-hand side is justified. Finally,

(2.1) takes the form

(2.4)
∂

∂t

∫

IRn
ϕ(ut) dnx = −k

2

∫

IRn
ϕ′′(ut)(∇ut)

2 dnx

and the quantity ∫

IRn
ϕ(ut) dnx

is monotonically decreasing with time. Equation (2.4) is the analogous

of Boltzmann H-theorem for the heat equation. On the right-hand side

we have the corresponding of the entropy production. If we take exactly

the H-functional (1.2) as ϕ, (2.4) becomes

(2.5)
∂

∂t

∫

IRn
ut(x) log ut(x) dnx = −k

2

∫

IRn

|∇ut|2
ut

dnx

Therefore in the heat equation Fisher’s functional (1.10) plays the role of

the entropy production for the H-theorem.

Let us denote by f 6 g the operation of convolution in L1(IRn). If

u0(x) is a probability density function that satisfies (1.3), the solution to

the initial value problem for (1.1) with u0 as initial value is given by

(2.6) ut(x) = u0(x) 6 ωkt(x)

The validity of equation (2.5) is a consequence of the following lemma.
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Lemma 1. Let f ∈ C(IRn) be a probability density that satisfies

conditions (1.3). In addition, let f ∈W 1,2
loc (IRn), and let us set (∇f)2/f =0

on {f = 0}. Then, for t > 0

(2.7) L(f 6 ωt) ≤ L(ωt)

and

(2.8) lim
xj→∞

[1 + log(f 6 ωt)]
∂(f 6 ωt)

∂xj

= 0 j = 1, 2, . . . , n

Proof. Let h = f 6 ωt. By definition, for j ≤ n,

∂h

∂xj

=

∫

IRn

∂

∂xj

ωt(x − y)f(y) dny =

=

∫

IRn

1√
ωt(x − y)

∂ωt(x − y)

∂xj

√
ωt(x − yf(y) dny ≤

≤
{ ∫

IRn

1

ωt(x−y)

[∂ωt(x−y)

∂xj

]2

f(y) dny
}1/2{ ∫

IRn
ωt(x−y)f(y)dny

}1/2

by the Cauchy-Schwarz inequality. Thus

(2.9)
1

h

( ∂h

∂xj

)2

≤
∫

IRn

1

ωt(x − y)

[∂ωt(x − y)

∂xj

]2

f(y) dny

Taking the integral on both sides of inequality (2.9), (2.7) follows. Let us

verify now that (2.8) holds. Clearly, h ∈ C1(IRn) ∩ L1(IRn). Moreover,

by the Cauchy-Schwarz inequality,

(2.10)

∣∣∣ ∂h

∂xj

∣∣∣ ≤
∫

IRn

∣∣∣ ∂

∂xj

ωt(x − y)
∣∣∣f(y) dny =

=

∫

IRn

√
ωt(x − y)f(y)

|xj − yj|
t

√
ωt(x − y)f(y) dny ≤

≤
√

h

t

{ ∫

IRn
f(y)

|xj − yj|2
t

ωt(x − y) dny

}1/2

≤

≤ c

√
h

t
{f 6 ω2t}1/2
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for a suitable constant c. Since h(x) tends to zero as xj tends to infinity,

bound (2.10) implies (2.8).

This concludes the proof of the lemma.

Given t̄ > 0, u0 6 ωkt̄ satisfies the hypotheses of lemma 2.1 , and for

t ≥ t̄ (2.7) gives

(2.11) L(ut) ≤ L(ωt) =
n

kt
≤ n

kt̄

Moreover (2.8) holds for u0 6 ωkt. Thus, equation (2.5) holds.

