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Splitting methods for solving singular

linear systems of a special class

G. BUFFONI – I. GALLIGANI

Riassunto: In questo lavoro consideriamo una classe speciale di sistemi lineari
singolari provenienti dalla discretizzazione di una equazione ellittica del secondo ordine
con condizione al contorno di tipo derivata obliqua. Per risolvere numericamente tali
sistemi si propone di utilizzare il metodo degli spostamenti simultanei con un precon-
dizionatore additivo; questo metodo é particolarmente adatto ad essere realizzato su
calcolatori multivettoriali. Si analizza la convergenza di siffatto metodo, fornendo una
condizione sufficiente di convergenza per valori “piccoli” del fattore di rilassamento.
Alcuni esperimenti numerici su problemi rappresentativi confermano i risultati teorici
e mostrano l’efficienza del metodo.

Abstract: This paper is concerned with the solution of singular linear systems of
a special class which arise in discretizing a linear elliptic equation of the second-order
with an oblique-derivative type boundary condition. We propose to solve these systems
with the Method of Simultaneous Displacements with the additive preconditioner: this
method is ideally suited for implementation on multivector computers. The convergence
of such a method has been analysed and a sufficient convergence-criterion has been
established.

Generally, only for small values of the relaxation factor the method is convergent.
The numerical results obtained by solving some test-problems are seen to be largely in
keeping with the theory and show the effectiveness of the method.
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1 – Introduction

The classical Poincarè Problem, formulated in connection with the

study of tidal motions [5], reduces to solving a linear elliptic equation

of the second-order with an oblique-derivative type boundary condition.

Analogous problems arise in determining the deviations of the reference

surface of the ocean due to large-scale currents and in solving the equa-

tions of the baroclinic ocean by the method of orthogonal expansions.

Numerical solution of the Poincarè Problem involves certain difficul-

ties associated with the selection of suitable approximations of boundary

conditions [1], [4], [6]. The papers [1], [4] employ Stommel’s model [7]

of ocean circulation for examining a method of numerical solution of the

problem with oblique-derivative: algebraic equations for this model are

obtained by the finite difference method. In particular, in [1] a suitable

finite difference approximation to the continuous problem has been ob-

tained in order to produce a discrete matrix equation which satisfies the

basic properties of the continuous problem.

This discrete matrix equation can be written in the form

(1) (A + B)u = f

where u, f ∈ Rn, A = (aij) is an n × n real, irreducible, symmetric and

positive semidefinite matrix, B = (bij) is an n×n real and skew-symmetric

matrix, A + B is irreducible and singular:

(2) A = AT positive semidefinite, B = −BT , det(A + B) = 0 .

Furthermore, we have that:

• the sum of the entries of any row of A and of B is equal to zero:

(3) Ae = 0, Be = 0 where e = (1, 1, . . . , 1)T ,

that is, e is an eigenvector of A, AT (= A), B, BT (= −B), A+B and

(A + B)T (= A − B), corresponding to the zero eigenvalue;

• the diagonal entries of A are positive and the nondiagonal entries of

A are non positive:

(4) aii > 0, aij ≤ 0 i -= j;
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• for any real constant c > 0, the matrix A + cI is non singular and

the entries of its inverse are positive (i.e., A + cI is an M-matrix):

(5) det(A + cI) > 0, (A + cI)−1 > 0 with c > 0.

We assume that (1) is solvable, that is, f ∈ R(A+B), where R(A+B)

denotes the range of A+B, or f is orthogonal to the null space of (A+B)T .

