
Rendiconti di Matematica, Serie VII
Volume 16, Roma (1996), 457-474

Convergence to the stationary state

for a model Boltzmann equation

M. C. GIURIN – N. IANIRO

Riassunto: Si studia il comportamento asintotico della soluzione dell’equazione di
Boltzmann per un gas di sticks in presenza di un campo esterno. Simulazioni numeriche
confermano i risultati ottenuti.

Abstract: The asymptotic behaviour of the solution of the Boltzmann equation
for the Lebowitz stick model in the presence of an external field is studied by taking
into account of the relative entropy functional. Numerical simulations based on the Di-
rect Monte-Carlo Method show the stationary profile of the solution and the decreasing
behaviour of the relative entropy in agreement with the previous results.

1 – Introduction

The Lebowitz model of a vertical sticks gas in presence of an ex-

ternal field of the form ω2x, is described by the following Boltzmann

equation [1]

(1.1)
∂tft(x, vx, vy) + vx∂xft(x, vx, vy) + ω2x∂vxft(x, vx, vy) = Q(ft, ft) =

=

∫
dv′

xdv′
y|vx − v′

x|{ft(x, vx, v
′
y)ft(x, v′

x, vy) − ft(x, v′
x, v

′
y)ft(x, vx, vy)} ,

Key Words and Phrases: Boltzmann equation – Asymptotic behaviour – Monte-
Carlo simulation
A.M.S. Classification: 82B40 – 82C40
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where x ∈ [−L, L], vx, vy ∈ IR and the distribution function f does not

depend on y.

The gas is confined in a slab [−L, L] × IR, whose walls are kept at

different temperatures T±. Particles change their vx-velocity through

collisions, whereas their vy-velocity is constant.

The boundary conditions at x = ±L are of diffusive type: when a

particle hits the wall it is reemitted with a Maxwellian distribution at the

temperature of the wall

(1.2)

ft(−L, vx, vy) = −M−(vx, vy)

∫

vx<0

dvxdvyvxft(−L, vx, vy), vx > 0

ft(L, vx, vy) = M+ (vx, vy)

∫

vx>0

dvxdvyvxft(L, vx, vy), vx < 0

with

M±(vx, vy) =
1

T±(2πT±)1/2
exp[−(v2

x + v2
y)/2T±] .

The normalization is chosen in such a way that
∫

vx<0(vx>0)

dvxdvy|vx|M±=1.

Such conditions take into account that the component of the mean

velocity in the direction orthogonal to the wall vanishes. The force field

is orthogonal to the boundaries.

Finally, the initial condition is

(1.3) f(x, vx, vy, 0) = f0(x, vx, vy) .

The corresponding stationary problem was studied in ref. [1]: exis-

tence and uniqueness in the L∞-setting was proved and the hydrodynam-

ical equations, via the Chapmann-Enskog expansion, were obtained.

In this paper the asymptotic behavior of the solution to (1.1)-(1.3)

when t → ∞ is analyzed.

When the temperature along the boundaries is constant the large

time behavior of the distribution function of the particles toward the

equilibrium distribution has already been treated [2]-[6]. If the boundaries

are not isothermal one should not expect a trend to the equilibrium but

a trend toward the steady state [7]. This is the case: here, because of

the simplified collision rules, the Boltzmann equation becomes linear and



[3] Convergence to the stationary state etc. 459

the asymptotic behavior in nonequilibrium thermodynamic situation can

be studied. In [8] the authors study the same model in absence of the

external field and analyze the convergence to the stationary solution by

using methods different from those used here.

We give a result on strong convergence to the stationary solution

when t → ∞ by using a generalization of the H-theorem. The proof

is a revisited version of the proof delivered by Petterson [2] for the

convergence to the equilibrium in the linear case. We introduce a relative

entropy functional associated to the evolution of the gas

(1.4) W [f ] =

∫
dx dvxdvyft lg(ft/f̄) ,

where f̄ is the stationary solution of the problem (1.1)-(1.2) and we prove

that

(1.5) W [f ](t) ≤ W [f ](t0) ∀ t ≥ t0 .

