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The monotone integral with respect to

Riesz space-valued capacities

A. BOCCUTO – A. R. SAMBUCINI

Riassunto: Si introduce un “integrale monotono” (nello stesso spirito di [5]), per
applicazioni a valori reali e rispetto a funzioni d’insieme monotone non decrescenti e a
valori in spazi di Riesz Dedekind completi. Si dimostrano teoremi di rappresentazione
(tra cui una versione del Teorema di Rappresentazione di Riesz). Inoltre si introduce
una nozione di convergenza debole, e vengono provati teoremi tipo Portmanteau, Vitali
e Fatou. Inoltre è dimostrata una versione della legge forte e della legge debole dei
grandi numeri.

Abstract: A definition of “monotone integral” is given, similarly as in [5], for
real-valued maps and with respect to Dedekind complete Riesz space-valued “capacities”.
Some representation theorems are proved; in particular, we give here a version of Riesz
representation theorem. Moreover, a concept of weak convergence is introduced, and
some Portmanteau-type theorems, Vitali convergence and Fatou theorems are proved.
Finally, a version of both strong and weak laws of large numbers is demonstrated.

1 – Introduction

In the literature, in certains types of studies (for example, in stochas-

tic processes), it would be “natural” to investigate some kinds of “prob-

abilities”, which to every event associate not simply a real number, but

a real-valued function.
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Indeed, one can give different valuations of the uncertainty of some

event E, depending, for example, on the “informations”, which one can

receive, during his study about E or about some other events, “related”

to E.

For example, given a measurable space (X, Σ), we can consider ap-

plications P : Σ → [0, 1]T in order to stress that the “probability” of each

event A depends on the “time”: P (A) is a function of t ∈ T .

As a second example, given Z a sub-σ-algebra of Σ and a probabil-

ity P on (X, Σ), we can define the “conditional probability” as follows:

P̃ (A) = P (A|Z) = E(1A|Z) for every A ∈ Σ. So P̃ : Σ → L0.

More generally, it would be advisable to associate to each event an

element of a Riesz space R : indeed, we note that, thanks to Maeda-

Ogasawara-Vulikh representation Theorem, every Archimedean Riesz

space can be viewed as a suitable space of continuous extended real-

valued functions.

On the other hand, in the literature there exist several contributions

to the foundations of “qualitative probabilities” and their “realizations”,

which can be represented not only by additive functions but also by sub-

modular capacities (see [7], [11], [12]). So, it will be natural, in certains

problems, to consider “probabilities”, as just monotonic functions, with

values in Riesz spaces.

As a further example, we can consider stochastic integration, when

we define the integral of a scalar function with respect to a stochastic

measure IX , where X : Ω × IR+ → Lp is a process.

Another motivation for the study of the integral with respect to ca-

pacities is that, in the theory of decisions, the “preference” relations

between “measurable” functions, which are the “acts” of the considered

individual, can be represented by means of the Choquet integral of some

suitable utility functions. In particular, if X denotes the space of all

“choices” (i.e., states of nature) and Γ is the space of all possible “conse-

quences”, an act is a “measurable” mapping f : X → Γ. In uncertainty

conditions, to state that “f is preferable to g” is equivalent to say that it

is possible to determine a capacity P and a utility function u : Γ → IR,

in such a way that

∫

X

u ◦ f dP ≥
∫

X

u ◦ g dP.
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In particular, if we operate under risk condition, P must be a measure

(see [10]).

In [5], we introduced a “monotone-type” integral for real-valued func-

tions, with respect to finitely additive positive set functions, with values

in a Dedekind complete Riesz space. In Section 3, we define a “monotone

integral” for real-valued maps, with respect to monotone Riesz-space-

valued set functions, and we study his properties. Among “similar” in-

tegrals existing in the literature, we recall the “monotone integral” of

real-valued functions with respect to measures with values in a Banach

space (see [6]), in a locally convex vector topological space (see [17]), and

the “fuzzy-type” integral for a lattice-valued function with respect to

lattice-valued measures (see [19]). For this integral, we prove some types

of representation theorems (for similar theorems existing in the literature

for the real case, see [9], [10], [13], [16], [21], [22]) and in Theorem 3.17 we

extend a result of Schmeidler (see [9], [23]); and so to integrate comono-

tonic functions with respect to capacities is equivalent to integrating them

with respect to suitable measures.

In Section 4, we prove a version of Riesz representation theorem.

More precisely, given a normal topological space X, a Dedekind complete

Riesz space R and a linear monotone R-valued functional T , we con-

struct an R-valued set function µ, which is monotone on P(X), satisfies

some properties of “regularity”, and is finitely additive on the algebra

M generated by all open sets and such that T (f) =
∫

X fdµ, for each

f ∈ Cb(X) = {f : X → IR, f continuous and bounded }. Moreover, µ is

σ-additive on M, in the case in which X is compact.

However, in general, it is impossible to obtain the existence of a set

function µ, which is additive on the Borel σ-field, even if X is compact

and Hausdorff (see also [24]). In general, this is possible if R is weakly

σ-distributive ; in fact, a Riesz space is weakly σ-distributive if and only if

every σ-additive set function, defined in any algebra M, has a σ-additive

extension, defined on the smallest σ-algebra containing M (see [25]).

Furthermore, we introduce a definition of weak convergence for Riesz

space-valued capacities, and prove some versions of Portmanteau, Vitali

and Fatou’s theorem, with respect to this kind of convergence.

Finally, we prove a version of both strong and weak laws of large num-

bers for the introduced integral, with respect to σ-additive and finitely

additive R-valued set functions respectively.



494 A. BOCCUTO – A. R. SAMBUCINI [4]

2 – Preliminaries

A Riesz space R is called Archimedean if the following property holds:

for every choice of a, b ∈ R, na ≤ b for all n ∈ IN, implies that a ≤ 0.

A Riesz space R is said to be Dedekind complete if every nonempty

subset of R, bounded from above, has supremum in R.

Throughout this paper, we always suppose that R is a Dedekind

complete Riesz space.

Proposition 2.1 [1]. Every Dedekind complete Riesz space is

Archimedean.

Theorem 2.2 [2]. Given a Dedekind complete Riesz space R, there

exists a compact Stonian topological space Ω, unique up to homeomor-

phisms, such that R can be embedded as a solid subspace of C∞(Ω) =

{f ∈ ĨR
Ω

: f is continuous, and {ω : |f(ω)| = +∞} is nowhere dense

in Ω} . Moreover, if (aλ)λ∈Λ is any family such that aλ ∈ R ∀ λ, and a =

supλ aλ ∈ R (where the supremum is taken with respect to R), then a =

supλ aλ with respect to C∞(Ω), and the set {ω ∈ Ω : (supλ aλ)(ω) -=
supλ aλ(ω)} is meager in Ω.

Definition 2.3. A sequence (rn)n is said to be (o)-convergent

to r, if there exists a sequence (pn)n ∈ R, such that pn ↓ 0 and |rn − r| ≤
pn, ∀ n ∈ IN, and we will write (o) − limn rn = r.

Definition 2.4. A sequence (rn)n is said to be (o)-Cauchy if there

exists a sequence (pn)n ∈ R, such that pn ↓ 0 and |rn−rm| ≤ pn, ∀ n ∈ IN,

and ∀ m ≥ n.