Now, consider that ωE+kt is the solution to equation (1.1) correspond-

ing to ωE as initial value. Therefore

(2.12)
∂

∂t
H(ωE+kt) = −k

2
L(ωE+kt)

Let us subtract (2.12) from (2.5). It follows that

(2.13)
∂

∂t
[H(ut) − H(ωE+kt)] = −k

2
[L(ut) − L(ωE+kt)]

An upper bound for the right-hand side of equation (2.13) is found in

consequence of the logarithmic Sobolev inequality (1.9). Let us rewrite

the inequality inserting g = f2, where ‖g‖L1 = 1. Then, for all probability

densities in IRn such that
√

f ∈ W 1,2(IRn) (1.9) reads

(2.14) H(g) +
(
n +

n

2
log(2πa)

) ≤ a

2
L(g)

Moreover in (2.14) there is equality if and only if g is a multiple and

translate of ωa. Therefore

(2.15)
E + kt

2
[L(ut) − L(ωE+kt)] ≥ H(ut) − H(ωE+kt)

and, substituting (2.15) into (2.13) we obtain the inequality

(2.16)
∂

∂t
[H(ut) − H(ωE+kt)] ≤ − k

E + kt
[H(ut) − H(ωE+kt)]
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At this point, Theorem 1 follows considering that, since both ut and ωE+kt

are probability densities with the same second moment,

(2.17) H(ut) − H(ωE+kt) = D(ut|ωE+kt) .

As mentioned in the introduction, by the Csiszar-Kullback inequality we

obtain also the decay in L1 of the solution to (1.1) to the fundamental

solution of the same equation at a rate t−1/2, with an explicit constant.

(2.18) ‖ut − ωE+kt‖L1(IRn) ≤
√

2D(u0|ωE)
( E

E + kt

)1/2

.

To end this section, let us remark that the result of Theorem 1 can be

extended to initial values that do not satisfy condition (1.4). We prove.

Corollary 1. Let u0 be a probability density on IRn that satisfies

(1.3). Then the solution ut to the Cauchy problem for (1.1) converges in

relative entropy to ωE+kt, and, for any δ > 0 and t > δ

(2.19) D(ut|ωE+kt) ≤ n

2

E + kδ

E + kt
log

E + kδ

kδ

Proof. Given a probability density satisfying (1.3), at any time

t > 0 the solution ut = u0 6 ωkt to the Cauchy problem for (1.1) satisfies

condition (1.4). In fact, by Jensen’s inequality, since u0 is a probability

density,

(2.20) u0 6 ωkt log u0 6 ωkt ≤
∫

IRn
ωkt(x − y) log ωkt(x − y)u0(y) dny

and, taking the integral on both sides we obtain

(2.21) H(ut) ≤ H(ωkt) = −n

2
log 2πkt − n

2

In particular, by (2.21), for any δ > 0 follows

(2.22) D(uδ|ωE+kδ) ≤ n

2
log

E + kδ

kδ
.
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Taking uδ as initial value for equation (1.1), the result follows by (2.16)

and (2.22).

The result of Corollary 1 is interesting in that it shows how conver-

gence in relative entropy (and so in L1-norm) is uniform in the class of all

initial values that are probability densities and satisfy conditions (1.3).

Indeed, the right-hand side of (2.19) only depends on the dimension of

the space and on the second moment E.

3 – Asymptotic behaviour for a class of uniformly parabolic

equations

In this section we will study the asymptotic behaviour of the solu-

tion to the Cauchy problem for equation (1.11), by the same method we

adopted in section 2 for the classical heat equation. This means that we

will consider the initial data in the same class of Section 2. Concerning

the parabolic operator in (1.11), our analysis will be restricted to coef-

ficients aij(x, t) that satisfy conditions (1.12) and (1.13). Moreover, we

impose additional regularity to the same coefficients, in order to obtain

a solution ut(x) such that
√

ut ∈ W 1,2(IRn).

Let aij(x, ·)∈C1
b (IRn), and in addition, for all (x, t) ∈ IRn+1, (x0, t0) ∈

IRn+1 and some 0 < γ < 1

|aij(x, t) − aij(x0, t0)| ≤ A
(
|x − x0|γ + |t − t0|γ/2

)
(3.1)

∣∣∣∣
∑

j

∂aij

∂xj

(x, t) −
∑

j

∂aij

∂xj

(x0, t0)

∣∣∣∣ ≤ A|x − x0|γ(3.2)

Then (see Chapter 1 of the book by Friedman [11] ), there exists a unique

solution to the Cauchy problem for (1.11) under very weak assumptions

on the initial data u0(x). The unique solution ut(x) is represented by the

formula

(3.3) ut(x) =

∫

IRn
Γ(x, t, y, 0)u0(y)dny
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where the fundamental solution Γ(x, t, y, s) satisfies the bounds