Moreover

(1.6) W [f ](t) ≤ W [f ](t0) +

t∫

0

N(f)(τ)dτ ,

where N(f)(t) ≤ 0.

Then a result about weak convergence to the stationary solution is

used together with a lemma about translational continuity. The main

theorem is the following

Theorem 1.1. Let ft be the unique solution to (1.1)-(1.3) with

initial datum f0 = ḡ(x, vx)h0(x, vx, vy), where

(1.7)

ḡ(x, vx) =

{
− J−

1

T−
exp

[ω2(x2 − L2)

2T−

]
exp

[
− v2

x

2T−

]
χ(vx > 0)+

+ J+

1

T+

exp
[ω2(x2 − L2)

2T+

]
exp

[
− v2

x

2T+

]
χ(vx < 0)

}
χ (E > 0)+

+

{
− J−

1

T−
exp

[ω2(x2 − L2)

2T−

]
exp

[
− v2

x

2T−

]
χ(x < 0)+

+ J+

1

T+

exp
[ω2(x2 − L2)

2T+

]
exp

[
− v2

x

2T+

]
χ(x > 0)

}
χ(E < 0) ,
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v4
y ḡ(x, vx) sup(x,vx) h0(x, vx, vy) ∈ L1+([−L, L] × IR × IR), and W [f ](t0)

exists.

Then for sufficiently small force field ft converges strongly in L1,

when t → ∞, to the unique corresponding stationary solution, f̄(x, vx, vy),

with
∫

f̄dx dvx dvy =
∫

f0dx dvx dvy.

In the next section we give an existence and uniqueness result for

the boundary-value-problem (1.1)-(1.3), in section 3 we will prove the

inequality (1.6) and Theorem 1.1 will be proved in section 4. Finally in

section 5, by using direct simulation Monte-Carlo method (DSMCM) we

show the trend to the stationary solution and the decreasing behaviour

of the W functional in agreement with the previous results.

2 – The existence and uniqueness theorem

Integrating eq. (1.1) on the vy variable
∫

dvyft(x, vx, vy) := gt(x, vx) ,

we have

(2.1) ∂tgt + vx∂xgt + ω2x∂vxgt = 0 ,

gt(−L, vx) = − 1

T−
exp

[
− v2

x

2T−

] ∫

v′
x<0

dv′
xv

′
xgt(−L, v′

x) , vx > 0

gt(L, vx) =
1

T+

exp
[
− v2

x

2T+

] ∫

v′
x>0

dv′
xv

′
xgt(L, v′

x) , vx < 0 .

If we start with an initial datum g0(x, vx) = ḡ(x, vx), where ḡ(x, vx)

is the stationary solution corresponding to (2.1), then, it is easy to see

that

gt(x, vx) = ḡ(x, vx) ∀ t ≥ 0 .

ḡ(x, vx) has the expression given in (1.7), [1], where J− =
∫

vx<0

dvxvxḡ(−L, vx)

and J+ =
∫

vx>0

dvxvxḡ(L, vx) satisfy

−J− exp
[
− ω2L2

2T−

]
= J+ exp

[
− ω2L2

2T+

]
= J
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in order that the net mass flux across each boundary is zero and 2E =

v2
x−ω2x2 are the characteristic curves of eq. (2.1). J can be determined by

the normalization condition 2Lρ =
∫ L

−Ldx
∫
dvx dvyft =

∫
dx dvx dvyf0 =∫

dx dvxḡ.

In this case the equation (1.1) reduces to

(2.2)
∂tft + vx∂xft + ω2x∂vxft = Lḡft

=

∫
dv′

x|vx − v′
x|

{
ḡ(x, vx)ft(x, v′

x, vy) − ḡ(x, v′
x)ft(x, vx, vy)

}

with boundary conditions

(2.3)
ft(−L, vx, vy) = −M−(vx, vy)J− , vx > 0

ft(L, vx, vy) = M+(vx, vy)J+ , vx < 0

(2.4) f0 = ḡ(x, vx)h0(x, vx, vy) .