Definition 2.5. Let R be a Riesz space, I be a connected subset

of IR. We say that w : I → R is [right, left] continuous at a fixed point

x0 ∈ I if

(o) − lim
x→x0[+][−]

w(x) = w(x0).

The map f is called [right, left] continuous if it is [right, left] continuous

at every point x0 ∈ I.

Definition 2.6. If X is any topological space, we indicate by the

symbol Cb(X) the class of all continuous bounded real-valued functions,

where IR is endowed with the usual topology.
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Definition 2.7. Let X be an arbitrary set, and f ∈ IRX . The class

Qf ≡ { {x ∈ X : f(x) > t} : t ∈ IR} ∪ {{x ∈ X : f(x) ≥ t} : t ∈ IR}

is called the upper set system of f.

Definition 2.8. We say that a class C of elements of IRX is

comonotonic if
⋃

f∈C Qf is a chain, or equivalently, if, for each pair of

f, g ∈ C, there is no pair of elements x1, x2 ∈ X, such that f(x1) < f(x2)

and g(x1) > g(x2) (see [9]).

3 – The monotone integral for capacities

Definition 3.1. Let X be any set, and A ⊂ P(X) be an algebra.

We say that a set function P : A → R is a capacity if P (∅) = 0, and

P (A) ≤ P (B) whenever A, B ∈ A, A ⊂ B; P is said to be submodular if

A, B ∈ A =⇒ P (A ∪ B) + P (A ∩ B) ≤ P (A) + P (B);

supermodular, if

A, B ∈ A =⇒ P (A ∪ B) + P (A ∩ B) ≥ P (A) + P (B);

subadditive, if

A, B ∈ A =⇒ P (A ∪ B) ≤ P (A) + P (B);

superadditive, if

A, B ∈ A =⇒ P (A ∪ B) ≥ P (A) + P (B).

A map P : A → R is said to be a mean if P (A) ≥ 0, ∀ A ∈ A, and

P (A ∪ B) = P (A) + P (B), whenever A ∩ B = ∅. A mean P is σ-additive

if infn P (An) = 0, whenever (An)n is a decreasing sequence in A, such
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that
⋂

n An = ∅, or equivalently if

P
( ∞⋃

n=1

Bn

)
=

∞∑

n=1

P (Bn),

whenever (Bn)n is any disjoint sequence of elements of A, such that⋃∞
n=1 Bn ∈ A.

We say that a set function P is a measure if it is a σ-additive mean.

Definition 3.2. Assume that A ⊂ P(X) is an algebra, F , G ⊂ A
are two lattices, such that ∅ ∈ F , and the complement (with respect to X)

of every element of F belongs to G. A mean P on A is called tight if the

following properties hold:

R1) ∀ F ∈ F , ∀ n ∈ IN,∃Gn ∈ G such that F ⊂ Gn+1 ⊂ Gn∀n,

and infn P (Gn \ F ) = 0.

Remark 3.3. It is easy to see that, if X is a metric space, S = {Borel

sets}, F = {closed sets}, and G = {open sets}, then every σ-additive

mean is tight.

Definition 3.4. Let X be a topological space, and assume that A
contains all open subsets of X. We say that a set function P : A → R is

regular (on A) if, for every E ∈ A,

P (A) = inf{P (V ) : A ⊂ V, V is open }

and

P (A) = sup{P (C) : A ⊃ C, C is closed }

Definition 3.5. If K ⊂ X is closed, f ∈ [0, 1]X is a continuous

function, we say that K ≺ f if f(x) = 1, ∀ x ∈ K. If V ⊂ X is open, we

write that f ≺ V if its support is contained in V.

The following result holds:

Proposition 3.6. Let X be a compact topological space, and as-

sume that A ⊂ P(X) is an algebra, containing the class of all open sets.

Then, every regular mean P on A is σ-additive on A.
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Proof. Let (Ak)k be a sequence of disjoint sets in A, such that

A ≡ ⋃
k Ak ∈ A. It is easy to see that

P (A) ≥
∞∑

k=1

P (Ak).

We now prove the opposite inequality. Fix ε > 0 and A ∈ A, and let Ω

be as in Theorem 2.2. By regularity of P, there exists a meager set J

such that, ∀ ω ∈ Ω \ J, there exists a closed set Cω ⊂ A, such that

P (A)(ω) − P (Cω)(ω) ≤ ε

2

and there are open sets Uω
k , Uω

k ⊃ Ak ∀ k, such that

P (Uω
k )(ω) − P (Ak)(ω) ≤ ε

2k+1
.

As X is compact, then Cω is too: so, for each ω -∈ J, there exists n(ω) ∈
IN, such that Cω ⊂ ⋃n(ω)

k=1 Uω
k . Thus, ∀ ω -∈ J, we get:

P (A)(ω) ≤ P (Cω)(ω) +
ε

2
≤ P (

n(ω)⋃

k=1

Uω
k )(ω) +

ε

2
≤

≤
n(ω)∑

k=1

P (Uω
k )(ω) +

ε

2
≤

∞∑

k=1

(P (Ak)(ω)+

+
ε

2k+1
) +

ε

2
≤

∞∑

k=1

P (Ak)(ω) + ε.

As the complement of a meager set is dense, we get:

P (A)(ω) ≤
[ ∞∑

k=1

P (Ak)
]
(ω), ∀ ω ∈ Ω

and hence

P (A) ≤
∞∑

k=1

P (Ak).

As in [5], given a mapping f : X → ĨR and a capacity P, for all

A ∈ A, set: Σf
t,A (or simply Σt,A, when no confusion can arise) ≡
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{x ∈ A : f(x) > t}; Σf
t (Σt) ≡ {x ∈ X : f(x) > t}; and, for every t ∈ IR,

let uA,f (t) ≡ P (Σf
t,A); uf (t) = u(t) ≡ P (Σt).

Definition 3.7. We say that a map f : X → ĨR is measurable if

Σf
t ∈ A, ∀ t ∈ IR. A real-valued measurable map is called random variable

too.

Now, we define a Riemann-type integral, for maps, defined in an

interval of the real line, and taking values in a Dedekind complete Riesz

space.

Definition 3.8. Let a, b ∈ IR, a < b, and R be as above. We

say that a map g : [a, b] → R is a step function if there exist n + 1

points x0 ≡ a < x1 < . . . < xn ≡ b, such that g is constant in each

interval of the type ]xi−1, xi[ (i = 1, . . . , n). If g is a step function, we

put
∫ b

a g(t) dt ≡ ∑n
i=1 (xi − xi−1) · g(ξi) , where ξi is an arbitrary point

of ]xi−1, xi[.

Definition 3.9. Let u : [a, b] → R be a bounded function. We call

upper integral [resp. lower integral] of u the element of R given by

inf
v∈Vu

∫ b

a

v(t) dt

[
sup
s∈Su

∫ b

a

s(t) dt

]
,

where

Vu ≡ {v : v is a step function , v(t) ≥ u(t), ∀ t ∈ [a, b]}
Su ≡ {s : s is a step function , s(t) ≤ u(t), ∀ t ∈ [a, b]}.