(3.4) C[2π(t − s)]−n/2 exp
[
− |x − y|2

2(t − s)C

]
≤ Γ(x, t, y, s) ≤

≤ C−1[2π(t − s)]−n/2 exp
[
− C|x − y|2

2(t − s)

]

(3.5)
∣∣∣∂Γ(x, t, y, s)

∂xj

∣∣∣ ≤ C−1[2π(t − s)]−(n+1)/2 exp
[
− C|x − y|2

2(t − s)

]

for a suitable constant C < λ0 depending only on λ0 and n.

The upper bounds of (3.4) and (3.5) are classical. The lower bound

of (3.4) was first obtained by Aronson in [1], with a proof that relies on

on Moser’s parabolic Harnack inequality [15]. A different proof of the

same bound, based on ideas of Nash [16], has been proposed by Fabes

and Strook [9].

A first consequence of inequalities (3.4) and (3.5) is that, for any t > 0

the square root of the fundamental solution Γ belongs to W 1,2(IRn). Thus

Lemma 1 can be applied to conclude that, by the same procedure leading

to (2.4), the following relation holds

(3.6)
∂

∂t

∫

IRn
ut(x) log ut(x) dnx = −1

2

∫

IRn

1

ut

n∑

i,j=1

[δij + aij]
∂ut

∂xi

∂u

∂xj

dnx

By the lower bound of (1.12), from (3.6) we obtain that the solution ut

satisfies

(3.7)
∂

∂t
H(ut) ≤ −1

2

[
1 − λ0

(1 + t)α

]
L(ut)

Now, consider that, given t > 0, by the upper bound of (3.4)

(3.8)

∫

IRn
|x|2ut(x) dnx =

∫

IRn
|x|2

∫

IRn
Γ(x, t, y, 0)u0(y)dny dnx ≤

≤
∫

IRn×IRn
|x|2u0(y)C−1(2πt)−n/2 exp

[
− C|x − y|2

2t

]
dnxdny =

= n[E + C−(n/2+2)t]
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By analogous computations, making use of inequality (3.5), given t > 0

(3.9)

∫

IRn
|x|2 ∂ut(x)

∂xj

dnx =

∫

IRn
|x|2

∫

IRn

∂Γ(x, t, y, 0)

∂xj

u0(y)dny dnx ≤

≤ n
[
E + C−(n/2+2)

( t

2π

)1/2]

Multiplying both sides of (1.11) by |x|2, and integrating over IRn we

obtain

(3.10)

∫

IRn
|x|2 ∂ut(x)

∂t
dnx=−1

2

∫

IRn
|x|2

n∑

i,j=1

∂

∂xj

{
[δij +aij(x, t)]

∂u

∂xi

}
dnx

By (3.8) and (3.9) we can integrate by parts the right-hand side of (3.10),

concluding that for t > 0 the following relation holds

(3.11)
∂

∂t

∫

IRn
|x|2ut(x) dnx=n

∫

IRn
ut(x) dnx+n

∫

IRn
ut(x)

n∑

i,j=1

xi

∂aij

∂xi

dnx

Hence, (1.14) follows by condition (1.13).

Consider that

(3.12)
∂

∂t
H(ωE+t) = −1

2
L(ωE+t)

and subtract equation (3.12) from (3.7). We obtain

(3.13)

∂

∂t

[
H(ut) − H(ωE+t)

]
≤ −1

2
[1 − λ0

(1 + t)α

]
[L(ut) − L(ωE+t)]+

+
λ0

2(1 + t)α
L(ωE+t)

Let us apply to the right-hand side of (3.13) the logarithmic Sobolev

inequality in the form (2.16). Since L(ωE+t) = n/(E + t), one has

∂

∂t
[H(ut) − H(ωE+t)] ≤

(3.14)

≤ − 1

E + t

[
1 − λ0

(1 + t)α

]
[H(ut) − H(ωE+t)] +

λ0

2(1 + t)α

n

E + t
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Thus

(3.15)

