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Solution of ∂̄ equation with compactly supported data

T. ANDREADIS

Riassunto: Si costruisce un operatore che risolve la ∂̄-equazione con supporto
compatto; quest’operatore si applica per studiare la ∂̄-equazione in domini compresi tra
certe ipersuperficie.

Abstract: We construct an operator giving solutions of the ∂̄-equation with com-
pact supports and we apply it to study the ∂̄-equation in domains between certain hy-
perfurfaces.

– Introduction

Let E a holomorphic vector bundle over the n-dimensional complex

manifold χ and let D be a completely q-convex domain in χ. We will

construct a continuous operator (in a natural enough topology) which will

give solutions of ∂̄-equation with compact support (for some dimensions).

Moreover, we will give resulting ∂̄-solution operators for domains

between q-convex surfaces (for certain dimensions).

The constructions use some deep results concerning the invariance of

cohomology due to q-convex or q-concave extensions and the Andreotti-

Grauert theorems (as proved in [3]). However, for the case of χ = Cn

the existence of Leray maps will suffice. Therefore to clarify the pro-
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cess, at first we will give proofs in this special setting, and finally at the

last section, we will present the general case (indicating the necessary

differences).

1 – Notations

Let D ⊆ Cn be a domain. If ‖ ·‖a,K is the a-Hölder norm (0 < a < 1)

over K ⊆ D, then for 1 ≤ q ≤ n, k = 0, 1, . . . .∞ and 0 < a < 1, we will

use the following notations:

Ck,a
0,q (D) = {f ∈ Ck

0,q(D) : ‖djf‖a,K < ∞ ∀K ⊂⊂ D and ∀j =

0, . . . , K} (where dj is the j-class derivative of f).

Especially, C0,a
0,q (D) := Ca

0,q(D).

Ck,a
0,q (D̄) = {f ∈ Ck

0,q(D) : ‖djf‖a,D < ∞ ∀j = 0, . . . , k}.

Especially, C0,a
0,q (D) := Ca

0,q(D).

Ck,a
0,q (D̄) = {f ∈ Ck

0,q(D) : ‖djf‖a,D < ∞ ∀ j = 0, . . . , k}.

Especially, C0,a
0,q (D̄) := Ca

0,q(D̄).

Zk,a
0,q (D) , Zk

0,q(D) etc. are the subsets of the above sets which contain

the ∂̄-closed elements (in D).

(S)0, where S is any of the above sets contains the corresponding

elements that are compactly supported in D.

CO(D) will be the set of the holomorphic functions of D that can be

continuously extended over D̄.

Similar definitions will be used for sets of E-valued forms (with E

being a holomorphic vector bundle over a complex manifold).

Unless otherwise stated, C
1/2
0,r (D̄) and (C

1/2
0,r (D̄)0 will be considered

as normed spaces with the 1
2
-Hölder norm on D̄, while C0

0,r(D̄) will be

endowed with the ‖ · ‖0,D̄ supremum norm on D̄.

If D ⊆ Cn is a strictly pseudoconvex domain with Ck-boundary,

Henkin (in [2]) has constructed a Leray map w(z, x) for D which is

holomorphic in z and Ck−1 in x (or C∞ if D has C∞-boundary) and has

proved the existence of a solution operator (with regularity properties)

T : Z0
0,q(D̄) −→ C

1/2
0.q−1(D̄)(1 ≤ q ≤ n). The above Leray map w(z, x) is

defined for x ∈ U∂D, where U∂D is a neighborhood of ∂D and for z ∈ UD̄ =

U∂D ∪ D̄. If we choose ε > 0 small enough so that Dε = [−ε < ρ < 0] ⊂⊂



[3] Solution of ∂̄ equation with compactly supported data 417

U∂D and dρ -= 0 in Dε, where ρ is the strictly plurisubharmonic defining

function of D, set w̃(z, x) = w(z, x) for z ∈ Dε, x in a neighborhood of

[ρ = 0] and w̃(z, x) = −w(x, z) for z ∈ Dε and x in a neighborhood of

[ρ = −ε].

Then w̃(z, x) is a Leray map for D and the next remark is obtained:

(1.1) Let D ⊆ Cn be a strictly pseudoconvex domain with C2-boundary

and let ρ be a strictly pseudoconvex defining function of D. If ε > 0 is

sufficiently small and Dε = [−ε < ρ < 0], then there exist a bounded

linear operator T : Z0
0,q(D̄ε) −→ C

1/2
0.q−1(D̄ε) such that ∂̄ 7 T = Id, for

q = 1, 2, . . . , n − 2, n.

Moreover if f ∈ Ck
0,q(D̄ε) and D has C∞ boundary, then

Tf ∈
⋂

0<a<1

Ck,a
0,q−1(Dε) (k = 0, . . . ,∞) .

2 – Controlling the support of solutions of ∂̄ equation

Remark 2.1. Let D1 , D2 be domains such that D1 ⊂⊂ D2 ⊂⊂ Cn.

In CO(D2) we define two norms:‖ · ‖1 = ‖ · ‖0,D̄2
and ‖ · ‖2 = ‖ · ‖0,D̄2

+

‖ · ‖1/2,D̄1
. Then, ‖ · ‖1 ∼ ‖ · ‖2.

By the open mapping theorem, since both involved spaces are Ba-

nach spaces.