We say that u is Riemann integrable (or (R)-integrable), if its lower in-

tegral coincides with its upper integral, and, in this case, we call integral

of u (and write
∫ b

a u(t) dt) their common value.

Definition 3.10. A measurable nonnegative map f ∈ IRX is inte-

grable if there exists in R the quantity

(3.10.1)

∫ +∞

0

u(t) dt ≡ sup
a>0

∫ a

0

u(t) dt = (o) − lim
a→+∞

∫ a

0

u(t) dt,
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where the integral in (3.10.1) is intended as in Definition 3.9. If f is

integrable, we indicate the element in (3.10.1) by the symbol

∫

X

f dP. If f

is not necessarily positive, we say that a measurable function f : X → IR

is integrable if there exist in R the following quantities:

I1 ≡
∫ +∞

0

u(t) dt

and

I2 ≡ (o) − lim
b→−∞

∫ 0

b

[u(t) − P (X)] dt,

and in this case we set
∫

X

f dµ ≡ I1 + I2.

We indicate the quantity
∫

X f dP also by E(f).

It is easy to check that this integral is well-defined, monotone, pos-

itively homogeneous, and satisfies the following properties, ∀ f ≥ 0 (see

also [5], [8]):

a)
∫

X f dP =
∫

X (f ∧ c) dP +
∫

X f − (f ∧ c) dP, ∀ c > 0.

b)
∫

X f dP = supn∈IN

∫
X (f ∧ n) dP = (o) − limn→∞

∫
X (f ∧ n) dP.

c)
∫

X f dP = (o) − limn→∞
∫

X (f ∨ 1
n

− 1
n
) dP.

Conversely, let X be any set, and B ⊂ [0, +∞[X such that 0 ∈ B, and

f ∧ a, f ∨ a − a ∈ B, whenever a ∈ [0,+∞[ and f ∈ B. If T : B → R is

a monotone (positively homogeneous) “functional”, satisfying a), b) and

c), then there exists a monotone set function P : P(X) → R, such that

T (f) =
∫

X f dP, where the integral is intended as above.

See representation theorem in [16].

Remark 3.11. Let P : A → R be a capacity, and Ω be as in 2.2.

There exists a nowhere dense set N ⊂ Ω, such that, ∀ ω -∈ N, the map

Pω : A → ĨR, defined by setting

Pω(A) ≡ P (A)(ω),

is real-valued.
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It is clear that, for each integrable function f, there exists a meager

set M, depending only on f, such that, ∀ ω ∈ Ω \ M,
∫

X f dPω =

(
∫

X f dP )(ω).

The following result holds:

Proposition 3.12. Let P : P(X) → R be a submodular capacity,

and f, g ∈ IRX two nonnegative integrable maps. Then,
∫

X

(f + g) dP ≤
∫

X

f dP +

∫

X

g dP.

Proof. Let N and Pω be as in Remark 3.11. It is clear that Pω is a

submodular capacity, ∀ ω ∈ Ω \ N. By “Subadditivity Theorem” of [9],

we have:
∫

X

(f + g) dPω ≤
∫

X

f dPω +

∫

X

g dPω, ∀ ω -∈ N.

So, up to the complement of meager sets, one has:
[ ∫

X

(f + g) dP

]
(ω) =

∫

X

(f + g) dPω ≤
∫

X

f dPω +

∫

X

g dPω =

=

[ ∫

X

f dP

]
(ω) +

[ ∫

X

g dP

]
(ω).

Thus, the assertion follows.

By using the same technique as above, it is easy to prove the following

two propositions:

Proposition 3.13. If P : A → R is a mean, and f, g are integrable,

then for every A ∈ A
∫

A

(f + g) dP =

∫

A

f dP +

∫

A

g dP.

Proposition 3.14. If P : P(X) → R is a capacity, and f, g are

integrable and comonotonic, then
∫

X

(f + g) dP =

∫

X

f dP +

∫

X

g dP.
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The proof of the following results are analogous to [9]:

Proposition 3.15. Let P1 and P2 be two capacities, and assume

that f ∈ IRX is an integrable function, w.r. both to P1 and P2. Then,

a′) For every c ≥ 0,
∫

X f d(c P1) = c
∫

X f dP1.

b′) P1 + P2 is a capacity, and
∫

X fd(P1 + P2) =
∫

X fdP1 +
∫

X fdP2.

c′) If P1(X) = P2(X) or f ≥ 0, then [P1 ≤ P2] =⇒ [
∫

X fdP1 ≤∫
X fdP2.]

Proof. The result follows from Theorem 2.2 and Proposition 5.2

of [9].

Proposition 3.16. If f ≥ 0 and (Pn)n is a sequence of capacities,

such that Pn ≤ Pn+1 ∀ n and (o) − limn Pn(A) = P (A) ∀ A ∈ A, then

(o) − limn

∫
X f dPn =

∫
X f dP.

Proof. See 5.2.iv of [9].

Theorem 3.17. Let P : P(X) → R be a submodular capacity.

Then, for every class C of integrable comonotonic functions, there exists

a mean µ : P(X) → R, such that

P (A) ≤ µ(A), ∀ A ∈ P(X),

and ∫

X

f dµ =

∫

X

f dP, ∀ f ∈ C.

Proof. The proof is a direct consequence of the Hahn-Banach

Theorem for Riesz-space-valued functionals (see Proposition 10.1 of [9]

and [4]).

4 – The Riesz representation theorem

Throughout this section, R is a Dedekind complete Riesz space and

X is any normal topological space, that is, such that every disjoint pair

of closed sets can be separated by disjoint open sets. (We note that there

exist some normal topological spaces which are not T2 : see also [14].)

From now on, we denote by G ≡ { open subsets of X}, and F ≡ { closed

subsets of X}. We will prove a representation theorem for Riesz-space-
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valued functionals (For similar theorems existing in literature, see [10],

[13], [22], [24].) We begin with a preliminary Lemma.

Lemma 4.1. Let ξ : G → R be a subadditive set function, and put

µ(E) ≡ inf{ξ(V ) : V ∈ G, V ⊃ E}, ∀ E ∈ P(X). Then, µ is subadditive.

Proof. Let E1, E2 ⊂ X. Choose arbitrarily two open sets Vi ⊃
Ei (i = 1, 2). One has:

µ(E1 ∪ E2) ≤ ξ(V1 ∪ V2) ≤ ξ(V1) + ξ(V2).

By arbitrariness of V1 and V2, we get

µ(E1 ∪ E2) ≤ µ(E1) + µ(E2),

that is, subadditivity of µ.

Lemma 4.2. Let µ : P(X) → R be a subadditive capacity, such

that µ(E) = inf{µ(V ) : V ⊃ E, V is open }, ∀ E ∈ P(X), and let

M ≡ {E ∈ P(X) : µ(E) = sup{µ(K) : K ⊂ E, K is closed } }. Then

A ∩ Bc ∈ M, whenever A, B ∈ M.

Proof. Let A, B ∈ M.

There exist two nets of closed sets,

{K1
α}α, {K2

α}α, K1
α ⊂ A, K2

α ⊂ B ∀ α,

and two nets of open sets,

{V 1
β }β, {V 2

β }β, V 1
β ⊃ A, V 2

β ⊃ B ∀ β,

such that

K1
α ⊂ A ⊂ V 1

β , K2
α ⊂ B ⊂ V 2

β , ∀ α, β,

and

inf
(α,β)

µ(V i
β ∩ (Ki

α)c) = (o) − lim
(α,β)

µ(V i
β ∩ (Ki

α)c) = 0.