This paper is concerned with the development of the Method of Si-

multaneous Displacements with the additive preconditioner for solving

the special linear system (1) when the coefficient matrix A+B is a large,

sparse matrix which satisfies the conditions (2)-(5). This method is ide-

ally suited for implementation on a multiprocessor system with two or

more vector processors, such as the CRAY Y-MP. The Method of Simul-

taneous Displacements with the additive preconditioner has been studied

in [2] for large classes of singular matrices arising from the discretization

with finite difference formulas of elliptic problems. However, for the el-

liptic problem considered in this paper (section 4) it was necessary to

perform a deeper analysis of the coefficient matrix of (1). Our principal

aim was to construct a suitable finite difference approximation of the con-

tinuous problem which produces a matrix equation satisfying the basic

properties of the continuous problem. This special coefficient matrix does

not belong to the classes of coefficient matrices considered in [2]. Also in

this case the method is convergent; in section 3 a sufficient convergence–

criterion has been established. Generally, only for small values of the

relaxation factor ω the method is convergent. The numerical results ob-

tained by solving some test-problems are seen to be largely in keeping

with the theory and show the effectiveness of the method.

2 – Some properties of the coefficient matrix

In this section we state some properties of the coefficient matrix of

system (1).

Lemma 1. Assume that (2)-(5) hold. Then,

(i) the vector e, defined in (3), is the unique (up to a scalar multiple)

eigenvector of A and of A + B corresponding to the zero eigenvalue;
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(ii) the zero eigenvalue is a simple eigenvalue of A and of A + B.

Proof. Part (i): from (5) it follows that e is the unique (up to a

constant multiple) eigenvector of (A+cI) corresponding to the eigenvalue

c > 0: (A+ cI)e = ce. Therefore, if there exists a vector e′ -= 0 such that

Ae′ = 0 and e′ -= e, then we would have that (A + cI)e′ = ce′, which

contradicts the uniqueness of e. Assume now that there exists a vector

e′ -= e such that (A + B)e′ = 0. Since B is skew-symmetric, i.e. the

inner product (e′, Be′) = −(e′, Be′), we obtain (e′, Ae′) = 0. From the

previous argument it follows that e′ = e.

Part (ii): for the symmetric matrix A, part (i) implies part (ii). The

proof of part (ii) for the matrix A+B is based on the fact that e is unique

(apart from a nonzero scalar multiplier) eigenvector, corresponding to the

zero eigenvalue, of both A+B and of its transpose A−B. For the matrix

A + B, part (i) implies that in the Jordan canonical form of the matrix

A + B there is only one Jordan canonical box with zero diagonal entries.

Let λm, m ≥ 1, be the elementary divisor corresponding to this box. To

this elementary divisor there corresponds a definite cyclic subspace I0,

generated by a vector which we denote by e0. For this vector λm is the

minimal polynomial. We consider the Krylov vectors [3, pg. 200]

e1 = (A + B)m−1e0, e2 = (A + B)m−2e0, . . .

and we note that

(A + B)e1 = (A + B)me0 = 0, (A + B)e2 = (A + B)m−1e0 = e1 .

From part (i) we have that e1 = e. If m ≥ 2, then we would have

(A + B)e2 = e and consequently ((A − B)e, e2) = ‖e‖2 = 0, which would

imply e = 0. Thus, m = 1 (the elementary divisor is linear) and the zero

eigenvalue of A + B is simple.

Notice that if u∗ is a solution of (1) so is u∗ + γe, for any real γ;

moreover, because of Lemma 1, all solutions of (1) have this form.

From Lemma 1, it follows that the solvability condition of the singular

system (1) is given by

(6) (f , e) = (u, (A + B)Te) = (u, 0) = 0
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where (f , e) is the inner product of f and e.

Lemma 2. Assume that (2)-(5) hold. Let D be the diagonal ma-

trix with the same diagonal entries of A and let µ be any eigenvalue of

D−1(A + B). Then, Re(µ) ≥ 0 and Re(µ) = 0 if and only if µ = 0.

Proof. From the eigenvalue equation (A+B)v = µDv we have that

(x, Ax) = Re(µ)(x, Dx) − Im(µ)(x, Dy)

(y, Ay) = Im(µ)(y, Dx) + Re(µ)(y, Dy)

where x = Re(v) and y = Im(v). Note that (x, Bx) = 0 and (y, By) = 0,

since BT = −B.

From these equations we obtain that

Re(µ) =
(x, Ax) + (y, Ay)

(x, Dx) + (y, Dy)
.