As it is well known, by using the Cauchy Fantappie formula we can

extend holomorphic function from a boundary neighborhood of a smooth

strictly pseudoconvex domain, to the entire domain. It is easy to see that

such an extension preserves a kind of ‖ ·‖1/2 convergence. More precisely:

Lemma 2.2. Let D ⊂⊂ Cn (n ≥ 2) be a strictly pseudoconvex

domain with C2 boundary and V a bounded neighborhood of ∂D. We

consider CO(D ∪ V ) endowed with the ‖ · ‖0,D̄∪V̄ + ‖ · ‖1/2,D̄ norm and

CO(V ) with the ‖·‖0,V̄ norm. Then, there exists a bounded linear operator

T : CO(V ) −→ CO(V ) such that Tf(z) = f(z) for z in a neighborhood

of ∂D, ∀f ∈ CO(V ).
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Proof. Because of Remark 2.1 we may prove the boundness of T by

using the ‖ · ‖0,D̄∪V̄ instead of ‖ · ‖1/2,D̄ + ‖ · ‖0,D̄∪V̄ . If f ∈ CO(V ), we

set Tf = LW
∂Df where w is the Leray map constructed by Henkin. The

Tf = f in a neighborhood of ∂D (by the Cauchy-Fantappie formula) and

Tf is z-holomorphic in D since w(z, x) is so. For the continuity, it is

enough to prove that if (fλ)λ∈IN is a sequence in CO(V ) with fλ −→ 0

uniformly in V , then fλ −→ 0 uniformly in D − V (since Lw
∂Df = f in

V ∩ D). Indeed, for any z ∈ D − V we have that:

Lw
∂Dfλ(z)=

(n−1)!

(2πi)n

∫

∂D

fλ(x)
n∑

i=1

(−1)i+1wi(z, x)
∧

k +=i

dwk(z, x)∧ω(x)
/
φ(z, x)n

where φ(z, x) = 〈w(z, x), x − z〉. Therefore, we have that

|Lw
∂Dfλ(z)| ≤ C‖fλ‖0,V̄

n∑

i=1

∫

∂D

dσ(x)

|φ(z, x)n| .

Since fλ −→ 0 uniformly in V , and the quantities |φ(z, x)|−1 are

positive on compact D̄ − V ), the proof is complete.

Lemma 2.3. Let D ⊂⊂ Cn be a domain and U a pseudoconvex

neighborhood of D̄. Then, there exists a bounded linear operator T :

(Z0
0,q(D̄))0 −→ (C

1/2
0,q−1(Ū))0, such that ∂̄ 7 T − Id for q = 1, 2, . . . , n − 1.

Moreover, if f ∈ (Zk
0,q(D))0 then Tf ∈ ⋂

0<a<1
(Ck,a

0,q−1(U))0, for k =

0, 1, . . . ,∞.

Proof. By Sard’s theorem we can choose strictly pseudoconvex do-

mains D1 , D2 with D ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ U and suppose that ∂D1 , ∂D2

are close enough so that the operator of (1.1) is defined for D2 − D̄1.

(i) If 2 ≤ q ≤ n − 1.

Let T1 : Z0
0,q(D̄2) −→ C

1/2
0,q−1(D̄2) be Henkin’s operator and let

T2 : Z0
0,q−1(D̄2 − D1) −→ C

1/2
0,q−2(D̄2 − D1) be the operator of (1.1).

If f ∈ (Z0
0,q(D̄))0, then f ∈ Z0

0,q(D̄2), so T1(f) = u ∈ C
1/2
0,q−1(D̄2) is

defined, such that ∂̄u = f in D2.

Since supp(f) ∩ (D̄2 − D1) = ∅, it follows that ∂̄u = 0 in D2 − D̄1 so

T2(u) = v ∈ C
1/2
0,q−2(D̄2 − D1) is defined, with ∂̄v = u in D2 − D̄1. Choose



[5] Solution of ∂̄ equation with compactly supported data 419

∂D1 ∂D2
∂D ∂U

χ = 1 χ = 0

fig. 1

χ ∈ C∞(Cn) so that χ = 1 in a neighborhood of D̄1 and χ = 0 in a

neighborhood of U − D2 (fig. 1).

Set Tf = χu + ∂̄χ∧ v. Then obviously ∂̄Tf = f and T is continuous

with regularity properties, as equal to ext 7(χT1 + ∂̄χ ∧ (T2 7 rest 7 T1)),

where rest and ext are the restriction of a from and the zero extension of

a compactly supported form respectively.

(ii) If q = 1.

As in (i) T1(f) = u ∈ C
1/2
0,0 (D̄2) is defined with ∂̄u = 0 in D2. Then

u ∈ CO(D̄2−D1) and let T3 : CO(D̄2−D1) −→ CO(D2) be the extension

operator of Remark 2.2. we define u′ = T3u. Then we set Tf = u−u′. T

is equal to the composition ext(T1 −T2 7 rest 7T1), so it has the required

properties.

(More precisely: if fλ → f uniformly on D̄, then uλ −→ u in ‖ · ‖1/2,D̄2

convergence. Then u′
λ −→ u′ uniformly in D̄2 and in ‖ · ‖1/2,D̄1

in D1. So

uλ −u′
λ −→ u−u′ in ‖ ·‖1/2,D̄1

convergence in D1. But since supp uλ −u′
λ

and suppu − u′ ⊂⊂ D1, we have that uλ − u′
λ −→ u − u′ in ‖ · ‖1/2,Ū

convergence in Ū .)

Remarks 2.4.