In order to study the linear problem (2.2)-(2.4) we write it in the integral

form

ft(x(t), vx(t), vy) = f0(x, vx, vy) exp

[
−

t∫

0

k(x(σ), vx(σ))dσ

]
χ(t < tB)+

+ fB
t−tB

(x(t − tB), vx(t − tB), vy) exp

[
−

tB∫

0

k(x(σ), vx(σ))dσ

]
χ(t ≥ tB)+

+

t∧tB∫

0

dσ exp

[
−

σ∫

0

k(x(τ), vx(τ))dτ

]
IKft−σ(x(σ), vx(σ), vy)

where k(x, vx) =
∫

dv′
x|vx − v′

x|ḡ(x, v′
x), tB is the time of free flight from

the boundary to the point x following the characteristic curves

(2.5)

dx(t)

dt
= vx(t) x(0) = x

dvx(t)

dt
= ω2x vx(0)= vx .
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x (t−tB) = −L sign vx, fB
t−tB

(x(t−tB), vx(t−tB), vy) = −J−M−(vx, vy)·
χ(vx > 0) + J+M+(vx, vy)χ(vx < 0) and IKft(x, vx, vy) =

∫
dv′

x|vx −
v′

x|ḡ(x, vx)ft(x, v′
x, vy).

We note that
∫
dx dvx dvy(1 + |vx|)f0 =

∫
dx dvx(1 + |vx|)ḡ ∈ L1 and∫

dx dvx dvyf
B ∈ L1+. An iterative scheme [8], [2] provides to get the

following

Proposition 2.1. If f0 ≥ 0, the initial boundary value prob-

lem (2.2)-(2.4) has a unique solution ft ∈ L1+
1+|vx| with mass equal to∫

dx dvx dvyf0. Moreover ‖ft‖∞ < ‖fB‖∞ + ‖f0‖∞

If we denote with f̄ the solution to the corresponding stationary

problem, in a similar way we have

Proposition 2.2. The stationary problem corresponding to (2.2)-

(2.3) has a unique solution f̄ ∈ L1+
1+|vx| such that

∫
dx dvx dvyf̄ =

∫
dx dvx dvyf0

Moreover ‖f̄‖∞ ≤ ‖fB‖∞.

Remark 2.1. From the hypothesis (2.4) on the initial datum, it

follows that

Lḡft =

∫
dv′

x|vx − v′
x| {ḡ(x, vx)ft(x, v′

x, vy) − ḡ(x, v′
x)ft(x, vx, vy)}

has the same integral kernel

B(x, vx, v
′
x) = |vx − v′

x|ḡ(x, vx)

and collision frequency

ν(x, v′
x) =

∫
dvxB(x, vx, v

′
x)

as in the stationary case.
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We will use this circumstance to prove Lemma 3.1 in next section.

Remark 2.2. From the hypothesis on the initial datum as in Theo-

rem 1.1, it follows that

(2.6)

∫
dx dvx dvy(1 + |v|2)2ft < const .

In fact
∫

dx dvx dvy(1+|v|2)2ft ≤
∫

dx dvx(1+2v4
x+2v2

x)ḡ+

∫
dx dvx dvy(2v4

y+2v2
y)ft

and
∫

dx dvx dvy(v
4
y + v2

y)ft < const .

This last estimate follows from the iterative scheme [8], [2]. We have

ft(x, vx, vy) ≤ ḡ(x, vx) sup
(x,vx)

h0(x, vx, vy)χ(t < tB)+

+ fB
t−tB

(x(t − tB), vx(t − tB), vy)χ(t ≥ tB)

and (2.6) follows.

Remark 2.3. From (2.6) it follows

lim
R→∞

∫

|v|≥R

dvx dvy(1 + |v2|)k′
ft = 0 , 0 ≤ k′ < 2 .