As

A∩Bc ⊂ V 1
β ∩ (K2

α)c ⊂ (V 1
β ∩ (K1

α)c)∪ (K1
α ∩ (V 2

β )c)∪ (V 2
β ∩ (K2

α)c) ∀ α, β,
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then

0 ≤ µ(A ∩ Bc) ≤ (o) − lim
(α,β)

µ(V 1
β ∩ (K1

α)c)+

(o) − lim
(α,β)

µ(K1
α ∩ (V 2

β )c) + (o) − lim
(α,β)

µ(V 2
β ∩ (K2

α)c) =

= (o) − lim
(α,β)

µ(K1
α ∩ (V 2

β )c) = sup
(α,β)

µ(K1
α ∩ (V 2

β )c) ≤

≤ sup {µ(H) : H ⊂ A ∩ Bc, H closed}.

On the other hand, it is easy to check that

µ(A ∩ Bc) ≥ sup {µ(H) : H ⊂ A ∩ Bc, H closed }.

Therefore, A ∩ Bc ∈ M.

Theorem 4.3. Let R be a Dedekind complete Riesz space, and

assume that T is a positive linear R-valued mapping, defined on Cb(X).

Then, there exists an algebra M ⊂ P(X), containing all closed sets in X,

and there exists a unique subadditive capacity µ : P(X) → R, such that

µ is a mean on M, and:

1. T (f) =
∫

X f dµ, ∀ f ∈ Cb(X)

2. µ(E) = inf {µ(V ) : E ⊂ V, V open }, ∀E ∈ P(X)

3. µ(E) = sup {µ(K) : E ⊃ K, K closed }, ∀E ∈ M
4. If E ∈ M, A ⊂ E and µ(E) = 0, then A ∈ M.

Proof. We divide the proof in steps.

Step 1. Definition and subadditivity of µ.

For every open set V, set

ξ(V ) ≡ sup{T (f) : f ≺ V }.

We note that this definition makes sense: indeed, for each open set V and

for every f ≺ V, one has: T (f) ≤ T (1), and so ξ(V ) ≤ T (1), by virtue of

monotonicity of T. For an arbitrary set E ⊂ X, put

µ(E) ≡ inf{ξ(V ) : E ⊂ V, V ∈ G}.

First, we remark that for every open subset V ⊂ X, µ(V ) = ξ(V ) and

that µ is monotonic.
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We now prove that

µ(V1 ∪ V2) ≤ µ(V1) + µ(V2)

for each pair (V1, V2) of open sets. Fix arbitrarily g ≺ V1 ∪ V2. By a

classical result, there exist two continuous real-valued functions h1, h2,

such that hi ≺ Vi(i = 1, 2) and h1(x) + h2(x) = 1, ∀ x ∈ supp g. So,

hig ≺ Vi, g = h1g + h2g, and hence

T (g) = T (h1g) + T (h2g) ≤ µ(V1) + µ(V2).

By arbitrariness of g, we obtain subadditivity of µ on G. Thus, by

Lemma 4.1, µ is subadditive on P(X).

Step 2. Additivity of µ.

Set M ≡ {E ⊂ X : µ(E) = sup {µ(K) : K ⊂ E : K is closed }. We

prove that V ∈ M, for all open set V. In order to do this, it is enough

to show that, for every f ≺ V, there exists a closed set K ⊂ V, such that

µ(K) ≥ T (f).

Fix f ≺ V and denote by K the support of f. Moreover, let W be

any open set, containing K. We have: f ≺ W, and so T (f) ≤ µ(W ).

Hence, T (f) ≤ µ(K). As K ⊂ V, then V ∈ M.

Now, we prove additivity of µ on M. First of all, we prove that

µ(K1 ∪ K2) = µ(K1) + µ(K2),

whenever K1 and K2 are two closed disjoint subsets of X. By normality

of X, there exist two open disjoint sets Vi, such that Vi ⊃ Ki (i = 1, 2).

Fix arbitrarily an open set W ⊃ K1 ∪ K2. By Theorem 2.2, there exists

a meager set N ⊂ Ω, such that

µ(W ∩ Vi)(ω) = sup {T (f)(ω) : f ≺ W ∩ Vi}, ∀ ω -∈ N (i = 1, 2).

So, for every ε > 0 and ω -∈ N, there exist some continuous functions

f1,ω, f2,ω, such that fi,ω ≺ W ∩ Vi, and

T (fi,ω)(ω) > µ(W ∩ Vi)(ω) − ε

2
, i = 1, 2.
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We have, up to the complement of meager sets,

µ(K1)(ω) + µ(K2)(ω) ≤ µ(W ∩ V1)(ω) + µ(W ∩ V2)(ω) ≤
≤ T (f1)(ω) + T (f2)(ω) + ε ≤ µ(W )(ω) + ε.

As the complement of a meager set is dense, we get

µ(K1)(ω) + µ(K2)(ω) ≤ µ(W )(ω) + ε, ∀ ω ∈ Ω.

By arbitrariness of ε, we obtain

µ(K1) + µ(K2) ≤ µ(W ).

By arbitrariness of W, we deduce:

µ(K1) + µ(K2) ≤ µ(K1 ∪ K2),

and therefore equality by the first step.

Now we prove that, if E1 and E2 are two disjoint sets, such that

µ(Ei) = sup {µ(K) : K ⊂ Ei, K is closed }, (i = 1, 2)

then µ(E1) + µ(E2) = µ(E1 ∪ E2) = sup{µ(K) : K ⊂ E1 ∪ E2, K is

closed}.

To prove this, choose arbitrarily two closed sets Ki ⊂ Ei (i = 1, 2).

We have:

µ(E1 ∪ E2) ≥ sup {µ(K) : K ⊂ E1 ∪ E2} ≥ µ(K1 ∪ K2) = µ(K1) + µ(K2)

and hence

µ(E1 ∪ E2) ≥ sup {µ(K) : K ⊂ E1 ∪ E2} ≥ µ(E1) + µ(E2) ≥ µ(E1 ∪ E2),

by virtue of subadditivity of µ. So, the inequalities above are the required

equalities.

We now prove that M is an algebra. First of all, thanks to Lemma 4.2,

M is closed with respect to set differences. Moreover, as A ∪ B =

(A∩Bc)∪B, by virtue of the previous result, it follows that A∪B ∈ M.
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Furthermore, as A ∩ B = A ∩ (A ∩ Bc)c, we have that A ∩ B ∈ M. So,

M is an algebra.

Step 3. T (f) =
∫

X f dµ, ∀ f ∈ Cb(X).

First of all, we observe that it will be enough to prove the inequality

(+) T (f) ≤
∫

X

f dµ, ∀ f ∈ Cb(X).

Indeed, by changing f with −f, from (+) we get:

T (f) = −T (−f) ≥ −
∫

X

(−f) dµ =

∫

X

f dµ.

Let ’s prove (+).