Thus, Re(µ) ≥ 0. If µ = 0, then Re(µ) = 0. Assume now Re(µ) = 0 and

v -= 0. We must have necessarily (x, Ax) = 0 and (y, Ay) = 0; then, from

Lemma 1, x = y = e. It follows that 0 = Im(µ)(x, Dy) = Im(µ)(e, De);

thus, Im(µ) = 0, and then µ = 0.

Lemma 3. Assume (2)-(5) and let the matrix A + B have the

splitting

(7) A + B = M − N, with detM -= 0.

Let

(8) H = M−1N.

Then,

(i) the vector e, defined in (3), is the unique (up to a scalar multiple)

eigenvector of H corresponding to the unit eigenvalue;

(ii) the unit eigenvalue is a simple eigenvalue of H.
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Proof. Part (i): the matrix H may be written as

(9) H = I − M−1(A + B).

Since e is the unique, apart from a nonzero scalar multiplier, eigenvector

of A+B corresponding to the zero eigenvalue (see, part (i) of Lemma 1),

from (9) it follows that e is the unique eigenvector corresponding to the

unit eigenvalue of H.

Part (ii): since zero is a simple eigenvalue of A + B (see, part (ii) of

Lemma 1), from det(I − H) = (detM)−1det(A + B) it follows that the

unit eigenvalue is a simple eigenvalue of H.

3 – The iterative method

In literature a widely used method for solving (1) is the Method of

Simultaneous Displacements with some form of “preconditioning” to the

original system (1). This method can be written in the form

(10) uk+1 = uk − τM−1((A + B)uk − f)

or, supposing τ = 1,

(11) Muk+1 = Nuk + f k = 0, 1, 2, . . .

where M and N are given by the splitting (7) of A + B and u0 is an

initial estimate of a solution of (1).

We can express the matrix A + B as the matrix sum

(12) A + B = D − L − U

where D = diag{a11, a22, . . . , ann} and L and U are respectively strictly

lower and upper triangular n×n matrices, whose entries are the negative

of the entries of A + B respectively below and above the main diagonal

of A + B. With this decomposition of A + B an interesting choice of the

preconditioner to A + B is the matrix [2]:

(13) M−1 = a(
1

ω
D − L)−1 + (1 − a)(

1

ω
D − U)−1
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where a and ω are real parameters such that 0 ≤ a ≤ 1 and 0 < ω ≤ 1.

In this case the iterative method (11) is characterized by having

within its overall mathematical structure certain well-defined substruc-

tures that can be executed simultaneously during each iteration k. This

feature makes the method (11)-(13) ideally suited for implementation on

a parallel vector computer.

The convergence of such a method is guaranteed if and only if the

eigenvalues λi of the iteration matrix H must satisfy the following two

conditions [2]:

(i) |λi| ≤ 1 for i = 1, 2, . . . , n; |λi| = 1 implies λi = 1;

(ii) all the elementary divisors that correspond to λi = 1 are linear.

From Lemma 3, the elementary divisor that corresponds to the unit

eigenvalue of H is linear; thus, in our case, the condition (ii) is satisfied.

For condition (i) we have the following result.

Theorem. Assume (2)-(6) and let the matrix A + B have the

splitting (12). Let the matrix M , in the splitting (7), be defined by formula

(13). Let H = H(a, ω) be defined as in (8) where M is given by (13).

Then, we have that ρ(H(a, ω)) = 1 and that any complex eigenvalue of

H has a modulus less than 1, for ω in a sufficiently small neighborhood

of zero; here, ρ(H) is the spectral radius of H.

Proof. Since (1, e) is an eigen-pair of H(a, ω) (see, Lemma 3), we

have that ρ(H(a, ω)) ≥ 1. Note that e = (1, 1, . . . , 1)T . The matrix M−1,

written as

M−1 = (a(I − ωD−1L)−1 + (1 − a)(I − ωD−1U)−1)ωD−1,

may be expressed in the form

M−1 = a(I + ωD−1L + ω2(D−1L)2 + . . . )ωD−1+

+ (1 − a)(I + ωD−1U + ω2(D−1U)2 + . . . )ωD−1 .