H(ut)−H(ωE+t) ≤

≤ exp
[
−

∫ t

0

1

E + s

[
1− λ0

(1+s)α

]
ds

]
[H(u0)−H(ωE)+

+

∫ t

0

n

E + s

λ0

2(1+s)α
exp

[∫ s

0

1

E + τ

[
1− λ0

(1+τ)α

]
dτ

]
ds

]

A direct evaluation gives

(3.16) exp
[
−

∫ t

0

1

E + s

[
1 − λ0

(1 + s)α

]
ds

]
≤ E

E + t
exp[λ0I(E, α)]

being I(E, α) defined by (1.17). Moreover

(3.17) exp
[
+

∫ s

0

1

E + τ

[
1 − λ0

(1 + τ)α

]
dτ

]
ds ≤ E + s

E

Thus from (3.15) we deduce

(3.18)

H(ut) − H(ωE+t) ≤ E

E + t
exp[λ0I(E, α)]

{
H(u0) − H(ωE)+

+
nλ0

2E(1 − α)
[(1 + t)1−α − 1]

}

Finally, consider that

H(ut) − H(ωE+t) = D(ut|ωE(t)) − n

2
log

E(t)

E + t

Thus, by the upper bound of (1.14),

(3.19) D(ut|ω(E+t)) ≥ D(ut|ωE(t)) − nλ1

2(1 − β)

(1 + t)1−β

(E + t)

and Theorem 2 follows.

We can now repeat the argument we used in Section 2, to obtain a

proof of the asymptotic decay for initial data that do not satisfy condition
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(1.4). Also in this case we will obtain decay constants that depend only

on the second moment of the initial value, and on the parameters we

introduced to bound the coefficients of the parabolic operator.

Corollary 2. Let u0 be a probability density on IRn that satisfies

(1.3). Then the solution ut to the Cauchy problem for (1.11) converges

in relative entropy to ωE(t) and, for any δ > 0 and t > δ

(3.20)

D(ut|ωE(t)) ≤ B(n, E, α, δ, t)
E + δ

E + t
exp[λ0I(E, α)]+

+
nλ1

2(1 − β)

(1 + t)1−β

(E + t)

where

(3.21)

B(n, E, α, δ, t) = log C−1 +
n

2
log

E + δ

δ
+

n

2
(1 − Cn/2+2)+

+
nλ0

2(E + δ)(1 − α)
[(1 + t)1−α − (1 + δ)1−α]

Proof. Let ut be the solution to the initial value problem for (1.11).

By Jensen’s inequality,

(3.21)

H(ut) = H
( ∫

IRn
Γ(x, y, t, 0)u0(y) dny

)
≤

∫

IRn

∫

IRn
Γ(x, y, t, 0) log Γ(x, y, t, 0)u0(y) dnydnx

Thanks to the upper bound of (3.4)

log Γ(x, y, t, 0) ≤ log C−1 − n

2
log 2πt − C|x − y|2

2t
.

Hence, we obtain

(3.22)

H(ut) ≤ log C−1 − n

2
log 2πt−

− C

∫

IRn

∫

IRn

|x − y|2
2t

Γ(x, y, t, 0)u0(y) dnydnx
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An upper bound for the negative integral on (3.22) can be found by means

of the lower bound of (3.4). We obtain

(3.23)

∫

IRn

∫

IRn

|x − y|2
2t

Γ(x, y, t, 0)u0(y) dnydnx ≥ n

2
Cn/2+1

Finally, given δ > 0 we proved that

H(uδ) − H(ωE+δ) ≤ log C−1 − n

2
log

E + δ

δ
+

n

2
(1 − Cn/2+2)

At this point the proof of Theorem 2 can be repeated, starting from t = δ,

and the result follows.

4 – Final remarks

We studied in this paper the asymptotic behaviour of the solution

to the Cauchy problem of a uniformly parabolic equation when the ini-

tial data are integrable, have finite second moment and finite entropy.

Our investigation is based on the monotonicity in time of Boltzmann H-

functional, and essentially depends on the fact that the solution to the

parabolic equation has a second moment that grows linearly in time, and

has enough regularity to apply the logarithmic Sobolev inequality (1.9).