1. The above lemma gives another proof of the (well known by Serre’s

duality theorem) following fact: If χ ⊆ Cn is a pseudoconvex domain

then (Hk
0,q(χ))0 = 0 for 1 ≤ q ≤ n − 1 and k = 0, 1, . . . ,∞. As shown by

standard examples, this does not hold for q = n.

2. If f ∈ (Zk
0,q(C

n))0 and supp(f) does not separate Cn, then there exists

a form u ∈ ⋂
0<a<1

(Ck,a
0,0 (Cn))0 such that ∂̄u = f and suppu = supp(f).

Moreover u can be obtained by means of a bounded linear operator.
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(Proof: As in the proof of the above theorem, there exists a compactly

supported u such that ∂̄u = f , so u is holomorphic in (supp f)C . Then

there exist an holomorphic extension u′ of u in a ball containing suppu,

given by operator (2.2). Set u − u′ as the new solution.)

Moreover, the same argument shows that in general (supp(f))C, (suppu)C

ave the same unbounded connected component.

3. It is known (by Stein’s counter example) that we cannot find ∂̄ solu-

tions with finite a-Hölder norm for a > 1/2. The “support controlling

property” though, allows the existence of such solutions in the follow-

ing special case: Let D1 ⊂⊂ D2 ⊂⊂ Cn be open domains, f ∈ C0
0,1(D2)

such that ∂̄f = 0 in D1 and with the following property: there exists

a connected domain U which has non empty open intersection with any

connected componed of D2 − D1 and D1, and f = 0 in U . Then there

exists a solution u of ∂̄u = f in D1 with u ∈ ⋂
0<a<1

Ca
0,0(D̄1).

Moreover, u can be obtained by means of a bounded linear operator.

(Proof: Contracting D2 (if necessary) we can suppose that there exists

an open set U as above such that both f = 0 in U and intersect (D̄2)
C .

Choose χ ∈ C∞(Cn) so that χ = 1 in a neighborhood of D̄1 and χ = 0

in a neighborhood of DC
2 . Define ∂̄(χf) ∈ Z0

0,1(C
n) and notice that D1

is contained in the unbounded component of (supp ∂̄(χf))C , U begin the

“open path” connecting D1 and DC
2 .

Therefore, by the second remark we can find v ∈ ⋂
0<a<1

Ca
0,0(C

n) such that

∂̄v = ∂̄(χf) with (supp v)C , (supp ∂̄(χf))C having the same unbounded

component; thus v = 0 in D1. Then χf−v is ∂̄ closed in a ball surrounding

D2, so we can choose u ∈ ⋂
0<a<1

Ca
0,0(D̄1) with ∂̄u = χf − v in this ball,

so ∂̄u = f in D1 (by choice of χ and v).

4. The requirement “supp(f) does not separate Cn” in the Remark 2

cannot be dropped as shown by the following counter example:

Let D = S(0, 2)− S̄(0, 1) in Cn and u1, u2 be distinct analytic polynomi-

als. Multiplying with cut-off functions we define a C∞ function v1 such

that v1 = u1 in S(0, 1) and v1 = u2 in S(0, 2)c. Define f = ∂̄v1. Then

supp(f) ⊂⊂ D and if the requirement wasn’t necessary, a v2 ∈ C∞(Cn)

could have been found such that ∂̄v2 = f and supp v2 ⊆ D. Then v1 − v2

would have been holomorphic inCn, equal to u1 and u2 in S(0, 2)C re-

spectively.
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3 – Solving ∂̄ between hypersurfaces

Before proceeding to the main Theorem 4.3, we will see how

Lemma 2.3 leads easily to the vanishing of cohomology between certain

hypersurfaces and gives Hölder estimates in the case of C2 strictly pseu-

doconvex ones.

Lemma 3.1. Let D1 , D2 with D1 ⊂⊂ D2 ⊆ Cn be domains such that

D2 is pseudoconvex and D̄1 has a neighborhood basis of pseudoconvex

domains. Let D = D2 − D̄1. If f ∈ Z0
0,q(D) and U is pseudoconvex with

D1 ⊂⊂ U ⊂⊂ D2, there exists u ∈ C0
0,q−1(D2) such that ∂̄u = f in D2−Ū ,

for q = 1, 2, . . . , n − 2, n.

Proof. Chose χ ∈ C∞(Cn) such that χ = 1 in a neighborhood of

UC and χ = 0 in a neighborhood of D̄1.

Let f ∈ Z0
0,q(D). Then ∂̄χ ∧ f ∈ Z0

0,q+1(U), so by remark 1 of 2.4,

there exists a v ∈ (C0
0,q(U))0 : ∂̄v = ∂̄χ∧f in U . Then (χf−v) ∈ Z0

0,q(D2),

and since D2 is pseudoconvex, there exists u ∈ C0
0,q−1(D2) such that

∂̄u = χf − v in D2, so ∂̄u = f in D2 − U (since χ = 1 and v = 0 there).

Theorem 3.2. Let D1 , D2 with D1 ⊂⊂ D2 ⊆ Cn be domains such

that D2 is pseudoconvex and D̄1 has a neighborhood basis of pseudoconvex

domains. Set D = D2 − D̄1. Then H0,q(D) = 0 for q = 1, 2, . . . , n − 2.

Proof. Because of the Dolbeaut isomorphism (see [3] 2.14) it is

enough to show that H0
0,q(D) (i.e. the cohomology group of continuous

forms) is equal to 0.