3 – The generalized H-theorem

Let us rewrite the stationary problem [1] associated with the evolu-

tion problem (2.2)-(2.3)

(3.1)

vx∂xf̄ + ω2x∂vx f̄ = Lḡf̄ =

∫
dv′

x|vx − v′
x|

{
ḡ(x, vx)f̄(x, v′

x, vy)+

− ḡ(x, v′
x)f̄(x, vx, vy)

}

f̄(−L, vx, vy) = −M−(vx, vy)J− , vx > 0

f̄(L, vx, vy) = M+(vx, vy)J+ , vx < 0 ,

We define

(3.2) W [f ] =

∫
dx dvxdvyft lg

ft

f̄
=

∫
dx dvxdvy

[
ft(lg ft − lg f̄) + f̄ − ft

]
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which is always positive and it is zero only when ft = f̄ . The time

derivative of W satisfies

(3.3)

dW

dt
=

∫
dx dvx dvy

[
lg

ft

f̄
∂tft + ∂tft

]
=

=

∫
dx dvx dvy lg

ft

f̄

[−vx∂xft − ω2x∂vxft + Q(ft, ft)
]

The first term in the right hand side of eq. (3.3) can be written as

(3.4) −
∫

dvx dvy

[
vxft lg

ft

f̄
− vxft

]L

−L

−
∫

dx dvx dvy vx

ft

f̄
∂xf̄

The second term is

−
∫

dx dvx dvy ω2x
{
∂vx

[
ft lg

ft

f̄
− ft

]
+

ft

f̄
∂vx f̄

}

so that taking into account eq. (3.1)

(3.5)

dW

dt
= −

∫
dvx dvy

[
vxft lg

ft

f̄
− vxft

]L

−L
+

+

∫
dx dvx dvy

{
Q(ft, ft) lg

ft

f̄
− ft

f̄
Q(f̄ , f̄)

}

Now using the boundary conditions which are the same for ft and f̄

and the convexity of ft
f̄

lg ft
f̄

we have

−
∫

dvx dvy

[
vxft lg

ft

f̄
− vxft

]L

−L
≤ 0

In fact at x = L we have

(3.6)

∫ 0

−∞
dv′

xdv′
yv

′
xM+(v′

x, v
′
y)

∞∫

0

dvxdvyvxf̄(L, vx, vy)·

·
{ft(L)

f̄(L)
lg

ft(L)

f̄(L)
− ft(L)

f̄(L)
− ft(L)

f̄(L)
lg

f ′
t(L)

f̄ ′(L)
+

f ′
t(L)

f̄ ′(L)

}

where f(L) = f(L, vx, vy), f ′(L) = f(L, v′
x, v

′
y).
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The term in the curly bracket is always non-negative and vanishes

only when ft(L, vx, vy)/f̄(L, vx, vy) = ft(L, v′
x, v

′
y)/f̄(L, v′

x, v
′
y).

It follows that the expression (3.6) is ≤ 0 and = 0 iff ft = f̄ . The

same at x = −L.

The “bulk” term in eq. (3.5) can be rewritten as

(3.7)

∫
dx dvx dvy dv′

x|vx − v′
x|ḡ(x, vx)

{
ft(x, v′

x, vy)
(

lg
ft

f̄
− lg

f ′
t

f̄ ′

)
+

+ f̄(x, v′
x, vy)

(
− ft

f̄
+

f ′
t

f̄ ′

)}
=

=

∫
dx dvx dvy dv′

x|vx − v′
x|ḡ(x, vx)f̄(x, v′

x, vy)·

·
{f ′

t

f̄ ′ lg
ft

f̄
− f ′

t

f̄ ′ lg
f ′

t

f̄ ′ − ft

f̄
+

f ′
t

f̄ ′

}
≤ 0

by convexity of ft
f̄

lg ft
f̄

and non-negativity of ḡf̄ . Again this term is zero

iff ft = f̄ .
(∫

Ωdx dvx dvy dv′
x|vx − v′

x|ḡ(x, vx)f̄(x, v′
x, vy) = cΩ, cΩ > 0, for

every measurable Ω of measure σ > 0 ∈ [
[−L, L] × IR2 × IR

])
.