On the other hand, the final goal is to obtain a differential inequality

for the relative entropy, and to get this maybe the regularity assump-

tions could be relaxed. Second, the method can be applied each time the

entropy satisfies equation (2.5), so in principle also purely nonlinear equa-

tions of the type studied by Carlen and Loss [4] are good candidates

to obtain similar results. This will be the object of future investigations.

Acknowledgements

This work has been written within the activities of the National

Group of Mathematical Physics (GNFM) of the National council for

Researches (CNR), Project “Applications of Mathematics for Technol-

ogy and Society”. Partial support of the Institute of Numerical Analy-

sis of the CNR is kindly acknowledged. The author thanks E.A.Carlen



[17] Kinetic approach to the asymptotic behaviour etc. 345

for many helpful discussions about the applicability of the logarithmic

Sobolev inequality.

REFERENCES

[1] D.G. Aronson: Bounds for the fundamental solution of a parabolic equation,
Bulletin, Amer. Math. Society, 73 (1967), 890-896.

[2] E.A. Carlen: Superadditivity of Fisher’s information and logarithmic Sobolev
inequalities, J. Funct. Anal., 101 (1991), 194-211.

[3] E.A. Carlen a– M. Loss: Extremal of functionals with competing simmetries,
J. Funct. Anal., 88 (1990), 437-455.

[4] E.A. Carlen – M. Loss: Optimal smoothing and decay estimates for viscously
damped conservation laws, with application to the 2-D Navier Stokes equations,
Atlanta, preprint (1994).

[5] E.A. Carlen – A. Soffer: Entropy production by block variable summation and
central limit theorems, Commun. Math. Phys., 140 (1991), 339-371.

[6] J.L. Lebowitz – P.G. Bergmann: Irreversible Gibbsian ensembles, Ann.
Physics, 1 (1957), 1-23.

[7] C. Cercignani: Theory and application of the Boltzmann equation, (Springer
Verlag, New York) 1988.

[8] I. Csiszar: Information-type measures of difference of probability distributions
and indirect observations, Studia Sci. Math Hungar., 2 (1962), 299-318.

[9] E.B. Fabes – D.W. Stroock: A new proof of Moser’s parabolic Harnack in-
equality using the old ideas of Nash, Arch. Ration. Mech. Anal., 96 (1986),
327-338.

[10] R.A. Fisher: Theory of statistical estimation, Proc. Cambridge Philos. Soc., 22
(1925), 700-725.

[11] A. Friedman: Partial Differential Equations of Parabolic Type, (Prentice-Hall
Inc. Englewood Cliffs, N.J.) 1964.

[12] L. Gross: Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-
1083.

[13] S. Kullback: A lower bound for discrimination information in terms of varia-
tion, IEEE Trans. Info. Theory, 4 (1967), 126-127.

[14] H.P. McKean Jr.: Speed of approach to equilibrium for Kac’s caricature of a
Maxwellian gas, Arch. Rational Mech. Anal., 21 (1966), 343-367.

[15] J.Moser: A Harnack inequality for parabolic differential equations, Commun.
Pure Appl. Math., 17 (1964), 101-134.



346 G. TOSCANI [18]

[16] J.Nash: Continuity of solutions of parabolic and elliptic equations, Amer. J.
Math., 80 (1958), 931-954.

[17] H. Risken: The Fokker-Planck Equation, (Springer-Verlag, Berlin) 1984.

[18] G.Toscani: New a priori estimates for the spatially homogeneous Boltzmann
equation, Cont. Mech. Termodyn., 4 (1992), 81-93.

[19] A.V. Bobylev – G. Toscani: On the generalization of the Boltzmann H-Theorem
for a spatially homogeneous Maxwell gas, J. Math. Phys., 33 (1992), 2578-2586.

[20] C. Truesdell – R.G. Muncaster: Fundamentals of Maxwell’s kinetic theory of
a simple monoatomic gas, (Academic Press, New York) 1980.

Lavoro pervenuto alla redazione il 26 ottobre 1995
ed accettato per la pubblicazione il 18 aprile 1996.

Bozze licenziate il 5 giugno 1996

INDIRIZZO DELL’AUTORE:

G. Toscani – Dipartimento di Matematica – Università di Pavia – Via Abbiategrasso 209 –
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