Let (Ui)i∈IN be a neighborhood base for D̄1 of pseudoconvex sets so

that D1 ⊂⊂ Ui+1 ⊂⊂ Ui ⊂⊂ D2 and f ∈ Z0
0,q(D). From the previous

lemma there exists a sequence (gi)i∈IN with gi ∈ C0
0,q(D2) : ∂̄gi = f in

D2 − Ūi. It is enough to construct g̃i ∈ C0
0,q−1(D2) (i ∈ IN) : ∂̄g̃i = f in

D2 − Ūi and g̃i+1 = g̃i+2 in D2 − Ūi.

Set g̃1 = g̃2 = g̃3 = g3 and suppose g̃1, g̃2, . . . , g̃i+1 have been con-

structed. Choose χ ∈ C∞(Cn) such that χ = 0 in a neighborhood of Ui+1

and χ = 1 in a neighborhood of D − U (fig. 2).
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∂Ui + 2 ∂Ui + 1
∂Ui ∂D2∂D1

χ = 1χ = 0

fig. 2

Then ∂̄χ∧ (g̃i+1 − gi+2) ∈ ((Z0
0,q(Ui))0, so by Lemma 2.3, there exists

a v ∈ ((C0
0,q(Ui))0 : ∂̄v = ∂̄χ ∧ (gi+1 − gi+2) in Ui. Then set g̃i+2 =

g̃i+1 + χ(g̃i+1 − gi+2) − v.

Theorem 3.3. Let D1 , D2 be strictly pseudoconvex domains with

C2-boundary such that D1 ⊂⊂ D2 ⊂⊂ Cn. Set D = D2 − D̄1. Then there

exists a bounded linear operator T : Z0
0,q(D̄) −→ C

1/2
0.q−1(D̄) such that

∂̄ 7 T = Id for q = 1, 2, . . . , n − 2, n. Moreover, if D1 has C∞ boundary

and f ∈ Zk
0,q−1(D̄), then Tf ∈ ⋂

0<a<1
Ck,a

0,q−1(D), for k = 0, 1, . . . ,∞.

Proof. Choose strictly pseudoconvex domains U , U ′ , U ′′ with C2

boundary (or C∞ if ∂D1 is C∞) such that D1 ⊂⊂ U ′′ ⊂⊂ U ′ ⊂⊂ U ⊂⊂ D2,

with ∂U close enough to ∂D1 so that the operator of 1.1 is defined. Choose

χ, y ∈ C∞(Cn) with χ = 1 in a neighborhood of D2 − U ′′ , χ = 0 in a

neighborhood of D̄1, and y = 1 in a neighborhood of D2 − U , y = 0 in a

neighborhood of Ū ′ (fig. 3).

∂U ∂U ∂U ∂D2 ∂D1

χ = 1

y = 1

χ = 0

y = 0

′ ′′

fig. 3
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Let T0 : (Z0
0,q+1(U

′′))0 −→(C
1/2
0,q (Ū ′))0 be the operator of Lemma 2.3,

T1 : Z0
0,q(D̄2) −→ C

1/2
0,q−1(D̄2) be Henkin’s operator and finally, let

T2 : Z0
0,q−1(Ū − D1) −→ C

1/2
0,q−1(Ū − D1) be the operator of 1.1. Let

f ∈ Z0
0,q(D̄). Then ∂̄χ ∧ f ∈ (Z0

0,q+1(Ū
′′))0, so T0(∂̄χ ∧ f) = h is defined

(i.e. h ∈ (C
1/2
0,q (Ū ′))0 : ∂̄h = ∂̄χ ∧ f in U ′). Then χf − h ∈ Z0

0,q(D̄2) so

T1(χf −h) = u1 is defined (i.e. u1 ∈ C
1/2
0.q−1(D̄2) and ∂̄u1 = χf −h in D2,

thus ∂̄u1 = f in D2 − U ′. We have f ∈ Z0
0,q(Ū − D1) so T2(f) = u2

is defined (i.e. u2 ∈ C0
0.q−1(Ū − D1): ∂̄u2 = f in Ū − D1). Then

∂̄y ∧ (u1 − u2) ∈ Z0
0,q(D̄2), so T1(∂̄y ∧ (u1 − u2)) = u is defined (i.e. u ∈

C
1/2
0,q−1(D̄2) : ∂̄u = ∂̄y∧(u1−u2) in D2). Set Tf = yu1+(1−y)u2−u. From

the definitions of u1 , u2 , u it follows that ∂̄(Tf) = f and Tf ∈ C
1/2
0.q−1(D̄).

Finally, T is continuous as equal to the composition:

yT1(χ Id −T0(∂̄χ∧ Id))+(1−y)T2−T1(∂̄y∧(T1(χ Id)−T0(∂̄χ∧ Id)−T2)) .

Remark 3.4. The result of the last two theorems is known not to

hold for q = n − 1 as shown by standard counter examples. For more on

this matter see Remark 5.13 bellow.