We proved the following

Lemma 3.1. Let ft be the unique solution to the problem (2.2)-(2.4)

and f̄ the corresponding stationary solution. Then, if W [f ](t0) exists,

W [f ](t) exists for t > 0 and W [f ](t) ≤ W [f ](t0). Moreover

W [f ](t) ≤ W [f ](t0) +

∫ t

0

N(f)(τ)dτ

where N(f)(t) ≤ 0 is given by (3.7).

Remark 3.1. A similar result has been obtained with general convex

functions (see f.e. [9]).

4 – Weak and strong convergence to the stationary solution

At first we prove a result about the weak L1-convergence of the so-

lution ft toward the stationary solution f̄ when t → ∞.
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We need the following

Proposition 4.1. Let fn = fn(x, vx, vy, t) be a sequence of solutions

of (2.2)-(2.4) converging weakly in L1 to ft = ft(x, vx, vy).

Then

(4.1)

t∫

0

dt dx dvx dvy dv′
x|vx − v′

x|ḡ(x, vx)f̄(x, v′
x, vy)·

·
{f ′

t

f̄ ′ lg
f ′

t

f̄ ′ − f ′
t

f̄ ′ lg
ft

f̄
+

ft

f̄
+

f ′
t

f̄ ′

}
≤

≤ lim inf
n→∞

t∫

0

dt dx dvx dvy dv′
x|vx − v′

x|ḡ(x, vx)f̄(x, v′
x, vy)·

·
{f ′

n

f̄ ′ lg
f ′

n

f̄ ′ − f ′
n

f̄ ′ lg
fn

f̄
+

fn

f̄
− f ′

n

f̄ ′

}

Proof. The function z(x, y) = x lg x − x lg y + x − y is a convex

function as can be easily checked by observing that the Hessian matrix

is non-negative. Proposition 4.1 is then the lower semicontinuity of a

convex functional [4].

Lemma 4.1. The solution ft to the problem (2.2)-(2.4) converges,

when t → ∞, weakly in L1 to f̄ , the unique corresponding stationary

solution with
∫
dx dvx dvy f̄ =

∫
dx dvx dvy f0.

Proof. From the Lemma 3.1 we have

W [f ](t) +

t∫

0

−N(f)(τ)dτ ≤ W [f ](t0)

with −N(f)(t) ≥ 0, and W [f ](t) =
∫
dx dvx dvy

(
ft lg ft

f̄
− ft + f̄

) ≥ 0.

It follows that
∫ ∞
0 −N(f)(t)dt converges and there exists an increasing

sequence {tn} such that

(4.2) lim
n→∞

−N(f)(tn) = 0



[11] Convergence to the stationary state etc. 467

Let fn = f(x, vx, vy, tn). From remarks 2.2, 2.3 and Lemma 3.1 the

sequence fn satisfies
∫
dx dvx dvy(1+|v|2)2fn < const , and for 0≤k′< 2,

lim
R→∞

∫
|v|≥R

dvx dvy(1+|v|2)k′
fn = 0. Moreover

∫
dx dvx dvy fn lg fn

f̄
<const .

Taking into account of sup f̄ < c it follows that
∫
fn lg f̄ < c′ and hence∫

dx dvx dvy fn lg fn < const .

Using a compactness lemma [10], there exists a subsequence {fnj
}

such that fnj
converges weakly to a function f̃(x, vx, vy) ∈ L1+ when

j → ∞.

From the previous proposition, N(f̃) = 0. It follows that f̃ = f̄ a.e.

By using a contradiction argument [10], the solution ft converges weakly

in L1 to f̄ and Lemma 4.1 is proved.

Strong L1-convergence can be obtained in the same framework used

by Gustafsson [11], in the non linear homogeneous case, and by Pet-

terson [2], in the linear case.

The following lemma concerns translational continuity

Lemma 4.2. Let τhuft(x, vx, vy) = ft(x + h, vx + ux, vy + uy). Then,

for sufficiently small force field

lim
h,ux,uy→0

∫
dx dvx dvy|ft(x + h, vx + ux, vy + uy) − ft(x, vx, vy)| = 0

uniformly in time.