Fix f ∈ Cb(X), and let [a, b] be an interval, containing the range of

f. Choose arbitrarily ε > 0. Then, there exists a division y0 ≡ a < y1 <

. . . < yn ≡ b, such that yi − yi−1 < ε, ∀ i = 1, . . . , n. Set

Ei ≡ {x ∈ X : yi−1 < f(x) ≤ yi} (i = 1, . . . , n).

As f is continuous, then {Ei}n
i=1 is a partition of elements of M. There

exists a meager set L ⊂ Ω, such that, for all ω -∈ L and i = 1, . . . , n, there

exists open sets V ω
i , V ω

i ⊃ Ei, such that µ(V ω
i )(ω) ≤ µ(Ei)(ω) + ε

n
, and

f(x) < yi + ε, ∀ x ∈ V ω
i . For each fixed ω -∈ L, let (hω

i )i be a partition of

the unity for {V ω
i }n

i=1 : we have that f ≡ ∑n
i=1 hω

i f.

As hω
i f ≤ (yi + ε) hω

i , and yi + ε < f(x) + 2 ε on Ei, then one has:

[T (f)](ω) =
[ n∑

i=1

T (hω
i f)

]
(ω) ≤

[ n∑

i=1

(yi + ε)T (hω
i )

]
(ω) ≤

≤
[ n∑

i=1

(yi + ε)µ(V ω
i )

]
(ω) ≤

n∑

i=1

(yi + ε)(µ(Ei)(ω) +
ε

n
) ≤

≤
n∑

i=1

[ ∫

Ei

f dµ

]
(ω) + 2 ε [µ(X)](ω) + ε =

=

[ ∫

X

f dµ

]
(ω) + ε(2 µ(X)(ω) + 1).



[17] The monotone integral with respect to etc. 507

There exists a closed nowhere dense set L
′ ⊂ Ω, such that, ∀ ω -∈

L
′
, [µ(X)](ω) ∈ R. By arbitrariness of ε, we get

(++) [T (f)](ω) ≤
[ ∫

X

f dµ

]
(ω), ∀ ω -∈ L

′
.

As Ω \ L
′

is (open and) dense, then (++) holds for all ω ∈ Ω. Thus,

T (f) ≤ ∫
X f dµ, ∀ f ∈ C(Ω).

Step 4. Uniqueness of µ.

Let µ1 and µ2 be two means, for which the assertion of Theorem 4.3

holds, and fix a closed set K. Choose arbitrarily an open set V : then,

by Urysohn ’s Lemma, there exists a continuous function f such that

K ≺ f ≺ V. We have:

µ1(K) =

∫

X

χK dµ1 ≤
∫

X

f dµ1 =T (f) =

∫

X

f dµ2 ≤
∫

X

χV dµ2 = µ2(V ).

By arbitrariness of V, we get:

µ1(K) ≤ inf{µ2(V ) : K ⊂ V, V open } = µ2(K).

Similarly, we can prove the opposite inequality, and so µ1 and µ2 coincide

on the class of all closed sets, and, by construction, they are equal on the

whole of P(X).

The proof of 4 is straightforward. So, the theorem is completely

proved.

Remark 4.4. Under the same hypotheses as in Theorem 4.3, we can

claim that there exists a mean ν : P(X) → R, satisfying 1.), 3.), 4.) and

2.) of 4.3 for every E ∈ M, where M is as in the proof of 4.3.

Indeed, by well-known extension theorems, µ|M has a finitely additive

extension ν : P(X) → R. We can prove that T (f) =
∫

X f dν, ∀ f ∈
Cb(X) : in fact, just sets in M are involved, so

∫
X f dν =

∫
X f dµ when

f ∈ Cb(X).

Remark 4.5. A consequence of Theorem 4.3 and Proposition 3.6

is that, if X is a compact normal topological space, then µ and ν are

σ-additive on M. However, in general, we cannot obtain σ-additivity of

µ or ν on the Borel σ-field (see also [24]).
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5 – Convergence in distribution

Throughout this section, we will follow an approach similar to the

ones in [3] and [14].

Let X be a normal topological space, A ⊂ P(X) be an algebra, B
be the class of all Borel sets of X, and R be a Dedekind complete Riesz

space.

We begin with the following:

Definition 5.1. Let Pn, P : A → R be means. We say that Pn

converges weakly to P, and write Pn ⇒ P, if

(o) − lim
n→+∞

∫

X

f dPn =

∫

X

f dP, ∀ f ∈ Cb(X).

We now prove the following characterization of weak convergence (see

also [3], [14], [20]), which is a version of Portmanteau’s theorem.

Theorem 5.2. If P is tight, then, the following conditions are

equivalent:

(5.2.1) Pn ⇒ P

(5.2.2) (o) − lim sup
n

Pn(F ) ≤ P (F ), for all closed set F

(5.2.3) (o) − lim inf
n

Pn(B) ≥ P (B), for all open set B .

Proof. The proof is analogous to the classical one.

A consequence of Theorem 4.3 is the following:

Theorem 5.3. Let (Pn : B → R)n be a sequence of means, such

that

(o) − lim
n

∫

X

f dPn ∈ R, ∀ f ∈ Cb(X).

Then there exists a regular mean P, such that

(o) − lim
n

∫

X

f dPn =

∫

X

f dP, ∀ f ∈ Cb(X).
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Proof. Let T (f) ≡ (o) − limn

∫
X f dPn, ∀ f ∈ Cb(X). It is easy to

check that T satisfies the hypotheses of Theorem 4.3. So, there exists a

regular set function µ, such that T (f) =
∫

X f dµ, ∀ f ∈ Cb(X). Then,

there exists a mean P : P(X) → R, regular on M, coinciding with µ on

the algebra M generated by open sets.

By proceeding as in Step 3 of Theorem 4.3, one readily shows that∫
X f dP =

∫
X f dµ, ∀ f ∈ Cb(X). Thus, the assertion follows.

Remark 5.4. We notice that, if R is super Dedekind complete (that

is R is Dedekind complete and every supremum of elements of R can be

viewed as a suitable countable supremum), then every regular set function

is tight.

Definition 5.5. We say that a capacity P : A → R satisfies

the countable chain condition (shortly, CCC) when for every family of

pairwise disjoint sets D, D ⊂ A, such that P (D) -= 0 ∀ D ∈ D, then D
is countable (see [18]).

Observe that, if R is super Dedekind complete, then every measure

P satisfies (CCC) (see [18]). Moreover, if P is a mean, satisfying (CCC),

then, for each f ∈ IRX , the set Vf ≡ {α ∈ IR : P ({x ∈ X : f(x) = α}) -=
0} is countable.

Theorem 5.6. Let (Pn)n be a sequence of means, and suppose that

P is a tight mean, satisfying (CCC). Then, the following conditions are

equivalent:

(5.6.1) Pn ⇒ P

(o) − lim
n

Pn(A) = P (A), for all subsets(5.6.2)

A ⊂ X such that P (∂A) = 0.
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Proof. (5.6.1) =⇒ (5.6.2) Applying (5.2.2) and (5.2.3), we have:

P (A) ≥ (o) − lim sup
n

Pn(A) ≥ (o) − lim sup
n

Pn(A) ≥

≥ (o) − lim inf
n

Pn(A) ≥ (o) − lim inf
n

Pn(Ao) ≥
≥ P (Ao) = P (A) = P (A),

if P (∂A) = 0 : thus, P (A) = (o) − limn Pn(A).