Thus, for 0 ≤ ω / 1, we obtain the following approximation for H(a, ω):

H(a, ω) = H(a, 0) +
∂H(a, ω)

∂ω

∣∣∣
ω=0

ω = I − ωD−1(A + B)
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which is independent of a. The eigenvalue equation H(a, ω)w = λw gives

λ = g(µ, ω) = 1 − µω

where µ is an eigenvalue of D−1(A + B).

From Lemma 2 we have that Re(µ) > 0 when µ -= 0; we have Re(µ) =

0 if and only if µ = 0, which gives g(0, ω) = 1. Thus, from

|g(µ, ω)|2 = 1 − 2Re(µ)ω + |µ|2ω2

it follows that
∂|g(µ, ω)|2

∂ω

∣∣∣
ω=0

= −2Re(µ) < 0

for µ -= 0. Therefore, since g(µ, 0) = 1 and 1 is an eigenvalue of H(a, ω),

we have that ρ(H(a, ω)) = 1 and that any complex eigenvalue of H has a

modulus less than 1, for ω in a sufficiently small neighborhood of zero.

Thus, for ω in a sufficiently small neighborhood of zero (0 ≤ ω / 1),

the method (11)-(13) converges and

(14) lim
k→∞

uk = u∗

where u∗ is a solution of (1).

With a = 1, method (11)-(13) becomes the SOR method and with

a = 1
2

(11)-(13) becomes the Arithmetic Mean method.

4 – Numerical Experiments

In order to illustrate the sensitivity of the convergence rate to an ac-

curate value of ω and the effectiveness of the method (11)-(13) in obtain-

ing an adequate approximation, some computational experiments have

been performed on a test-problem generated by the following difference

equation:

(15) −(αux + βuy)x̄ − (αuy + βux)ȳ = f(x, y)
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for all mesh-points (x, y) interior to a rectangular network Ωh. Here, we

have introduced in each mesh-point (x, y) the notation

vx =
v(x + h, y) − v(x, y)

h
vx̄ =

v(x, y) − v(x − h, y)

h

vy =
v(x, y + h) − v(x, y)

h
vȳ =

v(x, y) − v(x, y − h)

h

On the boundary Γh of Ωh the difference equations (15) have been ad-

justed in such a way that the matrices A and B related to (15) satisfy

the conditions (2)-(5).

The matrix A has at most five nonzero elements per row and B has

at most seven nonzero entries per row. The order of A and B is n = 4096.

Some results of numerical experiments appear in the Table; k∗ is the

number of iterations for a maximum-norm of the residual f−(A+B)uk∗ =

rk∗ and ω is the relaxation parameter in the matrix M of formula (13). We

assume a = 1/2. (The notation 3.7(−02), for instance, means 3.7 · 10−2).

The initial guess u0 of the iterative method (11)-(13) is the null

vector.

When we consider the coefficients in (15) α = β = 1 the triangular

matrix L in (12) is a non negative matrix. Similar results are obtained

when we consider the coefficients α = 1 and β = −1; in this case the

triangular matrix U in (12) is a non negative matrix. With the choice

α = 1 and β = 2 in (12) the nonzero entries of L and U are either positive

or negative. For ω = 1.05, α = β = 1 and ω = 0.7, α = 1, β = 2, the

iterative method (11)-(13) diverges.

In these experiments a seven-digit accuracy for the approximate so-

lution of (1) has been obtained, using the CRAY Y-MP vector computer.

Let Ω be a bounded, open and connected set of R2 with bundary Γ,

assumed sufficiently smooth. We consider the boundary value problem

−div(P grad u) = div s in Ω ,(16)

−P grad u × n = s × n on Γ ,

where P is the matrix

P =

(
p q

−q p

)
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with p > 0, q and s = (s1, s2)
T sufficiently smooth functions in Ω̄. In the

boundary condition n is the outward normal unit vector to Γ; Ω̄ is the

closure of Ω.

Problem (16) is singular, but the solvability condition is satisfied:

∫

Ω

div s dΩ −
∫

Γ

s × n dΓ = 0.