Proof. We observe that

Dt(τhuft) = τhu(Lḡft) − ux∂x(τhuft) − ω2h∂vx(τhuft)

where Dt = ∂t + vx∂x + ω2x∂vx and τhu(Lḡft) -= Lḡ(τhuft).

We have

(4.3)
Dt(τhuft − ft) = τhu(Lḡft) − Lḡ(τhuft) + Lḡ(τhuft − ft)+

− ux∂x(τhuft) − ω2h∂vx(τhuft) .

We consider the homogeneous problem

(4.4) Dt(τhuft − ft) = Lḡ(τhuft − ft)
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and following Petterson [2] we get

(4.5)

∫
dx dvx dvy|τhuft − ft| < ε

This can be done in two steps: first approximate the initial function f0

with a continuous function f cq
0 bounded by qḡ(x, vx)9(vy) with 9 ∈ L1+,

then extend f cq
0 and the boundary values to continuous functions so that

for h2 + u2 < δ2

∣∣τhuf cq
0 − f cq

0

∣∣ <
ε

3

ḡ(x, vx)9(vy)

‖ḡ‖‖9‖

and
∣∣τhufB − fB

∣∣ <
ε

3

ḡ(−L sign vx, vx)9(vy)

‖ḡ‖‖9‖

The usual iteration argument provides

∣∣τhuf c
t − f c

t

∣∣ <
ε

3

ḡ(x, vx)9(vy)

‖ḡ‖‖9‖ .

Here τhuf c
t and f c

t are solutions of eq. (4.4) with continuous initial data

τhuf cq
0 and f cq

0 .

Summarizing we get (4.5).

The first two terms on the right hand side of eq. (4.3) can be estimated

(4.6)
∫

dx dvx dvy

t∧tB∫

0

dσ exp

[
−

σ∫

0

k(x(τ), vx(τ))dτ

]{∫
dv′

xτhuft−σ(x(σ), v′
x, vy)

∣∣∣|τhuvx(σ) − v′
x|τhuḡ(x(σ), vx(σ)) − |vx(σ) − v′

x|ḡ(x(σ), vx(σ))
∣∣∣+

+

∫
dv′

xτhuft−σ(x(σ), vx(σ), vy)
∣∣∣|τhuvx(σ)+

− v′
x|τhuḡ(x(σ)v′

x) − |vx(σ) − v′
x|ḡ(x(σ), v′

x)
∣∣∣
}

≤
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≤
t∧tB∫

0

dσe−ν0σ

{∫
dx dvx(1 + |vx(σ)|)

∣∣τhuḡ(x(σ), vx(σ)) − ḡ(x(σ), vx(σ))
∣∣ ·

· sup

∫
dv′

x(1 + |v′
x|)τhuḡ(x(σ), v′

x)+

+

∫
dx dv′

x(1 + |v′
x|)

∣∣τhuḡ(x(σ), v′
x) − ḡ(x(σ), v′

x)
∣∣ ·

· sup

∫
dvx(1 + |vx(σ)|)τhuḡ(x(σ, vx(σ))+

+ 2|ux| |ux cos hωσ + hω sin hωσ|
∫

dxdvxdv′
xτhuḡ(x(σ), v′

x) ·

· τhuḡ(x(σ), vx(σ))

}

The previous estimate follows by noting that

τhux(t) = τhu(x cos hωt +
vx

ω
sin hωt) = x(t) + h cos hωt +

ux

ω
sin hωt

τhuvx(t) = τhu(xω sinhωt + vx cos hωt) = vx(t) + ux cos hωt + hω sin hωt

and that k(x, vx) > ν0.

Moreover
∫
dvyτhuft = τhugt satisfies

∂t(τhugt) + (vx + ux)∂x(τhugt) + ω2(x + h)∂vx(τhugt) = 0

with initial datum τhug0 = τhuḡ.