4 – Solution operator of ∂̄ equation with compactly supported

data

Let D be a pseudoconvex domain, (Di)i∈IN, (Ui)i∈IN be exhausting

families for D of strictly pseudoconvex domains with Di ⊂⊂ Ui⊂⊂Di+1

∀i ∈ IN. By Lemma 2.3 there exist bounded operators Ti : (Z0
0,q(Di))0 −→

(C
1/2
0,q−1(Ui))0 with ∂̄ 7 T = Id for q = 1, 2, . . . , n − 1 and with regular-

ity properties. These operators can be easily modified to coincide on

“overlapping” domains. More precisely:

Lemma 4.1. Let D, (Di)i∈IN, (Ui)i∈IN be domains and Ti : (Z0
0,q(D̄i))0

−→ (C
1/2
0,q−1(Ūi))0 be operators as above. Then for q = 1, 2, . . . , n−2, there

exist bounded linear operators T̃i(Z
0
0,q(Di))0 −→ (C

1/2
0,q−1(Ui))0 such that

T̃i(f) = T̃i−1(f) for f ∈ (Z0
0,q(Di−2))0 and ∂̄ 7 T̃i = Id.

Moreover, if f ∈ (Zk
o,q(Di))0, then T̃i f ∈ ⋂

0<a<1
(Ck,a

0,q−1(Ui))0, for

k = 0, 1 . . . ,∞.
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∂D2∂U1 ∂U2 ∂D3 ∂U3∂D3∂U3 ∂U2 ∂D2 ∂U1

D1

χ = 1
χ = 0 χ = 0

fig. 4

Proof. Set T̃1 = T1 , T̃2 = T2 and choose χ ∈ C∞(Cn) such that

χ = 1 in a neighborhood of D1 and χ = 0 in a neighborhood of UC
1

(fig. 4).

Let S : (Z0
0,q+1(Ū1))0 −→ (C

1/2
0,q (D̄2))0 be the operator of Lemma 2.3

and let f ∈ (Z0
0,q(D3))0. Then S(∂̄χ∧f) = u is defined (i.e suppu ⊂⊂ D2

and ∂̄u = ∂̄χ ∧ f). Then (χf − u) ∈ (Z0
0,q(D2))0 and (1 − χ)f + u ∈

(Z0
0,q(D3))0. Then set:

(∗) T̃3f = T̃2(χf − u) + T3((1 − χ)f + u) .

Suppose that f ∈ (Z0
0,q(D1))0. We have to show that T̃3(f)= T̃2(f).

Indeed, since supp(f)⊂⊂D1 and supp ∂̄χ∩D1 =∅, we have that ∂̄χ∧f =0,

so the solution u of ∂̄u = ∂̄χ ∧ f is the zero one since it is obtained by

means of a linear operator (the S operator). Equally (1 − χ)f = 0 (since

supp(1 − χ) ∩ D1 = ∅), which finally gives T3((1 − χ)f − u) = T3(0) = 0,

and (∗) becomes T̃3(f) = T̃2(χf) = T̃2(f) since χ = 1 where f -= 0.

Obviously T̃3 solves the ∂̄ equation since T̃1 , T̃2 do so and it is con-

tinuous as a composition of T̃1 T̃2 , S and multiplications.

Using an inductive process whose i-th step is similar to the first one

above, we can construct the required of operators.

The sequence (‖T̃i‖)i∈IN is unbounded (due to the presence of ∂̄χi

in the formula of T̃i), so norm-convergence of (T̃i)i∈IN is not expected.

Therefore, we are forced to change the topology of (Z0
0,q(D))0.

Definition 4.2. Let D ⊆ Cn be a domain. Define a topology T in

(Z0
0,q(D))0 with convergence defined as: fi

T−→ f ⇔ ∃K ⊆ D compact, so

that supp(f), supp(fi) ⊂⊂ K and fi −→ f uniformly in K.
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Theorem 4.3. Let D ⊆ Cn be a pseudoconvex domain. The there

exists a continuous linear function T : ((Z0
0,q(D))0, T) −→ ((C

1/2
0,q−1(D))0,

‖ ·‖1/2,D̄) so that ∂̄ 7T = id, for 1 ≤ q ≤ n−1. Moreover, if (Di)i∈IN is an

exhausting family of strictly pseudoconvex domains and f ∈ (Zk
0,q(D))0

with supp(f) ⊂⊂ D1, then suppTf ⊂⊂ Di+2 and Tf ∈ ⋂
0<a<1

(Ck,a
0,q−1(D))0,

for k = 0, 1, . . . ,∞.

Proof. Let (T̃i)i∈IN with T̃i : (Z0
0,q(D̄i))0 −→ (C

1/2
0,q−1(D̄i+1))0 be a

sequence of operators as in Lemma 4.1. Let f ∈ (Z0
0,q(D))0 and choose

if ∈ IN such that supp(f) ⊂⊂ Dif . Set Tf = T̃if for any i ≥ if +1.

Then T has the required properties. Indeed, it is continuous:let fi,

f ∈ (Z0
0,q(D))0 such that fi

T−→ f . Then there exists a compact K ⊂⊂ D

so that (finally) supp(fi) , supp(f) ⊆ K. Choose i0 such that K ⊂⊂ Di0−1.

Then T (fi) = T̃i0(fi) −→ T̃i0(f) = T (f). Linearity is proved in the

same way. Finally, T solves the ∂̄ equation and has the required “support

controlling” properties, since “locally” equals a T̃i operator.

5 – Compactly supported solutions of ∂̄ equation on complex

manifolds

Let E be a holomorphic vector bundle over an n-dimensional complex

manifold X and D a domain in X. We will use the following facts (proved

in [3]) concerning local solvability of ∂̄ equation:

(5.1) Let D ⊂⊂ X be a non degenerate strictly q-convex domain. Then

there exist domains (Ui)i=1, ,N covering ∂D and bounded linear op-

erators Ti : Z0
0,r(D̄, E) −→ C

1/2
0,r−1(Ūi ∩ D̄, E) so that ∂̄ 7 Ti = id

for n − q ≤ r ≤ n. ([3] 7.8, 9.1).