The elliptic operator −div(P grad u) can be expressed in the equivalent

form

−div(P grad u) = −div(p grad u) + div(u K grad q)

where K is the skew-symmetric matrix

K =

(
0 1

−1 0

)

Some basic properties of problem (16) are:

• the adjoint problem of (16) is obtained by replacing P by the trans-

pose matrix P T in (16);

• let us consider the eigenvalue problem

−div(P grad u) = ν u in Ω ,

−P grad u × n = 0 on Γ ;

then, Re(ν) ≥ 0 and Re(ν) = 0 if and only if ν = 0 (to the zero

eigenvalue corresponds the solution u =constant in Ω̄);

l et c be a positive constant: then, the solution of the problem

−div(P grad u) + c u = f ≥ 0 in Ω ,

−P grad u × n = 0 on Γ ,

is positive in Ω (maximum principle property).

A suitable finite difference approximation of the continuous problem

(16) must produce a matrix equation satisfying the basic properties of the

continuous problem outlined above. In paper [1] such a question has been

completely analysed: the discrete matrix equation is written in the form

(1). In this equation, the matrix A (symmetric and positive semidefinite)
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represents the discrete analog to the diffusion operator −div(p grad u),

together with the boundary condition −p grad u×n = 0 on Γ, by means of

the usual five-point formulas. The matrix B (skew-symmetric) represents

the contribution of the convection operator div(u K grad q).

When in problem (16) we put p = h0ε/(ε2 + f2
1 ), q = h0f1/(ε2 + f2

1 ),

u = gη, h0s = −Pτττ , where η is the surface elevation, h0 is the bottom

depth, g is the intensity of gravity, τττ is the wind stress, ε is a friction factor

and f1 = f0 + βy is the Coriolins parameter, we obtain the Stommel’s

model of ocean circulation [7].

We have performed some computational experiments for solving the

Stommel’s model on a square region of side L = 2 · 106 m with mesh

spacings of the grid ∆x = ∆y = 4 · 104 m. With the parameters h0 =

200 m, ε = 10−6 sec−1, τττ = (−cos(πy/L), 0)T , f0 = 2.5 · 10−5 sec−1 and

β = 0 or f0 = 0.5 · 10−5 sec−1 and β = 10−13 cm−1 sec−1, the iterative

method (11)-(13), a = 1, converges to a solution of (1) for values of the

relaxation factor ω of the order of 0.1; some thousands of iterations are

needed to have a maximum-norm of the residual rk∗ = f − (A + B)uk∗

less than 10−5. The initial guess u0 is the state of rest.

In all cases the results show exactly the qualitative features of the

surface elevation and velocity fields as those reported in [7]. When f0 = 0

and β = 0, the Gauss-Sidel method, a = 1 and ω = 1, is convergent to a

solution of (1) with few hundred of iterations.

Table

α = β = 1 α = 1, β = 2

ω k∗ ‖rk∗‖∞ ω k∗ ‖rk∗‖∞

0.1 500 3.7(−02) 0.1 500 3.8(−02)

0.5 430 9.5(−07) 0.3 500 3.0(−05)

0.7 265 9.7(−07) 0.4 482 9.5(−06)

0.9 170 9.5(−07) 0.5 340 1.1(−06)

1.0 130 9.5(−07) 0.6 255 1.0(−06)



386 G. BUFFONI – I. GALLIGANI [12]

REFERENCES

[1] G. Buffoni: A Finite Difference Approximation of an Elliptic Problem with an
Oblique-Derivative Type Boundary Condition, Quaderno n. 2, GNIM-CNR (1995).

[2] I. Galligani: Splitting Methods for the Solution of Systems of Linear Equations
with Singular Matrices, Rend. Mat., VII, 14 (1994), 341-353.

[3] F.R. Gantmacher: The Theory of Matrices Vol.1 , Chelsea Pub. Comp., New
York (1960).

[4] V.A. Gordin – Y.D. Resnyanskiy: Numerical Solution of the Problem of Large-
Scale Wind-Driven Circulation on the Ocean (Problem with an Oblique-Derivative),
Oceanology 21 (1981), 680-683.
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