By taking into account of the expression (1.7) for the ḡ-function and

by choosing ω < ν0 it follows that

∫
dx dvx dvy

t∧tB∫

0

exp

[
−

σ∫

0

k(x(σ), vx(σ))dσ

] ∣∣τhu(Lḡft−σ) − Lḡ(τhuft−σ)
∣∣ ≤

≤ ε const

if h2 + u2 < δ2.

It easy to see that also the last two terms on the right hand side

of eq. (4.3) are estimated by ε times a constant and the Lemma 4.2 is

proved.
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Proof of Theorem 1.1. From the weak convergence result and

the previous lemma we conclude that {ft}t∈R+
is sequentially compact in

L1, and ft converges strongly in L1 toward f̄ .

5 – Direct Simulation Monte-Carlo method

DSMCM is a technique for the computer modelling of real gas flow,

based directly on molecular description provided by kinetic theory [12].

We consider a gas of N = 2000 vertical sticks uniformly distributed be-

tween two infinite parallel diffusely reflecting walls initially at tempera-

ture β−1
∞ = T∞ of a undisturbed gas, with velocities draw randomly from

a Maxwellian distribution at temperature T∞.

Physical data are expressed in a normalized form.

The distance 2L = 20λ∞ between the plates is divided into 40 cells

of size 0.5λ∞.

The mean free path λ∞ of the undisturbed gas is regarded as unity in

the program. It follows that the collision cross section σT is equal to 1
n

√
2
,

being n = N
2L

the number density and
√

2 the ratio between the mean

magnitude of the relative velocity and the mean thermal speed.

The Knudsen number has been chosen as Kn = λ∞
2L

= 0.05 to guar-

antee the validity of the Navier-Stokes equations. At time t = 0 the

temperatures at the walls jump from T∞ to T+ and T−. The free motion

given by eq. (2.5) and the intermolecular collisions are uncoupled over

the small time interval ∆t which is a fraction of the mean collision time

∆tc =
λ∞

nσT c̄r

=
2√
π

1√
T∞

.

When a particle collides with the thermal walls, it will be reemit-

ted into the system with a new set of velocities draw randomly from a

Maxwellian distribution at temperature T±.

The values of the density, mean velocity, temperature and relative

entropy are computed for each cell and have been printed at intervals of

t1 = nis∆t up to t30 = 30nis∆t where nis is an integer number.

The system is considered to reach the stationary state when the hy-

drodynamical variables measured at various times have small oscillations

over time.
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Fig. 1 Density and temperature profiles for T− = 10, T+ = 7,
T∞ = 8.5, ω = 0.2.
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Fig. 2 The relative entropy for T− = 10, T+ = 7, T∞ = 8.5,
ω = 0.2.
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Fig. 3 Density and temperature profiles for T− = 1.6, T+ = 1,
T∞ = 1, ω = 0.06.
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Fig. 4 The relative entropy for T− = 1.6, T+ = 1, T∞ = 1,
ω = 0.06.
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In figs. 1 and 3, for different values of the temperatures T± and ω,

we show the density and the temperature profiles as functions of x in

the stationary situation in agreement with the results in [1]. The system

reaches a steady state after a time t30 = 30nis∆t where nis = 9,∆t =

0.076 in the first case and nis = 25, ∆t = 0.177 in the second one.

In figs. 2 and 4 we show the decreasing in time of the relative entropy

in the previous cases.

Points are actual measurements taken from the Monte-Carlo simula-

tion; lines are linear or quadratic fit of the points as far as temperature

and density are concerned, whereas the relative entropy has been fitted

by a power function (lines in Figs. 2 and 4).

Results are available also for T− = 10, T+ = 7, T∞ = 8.5, ω = 0.4 and

for T− = 1.6, T+ = 1, T∞ = 1, ω = 0.1.

Numerical simulation was performed on a cluster of DEC-ALPHA

3000/500 at CASPUR (University of Rome “La Sapienza”) and required

185 sec of central processor time in the first case and 457 sec in the

second one.
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