(5.2) Let D ⊂⊂ X be a non degenerate strictly q-concave domain (1 ≤
q ≤ n − 1). Then there exist domains (Ui)i=1, ,N covering ∂D and

bounded linear operators Ti : Z0
0,r(D̄, E) −→ C

1/2
0,r−1(D̄∩ Ūi, E)(1 ≤

r ≤ q − 1), such that ∂̄ 7 T = id. ([3] 13.10, 14.1).

We will also use the following theorems (also proved in [3]):
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(5.3) (Henkin’s operator) Let E be a holomorphic vector over the n-

dimensional complex manifold X and D be a non degenerate com-

pletely strictly q-convex domain in X. Then there exists a bounded

linear operator T : Z0
0,r(D̄, E) −→ C

1/2
0,r−1(D̄, E) for n − q ≤ r ≤ n,

so that ∂̄ 7 T = id. ([3] 12.7).

(5.4) Let E be a holomorphic vector bundle over the n-dimensional com-

plex manifold X and D be a domain whose boundary is non degen-

erate strictly q-concave with respect to X(2 ≤ q ≤ n − 1). Then

E
1/2
0,r (d̄, E) = Z0

0,r(D̄, E) ∩ E0
0,r(D, E) for 1 ≤ r ≤ q − 1. ([3] 15.7).

(where E
1/2
0,r (D̄, E) = ∂̄C

1/2
0,r−1(D̄, E) ∩ C0

0,r(D̄, E), E0
0,r(D, E) =

C0
0,r(D, E) ∩ ∂̄C0

0,r−1(D, E).)

(5.5) (Invariance of cohomology) Let E be a holomorphic vector bun-

dle over the n-dimensional complex manifold X. If X is a q-

concave extension of a domain D, then the restriction H0,r(X, E)→
H0,r(D, E) for 0 ≤ r ≤ q − 1 is an isomorphism. ([3] 15.11).

The next two lemmas are derived by the above results:

Lemma 5.6. Let E be a holomorphic vector bundle over the n-

dimensional complex manifold X with n ≥ 3, and D ⊂⊂ X a non degener-

ate completely strictly q-convex domain with q ≥ n+1
2

. If D0 = [a < ρ < 0]

with a < 0 and ρ the non degenerate (q + 1)-convex defining function of

D, then ∀f ∈ Z0
0,r(D̄0, E), ∃u ∈ C

1/2
0,r−1(D̄0, E): ∂̄u = f in D0, for

n − q ≥ r ≥ q − 1.

Proof. We can suppose that D is connected (or substitute D with

each of its connected components). Then D0 has a non degenerate strictly

q-concave boundary with respect to D. Let D̃0 be the closure of D0 in the

manifold D. Since Z0
0,r(D̃0, E) ⊇ Z0

0,r(D̄0, E), it is enough to prove that

for any f ∈ Z0
0,r(D̃0, E) there exists u ∈ C

1/2
0,r−1(D̄0) so that ∂̄u = f in D0.

By (5.4), we have that E
1/2
0,r (D̃0, E) = Z0

0,r(D̃0, E)∩E0
0,r(D0, E). Therefore

it is enough to show that for any g ∈ Z0
o,r(D̃0, E), ∃v ∈ C0

o,r−1(D0, E) :

∂̄v = g in D0, or the more powerful relation H0,r(D0, E) = 0. Indeed,

notice that D is a (q+1)-concave extension of D0. Then by the invariance

of cohomology property, H0,r(D0, E) = H0,r(D, E) and H0,r(D, E) = 0

by the Andreotti-Grauert theorem ([3] 12.16).
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Lemma 5.7. If E ,X ,D ,D0 are as in the previous lemma, there

exists a bounded linear operator T : Z0
0,r(D̄0, E) −→ C

1/2
0,r−1(D̄0, E) such

that ∂̄ 7 T = id (for n − q ≤ r ≤ q − 1).

Proof. The boundary of D0 consists of two parts: the “q-convex

part” [ρ = 0] and the “q-concave part” [−ρ = −a]. By 5.1 and 5.2, we can

cover both with domains (Vi)i=1...N and find operators Ti : Z0
0,r(D̄0, E)−→

C
1/2
0,r−1(D̄0 ∩ V̄i, E) : ∂̄ 7Ti = id. Finally, we cover D̄0 −

N⋃
1

Vi with domains

(Vi)i=N+1,... ,L biholomorphic to open balls and let Ti : Z0
0,r(D̄0, E) −→

C
1/2
0,r−1(D̄0 ∩ V̄i, E) for i = N + 1, . . . , L be the bounded ∂̄ solution oper-

ators as obtained by Poincare’s lemma.

Set S : Z0
0,r(D̄, E)−→C

1/2
0,r−1(D̄0, E) and K : Z0

0,r(D̄0, E) −→ Z0
0,r(D̄0, E),

defined by Sf =
L∑

i=1
χiTif and Kf =

L∑
i=1

∂̄χi ∧ Tif , where (χi)i=1,... ,L is a

C∞ partition of unity subordinate to (Ui)i=1,... ,L. Then S is a bounded

linear operator and K is a compact operator (for it is bounded as K :

Z0
0,r(D̄0, E) −→ C

1/2
0,r (D̄0, E) and any bounded sequence of C

1/2
0,r (D̄0, E)

is equicontinous).