(5.6.2) =⇒ (5.6.1) Let f ∈ Cb(X), and pick α, β ∈ IR, such that

α < f(x) < β, ∀ x ∈ X. Then, ∀ ε > 0, we can find α ≡ α0 < α1 <

· · · < αk ≡ β, αi − αi−1 < ε, such that P ({x ∈ X : f(x) = αi}) = 0. Set

Ci ≡ {x ∈ X : αi−1 < f(x) ≤ αi}.

If y is a boundary point of Ci, then f(y) is either αi−1 or αi; hence,

P (∂Ci) = 0. One has:

k∑

i=1

αi−1 Pn(Ci) ≤
∫

S

f dPn ≤
k∑

i=1

αi Pn(Ci), ∀ n ∈ IN;

k∑

i=1

αi−1 P (Ci) ≤
∫

X

f dP ≤
k∑

i=1

αi P (Ci),

As P (∂Ci) = 0, then, by hypothesis, we have:

(o) − lim
n

k∑

i=1

αi Pn(Ci) =
k∑

i=1

αi P (Ci);

(o) − lim
n

k∑

i=1

αi−1 Pn(Ci) =
k∑

i=1

αi−1 P (Ci).

But

0 ≤
k∑

i=1

αi Pn(Ci) −
k∑

i=1

αi−1 P (Ci) ≤ ε P (X).

From this, it follows that

0 ≤
∣∣∣
∫

X

f dP − (o) − lim sup
n

∫

X

f dPn

∣∣∣ ≤ ε P (X),

0 ≤
∣∣∣
∫

X

f dP − (o) − lim inf
n

∫

X

f dPn

∣∣∣ ≤ ε P (X).
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So, (o) − limn

∫
X f dPn =

∫
X f dP, and the theorem is completely

proved.

Let X, Y and P be as in 5.2, and B [E ] be the class of all Borelian

subsets of X [Y ]. Given a measurable map h : X → Y, and a mean P :

B → R, define Ph−1 : E → R, by setting Ph−1(A) ≡ P (h−1A), ∀ A ∈ E .

It is easy to prove the following:

Theorem 5.7. Let (Pn)n be a sequence of means, and suppose that

P is a tight mean. Let h : X → Y be a measurable mapping, and denote

by Dh the set of discontinuities of h. If Pn ⇒ P and P (Dh) = 0, then

Pnh−1 ⇒ Ph−1.

The following result holds.

Theorem 5.8. Let P : B → R be a mean, and assume that f :

IR → IR is a measurable bounded map, and h : X → IR is a measurable

function. Then,

(5.8.1)

∫

X

f ◦ h dP =

∫

IR

f dPh−1 ,

provided that both of members make sense.

Proof. Straightforward.

We now state the following (see also [3]):

Theorem 5.9. Let Pn, P : A → R be means, and suppose that P

is tight. Assume that Pn ⇒ P and h : X → IR is a bounded measurable

function, such that P (Dh) = 0.

Then, (o) − limn→+∞
∫

X h dPn =
∫

X h dP.

Let now P be a measure. Given a random variable f , we call dis-

tribution of f associated with P the set function Pf , defined by setting

Pf (A) ≡ P (f−1(A)), for all Borel sets A ⊂ IR.

Definition 5.10. We say that the sequence (fn)n converges in

distribution to f if Pfn ⇒ Pf .
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We begin with a Fatou’s-type theorem.

Theorem 5.11. Let (fn)n be a sequence of random variables, con-

vergent in distribution to a random variable f, and assume that P is a

tight mean, satisfying (CCC). Then,

∫

X

|f | dP ≤ (o) − lim inf
n

∫

X

|fn| dP.

Proof. (see also [3]) For every α ∈ IR+, choose

hα(x) ≡
{

|x|, if |x| ≤ α

0, if |x| > α

If α is such that P ({x ∈ X : |f(x)| = α}) = 0, then we get

∫

{x∈X:|f(x)|≤α}
|f | dP = (o) − lim

n→+∞

∫

{x∈X:|fn(x)|≤α}
|fn| dP ≤

≤ (o) − lim inf
n

∫

X

|fn| dP,

by virtue of Theorem 5.7. As

(o)− lim
α→+∞

∫

{x∈X:|fn(x)|≤α}

|f | dP = sup
α∈IR+

∫

{x∈X:|fn(x)|≤α}

|f | dP =

∫

X

|f | dP,

(see also [5]), then the assertion follows.

Definition 5.12. We say that the sequence (fn)n is uniformly

integrable if

sup
n∈IN

∫

X

|fn| dP ∈ R,

and

(o) − lim
α→+∞

[(o) − lim sup
n

∫

{x∈X:|fn(x)|≥α}
|fn| dP ] = 0.
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Now, we state a Vitali-type theorem for the involved integral, with

respect to convergence in distribution (see also [3]).

Theorem 5.13. Let (fn)n be a uniformly integrable sequence of ran-

dom variables, convergent in distribution to a random variable f. Assume

that P is a measure, satisfying (CCC). Then,

(1) (o) − lim
n→+∞

∫

X

fn dP =

∫

X

f dP.

Moreover, if 0 ≤ fn, f are integrable, (fn)n converges in distribution to

f, and (1) holds, then (fn)n is uniformly integrable.

Proof. (see also [3]) By hypothesis, we have:

sup
n

∫

X

|fn| dP ∈ R.

So, by virtue of Theorem 5.11, it follows that f is integrable. Set now,

for every α > 0,

hα(x) ≡
{

x, if |x| < α,

0, if |x| ≥ α
Zα(x) ≡ {x ∈ X : f(x) = α}

By convergence in distribution of (fn)n to f and Theorem 5.9, if

P (Zα) = 0, we get:

(o) − lim
n→+∞

∫

X

hα ◦ fn dP =

∫

X

hα ◦ f dP.

Moreover,

∫

X

fn dP =

∫

X

hα ◦ fn dP +

∫

{x∈X:|fn(x)|≥α}
fn dP ;

∫

X

f dP =

∫

X

hα ◦ f dP +

∫

{x∈X:|f(x)|≥α}
f dP.
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Let W ≡ {α ∈ IR+ : P (Zα) = 0}. Then,

(o) − lim sup
n

∣∣∣
∫

X

f dP −
∫

X

fn dP
∣∣∣ =

= (o) − lim
α→+∞, α∈W

(o) − lim sup
n

∣∣∣
∫

X

f dP −
∫

X

fn dP
∣∣∣ ≤

≤ (o) − lim
α→+∞, α∈W

(o) − lim sup
n∈IN

∫

{x∈X:|fn(x)|≥α}
|fn| dP+

+ (o) − lim
α→+∞, α∈W

∫

{x∈X:|f(x)|≥α}
|f | dP.

From uniform integrability of (fn)n and fundamental properties of the

(monotone) integral, (1) follows.

Conversely, if fn, f ≥ 0 are integrable and satisfy (1), then, by virtue

of the previous step, we get:

(o) − lim
n→+∞

∫

{x∈X:|fn(x)|≥α}
fn dP =

∫

{x∈X:|f(x)|≥α}
f dP, ∀ α ∈ W.