Obviously ∂̄7S = id+K and by the previous lemma ∂̄ is the previous

lemma ∂̄ is an onto function. Then the existence of T is obtained by the

following lemma of functional analysis: “Let B1, B2 be Banach spaces

and θ : dom θ ⊆ B1 −→ B2 be a closed onto linear operator. If there

exist a bounded linear operator S : B2 −→ B1 and a compact operator K

of B2 so that θ 7 S = id + K then there exist a bounded linear operator

T : B1 −→ B2 : θ 7 T = id”.

Using the operator constructed above, Henkin’s operator of 5.3 and

Hartogs’ theorem for manifolds (see [3] 15.2), we can apply the proofs of

paragraphs 2-3 to show that the following hold:

(In what follows E will be a holomorphic vector bundle over an n-dimen-

sional complex manifold X, with n ≥ 3 and q ≥ n+1
2

.)

(5.8) Let D ⊂⊂ X be a domain and U a completely q-convex neighbor-

hood of D̄, with q ≥ n+1
2

. Then for n − q + 1 ≤ r ≤ q there exists

a bounded linear operator:

T : (Z0
0,r(D̄, E))0 −→ (C

1/2
0,r−1(Ū , E))0

so that ∂̄ 7 T = id in D. If q = n − 1 (that is, if U is completely

pseudoconvex) the operator is defined also for r = n − q = 1.
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We define a topology T in (Z0
0,r(D, E))0 as: fi

T−→ f ⇔ ∃K ⊂⊂ D

so that (finally) supp(f) , supp(fi) ⊂⊂ K and fi −→ f uniformly in K.

Then, we can prove:

Theorem 5.9. Let D ⊆ X be a completely q-convex domain in X.

Then there exists a continuous linear function:

T : [(Z0
0,r(D, E))0, T] −→ [(C

1/2
0,r−1(Ūi, E))0, ‖ · ‖1/2,D̄]

such that ∂̄ 7 T = id for n − q + 1 ≤ r ≤ q − 1 (or 1 ≤ r ≤ n − 1 if

q = n − 1).

Moreover, if (Di)i∈IN is an exhausting family of non degenerate com-

pletely strictly q-convex domains (such families exist because of Morse’s

lemma) and f ∈ (Z0
0,r(D, E))0 is supported on Di, then Tf is supported

on Di+2.

Theorem 5.10. Let Di, D2 with Di ⊂⊂ D2 ⊆ X be domains

such that D2 is completely q-convex and D̄1 has a neighborhood basic of

completely q-convex domains. Set D = D2 − D̄1. Then H0,r(D, E) = 0,

for n − q ≤ r ≤ q − 1.

Theorem 5.11. Let D1, D2 be non degenerate completely strictly

q-convex domains such that D1 ⊂⊂ D2 ⊂⊂ Cn. Set D = D2 − D̄1. Then

there exists a bounded linear operator T : Z0
0,r(D̄, E) −→ C

1/2
0,r−1(D̄, E)

such that ∂̄ 7 T = Id, for n − q ≤ r ≤ q − 1.

Example 5.12 Let IPn be the n-dimensional complex projective

space. Define:

D1 = {[z] ∈ IPn : |z0|2 + . . . + |zq|2 < |zq+1|2 + . . . + |zn|2}

D2 = {[z] ∈ IPn : |z0|2 + . . . + |zq|2 < 2(|zq+1|2 + . . . + |zn|2)}

D = {[z] ∈ IPn : |zq+1|2 + . . . + |zn|2 < |z0|2 + . . . + |zq|2 <

< 2(|zq+1|2 + . . . + |zn|2)} .

Then D = D2 − D̄1 and it is known that D1, D2 are completely

strictly q-convex domains with C∞ boundaries, so the two last remarks
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can be applied to show that for any holomorphic bundle E over IPn for

n ≥ 3 and q ≥ n+1
2

, H0,r(D, E) = 0 for n − q ≤ r ≤ q − 1. Moreover,

if f ∈ Z0
0,r(D̄, E), then ∃u ∈ C

1/2
0,r−1(D̄, E) : ∂̄u = f in D, obtained by

means of a bounded linear operator.

It is known that 5.10 and 5.11 do not hold for r = q (in fact

dimH0,n−1(D−K) = ∞ if K is a compact set and D ⊆ Cn is pseudocon-

vex). But when trying to solve ∂̄u = f on D2 − D̄1, we can assume that

∂D2 , ∂D1 are arbitrarily close to each other, since cohomology classes

can be restricted, as shown by the remark:

Remark 5.13. Let E be a holomorphic vector bundle over the n-

dimensional complex manifold X(n ≥ 2) and K ⊆ X be a compact set.

Let D2 , D1 be completely q-convex domains (1 ≤ q ≤ n − 1) so that

K ⊂⊂ D1 ⊆ D2 ⊆ X. Then H0,r(D2 − K, E) ∼= H0,r(D1 − K, E) for

n − q ≤ r ≤ n and the isomorphism is induced by the natural restriction.

Proof.

(i) For the “into”: Let f ∈ Z∞
0,r(D2 − K, E) and v ∈ C∞

0,r−1(D1 − K, E) :

∂̄v = f on D1 − K.

∂K ∂D2∂D1

χ = 1

ψ   = 1

χ = 0

ψ   = 0

U

fig. 5

We have to find v′ ∈ C∞
0,r−1(D2 −K, E) : ∂̄v′ = f on D2 −K. Choose

a completely q-convex domain U so that K ⊂⊂ U ⊂⊂ D1 and χ ∈ C∞(X)

with χ = 1 in a neighborhood of K, χ = 0 in a neighborhood of (U)C

(fig. 5). Then, (χf − ∂̄χ ∧ v) ∈ Z0
0,r(D2, E), and since D2 is completely

q-convex, ∃u ∈ C∞
o,r−1(D2, E) : ∂̄u = χf + ∂̄χ ∧ v on D2, thus ∂̄u = f

on D2 − U . Choose ψ ∈ C∞(X) with ψ = 0 in a neighborhood of Ū

and ψ = 1 in a neighborhood of Dc
1. Then ∂̄ψ ∧ (u − v) ∈ Z∞

0,r(D2, E) so

∃w ∈ C∞
0,r−1(D2, E) : ∂̄w = ∂̄ψ∧(u−v) in D2. Set v′ = ψu+(1−ψ)v−w.
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(As seen by the above argument, where “into” is concerned, D1 does not

have to be q-convex, but simply a domain so that K ⊂⊂ D1 ⊆ D2.)

(ii) For the “onto”: Let g ∈ Z∞
0,r(D1 − K, E). We have to find

f ∈ Z∞
0,r(D2 − K, E) and v ∈ C∞

0,r−1(D1 − K, E) so that g = ∂̄v + f on

D1 −K. Let χ ∈ C∞(X) so that χ = 1 in a neighborhood of U and χ = 0

in a neighborhood of DC
1 . Then, we have that ∂̄χ ∧ g ∈ Z∞

0,r+1(D2, E) (or

is 0 if r = n) and therefore ∃u ∈ C∞
0,r(D2, E) (or u = 0 if r = n) so that

∂̄u = ∂̄χ∧g on D2. Set f = χg−u ∈ Z∞
0,r(D2−K, E). Then g = f +((1−

χ)g + u) on D1 − K holds. Notice that (1 − χ)g + u ∈ Z∞
0,r(D1, E), with

D1 being completely q-convex. So, ∃v ∈ C∞
0,r−1(D1, E) : ∂̄v = (1−χ)g+u

on D1 therefore g = f + ∂̄v on D2 − K.

∂K ∂U ∂D2∂D1

χ = 1

χ = 0

fig. 6

The above result does not hold for r = n − q − 1. For q = n − 1

this is obvious, but examples can be found also for n − q − 1 -= 0, as the

following one:

Example 5.14. Let f : C −→ IR with f(z)= −3|z|2+|z|2 log(|z|2 +ε)

z ∈ C (0 < ε < 1). Notice that:

(i) ∂f(z)

∂z
= z̄(log(|z|2+ε)−3+ |z|2

|z|2+ε
) and ∂f(z)

∂z̄
= z(log(|z|2+ε)−3+ |z|2

|z|2+ε
).

(ii) ∂f(z)

∂z∂z̄
= log(|z|2 + ε) − 3 + |z|2

|z|2+ε
(2 + ε

|z|2+ε
).

Therefore:

(1) lim
z→∞

f(z) = ∞.

(2) ∃!R > 0 so that crit(f) = {0} ∪ [|z| = R].

(For when z -= 0, by (i) we have z ∈ crit(f) ⇔ log(|z|2 +ε)−3+ |z|2
|z|2+ε

= 0

and equation log(x+ ε)− 3 + x
x+ε

= 0 has a unique positive solution R2.)
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(3) f(z) ≤ 0 if z ∈ crit(f).

(For if z -= 0, by (ii) we have that: z ∈ crit(f) ⇔ log(|z|2+ε)−3+ |z|2
|z|2+ε

=

0 ⇔ −3|z|2 + |z|2 log(|z|2 + ε) = − |z|4
|z|2+ε

≤ 0.

(4) ∂f(z)

∂z∂z̄
< 0 in a neighborhood of 0 (because of ii).

Then, we define ρ : C4 −→ IR with ρ(z1, z2, z3, z4) = f(z1) + f(z2) +

|z3|2 + |z4|2 zi ∈ C.

Notice that crit(ρ) = [|z1| = R]× [|z2| = R]×{0}×{0}∪{(0, 0, 0, 0)},

so ρ(z) ≤ 0 ∀z ∈ crit(f) (by (3)), therefore [ρ = a] for a > 0 does not

contain critical points of ρ.

Moreover for a > 0, [ρ ≤ a] ⊂⊂ C4 (because of (1)) and D2 = [ρ < a]

is strictly 1-convex with C2 boundary, since

[ ∂ρ(z)

∂z1∂z̄j

]
i,j=1,... ,4

=




ρ1 0 0 0

0 ρ2 0 0

0 0 1 0

0 0 0 1




(z),with ρ1 =
∂f(zi)

∂zi∂z̄i

for i = 1, 2.

Then, for z0 = (0, 0, 0, a1/2) ∈ ∂D2 we have that ρ−
∂D2

(z0) = 2 (be-

cause of (4)).

(Where ρ−
∂D(z0) is the number of negative eigenvalues of the Levi ma-

trix of ρ|∂D), so by Norguet theorem ([3] 18.3 for n = 4 and q = 2),

dimH0,2(D2) = ∞.

Choose balls S0 ⊂⊂ S1 ⊂⊂ D2 and set K = S̄0 D1 = S1. Then

H0,2(D1 − K) = 0, but H0,2(D2 − K) ∼= H0,2(D2) (because obviously D2

is a 3-concave extension of D2K).
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