So,

0 ≤ (o) − lim sup
n

∫

{x∈X:fn(x)≥α}
fn dP ≤

≤ (o) − lim
n

∫

{x∈X:fn(x)≥α}
fn dP −

∫

{x∈X:f(x)≥α}
f dP+

+

∫

{x∈X:f(x)≥α}
f dP =

∫

{x∈X:f(x)≥α}
f dP, ∀ α ∈ W.

Hence,

(o) − lim
α∈W

(o) − lim sup
n

∫

{x∈X:|fn(x)|≥α}
fn dP = 0.

As the net

{(o) − lim sup
n

∫

{x∈X:|fn(x)|≥α}
fn dP}α∈IR+

is decreasing as α increases, then

(o) − lim
α→+∞

(o) − lim sup
n

∫

{x∈X:|fn(x)|≥α}
fn dP = 0.
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A consequence of Theorem 5.13 is the following:

Theorem 5.14 (Dominated convergence Lebesgue theorem). Let

(fn)n be a sequence of random variables, convergent in distribution to

a random variable f. Assume also (CCC). Moreover, suppose that there

exists an integrable random variable h such that |fn(x)| ≤ |h(x)|, for

P -almost all x ∈ X.

Then,

(o) − lim
n→+∞

∫

X

fn dP =

∫

X

f dP.

Remark 5.15. We note that the hypotheses of Theorem 5.13 are

not enough to get convergence in L1, even if R = IR and the functions fn

and f are nonnegative; therefore, in general, Scheffé ’s theorem does not

hold. Indeed, any sequence of (uniformly bounded) random variables,

convergent in distribution but not in probability, will give an example.

We now investigate some relations between convergence in distribu-

tion and convergence in measure.

Definition 5.16. Let R be a Dedekind complete Riesz space. Given

a random variable f , we call distribution function of f the function

Ff : IR → R, defined by setting Ff (x) ≡ P ({z ∈ X : f(z) ≤ x}), x ∈ IR.

Similarly as in the real case, it is easy to prove the following

Proposition 5.17. If P is σ-additive, then the distribution func-

tion Ff satisfies the following properties:

(5.17.1) Ff is an increasing function.

(5.17.2) (o) − lim
x→−∞

Ff (x) = 0; (o) − lim
x→+∞

Ff (x) = P (X)

(5.17.3) Ff is right-continuous at every point x ∈ IR.
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Proposition 5.18. Let (fn)n be a sequence of random variables,

convergent in measure to f. Then,

(o) − lim
n

Ffn(x) = Ff (x), for every x ∈ IR,(5.18.1)

such that Ff is continuous at x.

Conversely, if f(x) ≡ a ∀ x ∈ X, and condition (5.18.1) holds, then (fn)n

converges in measure to f.

Proof. The proof is analogous to the classical one.

Theorem 5.19. For every n ∈ IN0 , let Pn : B → R be a mean,

such that the sequence (Pn(IR))n is bounded. Set Φn(x) ≡ Pn(] − ∞, x]),

and assume that P ∗
0 (A) ≡ inf{P0(V ) : V open, V ⊃ A} satisfies (CCC).

Moreover, suppose that

(5.19.1) (o) − lim
x→−∞

P0(] − ∞, x]) = (o) − lim
x→+∞

P0([x,+∞[) = 0.

Then, the following are equivalent:

(5.19.1) (Pn)n weakly converges to P0.

(5.19.3) (o) − lim
n

Φn(x) = Φ0(x), for each continuity point x of Φ0.

Proof. The proof is straightforward.

We note that, in general, condition (5.19.1.) is strictly weaker than

σ-additivity of P0 (see [17]), but it cannot be dropped, even if R = IR

(see also [17]), in order to prove the implication [(5.19.3.) =⇒ (5.19.2.)].

6 – Laws of large numbers

From now on, we assume that P is a measure. We begin with the

following definition:
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Definition 6.1. Let R be a Dedekind complete Riesz space, and

(an)n a sequence in R. We call series associated with (an) the sequence

(Sn), defined by setting

{
S1 = a1

Sn = Sn−1 + an, n ∈ IN,

and we indicate this series by the symbol
∑∞

n=1 an. We say that the series∑∞
n=1 an converges to L ∈ R if L = (o) − limn Sn.

We introduce the following condition:

H1) For every i ∈ IN, for each Ai belonging to the σ-algebra σ(f1, . . . , fi)

generated by f1, . . . , fi, ∀ j > i ≥ h ∈ IN, it holds:

∫

Ai

fh fj dP = 0.

We observe that, in the real case, H1) is equivalent to the following

hypothesis:

E(fn+j|σ(f1, . . . , fn−1)) = 0, ∀ n, j ∈ IN.

Remark 6.2 We note that it is not advisable to proceed in terms of

conditional expectation.

Indeed, let R ≡ IR2, P : A → R be a measure, P = (P1, P2), where

P1(X) = P2(X) = 1, and assume that
∫

X f dP1 -= ∫
X f dP2.

Put B ≡ {∅, X} : then, it is easy to check that a mapping g ∈ IRX is

B-measurable if and only if it is constant. Then,

c = c Pj(X) =

∫

X

f dPj (j = 1, 2)

and so ∫

X

f dP1 =

∫

X

f dP2 :

contradiction.

Thus, in this case, we cannot define a real-valued map g, playing the

same role, as the conditional expectation in the case R = IR.
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The main result of this section is the strong law of large numbers.

Theorem 6.3. Let (fn)n be a sequence of random variables, such

that f2
n is integrable, ∀ n, and satisfying condition H1). Moreover, suppose

that the series
∑∞

i=1

E(f2
j )

j2 converges. Set f̄n ≡ 1
n

∑n
i=1 fi. Then, the

sequence (f̄n)n converges to 0 almost everywhere.

In order to prove this theorem, we introduce two Lemmas.

Lemma 6.4. Let f1, . . . , fn, . . . be random variables, satisfying

H1), and suppose that f2
n is integrable, ∀ n ∈ IN. If Sj ≡ ∑j

i=1 fi, and

u1 ≤ . . . ≤ un are positive real numbers, then

P (x ∈ X : |Sj(x)| < uj, ∀ j) ≥ P (X) −
n∑

j=1

E(f2
j )

u2
j

.

Proof. First of all, we prove that

(∗) E((fh + fj)
2) = E(f2

h) + E(f2
j ),∀ h, j ∈ IN, h -= j.

Without loss of generality, we can suppose that h < j. In H1), choose

i = h, and Ai = X; then, E(fh fj) = 0, and so (∗) follows.

From (∗) we obtain:

E(S2
n) =

n∑

i=1

E(f2
i ).

Set now αi ≡ 1
u2

i
, ∀ i = 1, . . . , n; αn+1 ≡ 0, and

T (x) ≡
n∑

j=1

(αj − αj+1) [Sj(x)]2, ∀ x ∈ X.

It is:

E(T ) =
n∑

j=1

(αj − αj+1) E(S2
j ).

For every j, put

Bj ≡ {x ∈ X : |Si(x)| < ui, ∀ i < j; |Sj(x)| ≥ uj},
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and set

A ≡ {x ∈ X : |Sj(x)| < uj, ∀ j = 1, . . . , n}.

It is easy to check that Bi ∩ Bl = ∅, ∀ i -= l, and
⋃n

j=1 Bj = Ac. For

every i and j, with i < j, we have:

∫

Bi

S2
j dP ≥

∫

Bi

S2
i dP

by virtue of H1), and hence

E(S2
j ) ≥

j∑

i=1

u2
i P (Bi).

Thus,

n∑

j=1

1

u2
j

E(f2
j ) =

n∑

j=1

(αj − αj+1) E(S2
j ) ≥

n∑

j=1

(αj − αj+1)
j∑

i=1

u2
i P (Bi) =

=
n∑

i=1

αi u2
i P (Bi) =

n∑

i=1

P (Bi) = P (X) − P (A),

that is the assertion.

Lemma 6.5. Let R be a Dedekind complete Riesz space, R H
α1, . . . , αn ≥ 0 be such that the series

∑∞
j=1

αj

j2 converges, and set σn =∑n
j=1 αj. Then, (o) − limn

σn
n2 = 0.

Proof. Fix n ∈ IN, and set k ≡ [
√

n]. It holds:

0 ≤ σn

n2
=

1

n2

k∑

j=1

αj +
1

n2

n∑

j=k+1

αj ≤ 1

n2

k∑

j=1

k2

j2
αj+

+
n∑

j=k+1

αj

j2
=

k2

n2

k∑

j=1

αj

j2
+

n∑

j=k+1

αj

j2
≤

≤ 1

n

∞∑

j=1

αj

j2
+

∞∑

j=k

αj

j2
−→ 0.

Thus, the assertion follows.
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We are now able to prove the strong law of large numbers (Theo-

rem 6.3).

Proof. Fix n, m ∈ IN and ε > 0, and set

Sn ≡
n∑

j=1

fj, Y1 ≡ Sn, Y2 ≡ fn+1, . . . , Ym ≡ fn+m−1.

It is easy to see that the maps Yj (j = 1, . . . , m) satisfy the hypotheses

of Lemma 6.4.

For every j = 1, . . . , m put Tj ≡ ∑j
i=1 Yi. Set

Cε
n,m ≡ {x ∈ X : |f̄j(x)| < ε ∀ j = n, n + 1, . . . , n + m}.

Then we have

Cn,m = {x ∈ X : |Tj(x)| < (j + n − 1)ε ∀ j = 1, . . . , m}.

Hence, by Lemma 6.4, we get:

P (Cε
n,m) ≥ P (X) −

m∑

j=1

E(Y 2
j )

(j + n − 1)2 ε2
= P (X) − E(S2

n)

n2 ε2
+

−
m−1∑

j=n+1

E(f2
j )

j2 ε2
≥ P (X) − E(S2

n)

n2 ε2
−

∞∑

j=n+1

E(f2
j )

j2 ε2
.

So, there exists a sequence (pn)n(ε) ∈ R, pn ↓ 0, such that

P (Cε
n,m) ≥ P (X) − E(S2

n)

n2 ε2
− pn

ε2
,

and hence

P
( ⋂

m

Cε
n,m

)
= inf

m
P (Cε

n,m) ≥ P (X) − E(S2
n)

n2 ε2
− pn

ε2
.

Let Eε
n ≡ ⋂∞

m=1 Cε
n,m : then

P
( ⋃

n

Eε
n

)
= (o) − lim

n
P (Eε

n) ≥ P (X) − (o) − lim
n

E(S2
n)

n2 ε2
.
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By hypotheses (see also Lemma 6.4), we have:

E(S2
n) =

n∑

j=1

E(f2
j ), ∀ n ∈ IN,

and so

(o) − lim
n

E(S2
n)

n2 ε2
= 0.

Thus,

P (X) ≥ P
( ⋃

n

⋂

j≥n

{x ∈ X : |f̄j(x)| < ε}
)

≥ P (X),

and therefore the sequence (f̄n)n converges to 0 almost everywhere.

Now we state a version of the weak law of large numbers, and we

observe that the assertion still is true, even if we assume that P is only

a finitely additive positive R-valued set function.

Theorem 6.6. Let (fn)n be a sequence of random variables, such

that E(fn) = 0 and f2
n is integrable, ∀ n ∈ IN, and suppose that

E((fn + fm)2) = E(f2
n) + E(f2

m), ∀ n, m ∈ IN.

If (o) − limn
1

n2

∑n
i=1 E(f2

i ) = 0, then (o) − limn E(f̄n
2
) = 0, where f̄n

is as in Theorem 6.3.

Proof. We have:

E(f̄n
2
) =

1

n2
E

(( n∑

i=1

fi

)2)
=

1

n2

n∑

i=1

E(f2
i ).

By virtue of the hypotheses, we get:

(o) − lim
n

E(f̄n
2
) = 0,

that is the assertion.

Remark 6.7. We consider now the case when (Xn)n is a sequence

of random variables defined on a probability space (Ω,Σ, P ) and Z is a

sub-σ-algebra of Σ.
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For every A ∈ Σ we set P̃ (A)=P (A|Z)=E(1A|Z). Then P̃ : Σ→L0.

Moreover, if X ∈ L1, we can define Ẽ(X) = E(X|Z) ∈ L1 ⊂ L0. Ẽ(X)

is a random variable obtained by integrating X with respect to P̃ .

In fact, given X in L1, we can consider a sequence of random variables

(Xn)n such that Xn(ω) ≤ Xn+1(ω) for almost every ω and supn Xn = X

a.e. Then, using Beppo Levi’s Theorem,

E(X|Z) = sup
n

E(Xn|Z) = lim
n

E(Xn|Z).

So P̃ : Σ → L1(Ω, Z, P ) ⊂ L0(Ω, Z, P ) ⊂ L0(Ω, Σ, P ) is a measure

(observe in fact that if An, A ∈ Σ such that An ↑ A it is 1An ↑ 1A and

so E(1An |Z) ↑ E(1A|Z). ) Finally, if X in L1(Ω, Σ, P ), then
∫

XdP̃ =

E(X|Z). This is obvious for simple functions, and it is possible to obtain

for the general case using classical techniques.

If we suppose that Ẽ(XhXj1Ai
) = E(XhXj1Ai

|Z) ≡ 0 for every j >

i ≥ h, Ai ∈ σ(X1, · · · , Xi) (this hypothesis is stronger then H1)), in fact it

means that E(XjXh|Z∨σ(X1, · · · , Xi)) = XhE(Xi|Z∨σ(X1, · · · , Xi)) =

0; and if
∑ 1

j2
E(X2

j |Z) =
∑ Ẽ(X2

j )

j2
∈ L0

then using Theorem 6.3 Xn converges to 0 P̃ almost everywhere, i.e.

P (A|Z) = 0 where A = {ω : X → 0}. This implies that P (A) = 0.

Conversely if P (A) = 0 then P (A|Z) = 0. So

Xn → 0 P̃ − a.e. if and only if Xn → 0 P − a.e.

So, we note that, in this particular case, the classical result given in Theo-

rem 6.3, for R = IR, is obtained by modifying the hypothesis: in particular

by strengthening H1 and by weakening the convergence of
∑ 1

j2 E(X2
j |Z).
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