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The monotone integral with respect to

Riesz space-valued capacities

A. BOCCUTO - A. R. SAMBUCINI

RIASSUNTO: Si introduce un “integrale monotono” (nello stesso spirito di [5]), per
applicazioni a valori reali e rispetto a funzioni d’insieme monotone non decrescenti e a
valori in spazi di Riesz Dedekind completi. Si dimostrano teoremi di rappresentazione
(tra cui una versione del Teorema di Rappresentazione di Riesz). Inoltre si introduce
una nozione di convergenza debole, e vengono provati teoremi tipo Portmanteau, Vitali
e Fatou. Inoltre é dimostrata una versione della legge forte e della legge debole dei
grandi numeri.

ABSTRACT: A definition of “monotone integral” is given, similarly as in [5], for
real-valued maps and with respect to Dedekind complete Riesz space-valued “capacities”.
Some representation theorems are proved; in particular, we give here a version of Riesz
representation theorem. Moreover, a concept of weak convergence is introduced, and
some Portmanteau-type theorems, Vitali convergence and Fatou theorems are proved.
Finally, a version of both strong and weak laws of large numbers is demonstrated.

1 — Introduction

In the literature, in certains types of studies (for example, in stochas-
tic processes), it would be “natural” to investigate some kinds of “prob-
abilities”, which to every event associate not simply a real number, but
a real-valued function.
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Indeed, one can give different valuations of the uncertainty of some
event F, depending, for example, on the “informations”, which one can
receive, during his study about E or about some other events, “related”
to F.

For example, given a measurable space (X, ), we can consider ap-
plications P : ¥ — [0, 1]7 in order to stress that the “probability” of each
event A depends on the “time”: P(A) is a function of t € T'.

As a second example, given Z a sub-o-algebra of ¥ and a probabil-
ity P on (X,X), we can define the “conditional probability” as follows:
P(A) = P(A|Z) = E(14|Z) for every A€ X. So P: % — Ly.

More generally, it would be advisable to associate to each event an
element of a Riesz space R : indeed, we note that, thanks to Maeda-
Ogasawara-Vulikh representation Theorem, every Archimedean Riesz
space can be viewed as a suitable space of continuous extended real-
valued functions.

On the other hand, in the literature there exist several contributions
to the foundations of “qualitative probabilities” and their “realizations”,
which can be represented not only by additive functions but also by sub-
modular capacities (see [7], [11], [12]). So, it will be natural, in certains
problems, to consider “probabilities”, as just monotonic functions, with
values in Riesz spaces.

As a further example, we can consider stochastic integration, when
we define the integral of a scalar function with respect to a stochastic
measure Iy, where X : Q x R" — L? is a process.

Another motivation for the study of the integral with respect to ca-
pacities is that, in the theory of decisions, the “preference” relations
between “measurable” functions, which are the “acts” of the considered
individual, can be represented by means of the Choquet integral of some
suitable utility functions. In particular, if X denotes the space of all
“choices” (i.e., states of nature) and I' is the space of all possible “conse-
quences”, an act is a “measurable” mapping f : X — I'. In uncertainty
conditions, to state that “f is preferable to ¢” is equivalent to say that it
is possible to determine a capacity P and a utility function v : I' — IR,
in such a way that

/ UOfdPZ/ uog dP.
X X
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In particular, if we operate under risk condition, P must be a measure
(see [10]).

In [5], we introduced a “monotone-type” integral for real-valued func-
tions, with respect to finitely additive positive set functions, with values
in a Dedekind complete Riesz space. In Section 3, we define a “monotone
integral” for real-valued maps, with respect to monotone Riesz-space-
valued set functions, and we study his properties. Among “similar” in-
tegrals existing in the literature, we recall the “monotone integral” of
real-valued functions with respect to measures with values in a Banach
space (see [6]), in a locally convex vector topological space (see [17]), and
the “fuzzy-type” integral for a lattice-valued function with respect to
lattice-valued measures (see [19]). For this integral, we prove some types
of representation theorems (for similar theorems existing in the literature
for the real case, see [9], [10], [13], [16], [21], [22]) and in Theorem 3.17 we
extend a result of Schmeidler (see [9], [23]); and so to integrate comono-
tonic functions with respect to capacities is equivalent to integrating them
with respect to suitable measures.

In Section 4, we prove a version of Riesz representation theorem.
More precisely, given a normal topological space X, a Dedekind complete
Riesz space R and a linear monotone R-valued functional T, we con-
struct an R-valued set function p, which is monotone on P(X), satisfies
some properties of “regularity”, and is finitely additive on the algebra
M generated by all open sets and such that T'(f) = [ fdu, for each
felCy(X)={f:X — IR, f continuous and bounded }. Moreover, p is
o-additive on M, in the case in which X is compact.

However, in general, it is impossible to obtain the existence of a set
function p, which is additive on the Borel o-field, even if X is compact
and Hausdorff (see also [24]). In general, this is possible if R is weakly
o-distributive ; in fact, a Riesz space is weakly o-distributive if and only if
every o-additive set function, defined in any algebra M, has a o-additive
extension, defined on the smallest o-algebra containing M (see [25]).
Furthermore, we introduce a definition of weak convergence for Riesz
space-valued capacities, and prove some versions of Portmanteau, Vitali
and Fatou’s theorem, with respect to this kind of convergence.

Finally, we prove a version of both strong and weak laws of large num-
bers for the introduced integral, with respect to o-additive and finitely
additive R-valued set functions respectively.
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2 — Preliminaries

A Riesz space R is called Archimedean if the following property holds:
for every choice of a,b € R, na < b for all n € IN, implies that a < 0.

A Riesz space R is said to be Dedekind complete if every nonempty
subset of R, bounded from above, has supremum in R.

Throughout this paper, we always suppose that R is a Dedekind
complete Riesz space.

ProposITION 2.1 [1]. Every Dedekind complete Riesz space is
Archimedean.

THEOREM 2.2 [2]. Given a Dedekind complete Riesz space R, there
exists a compact Stonian topological space €, unique up to homeomor-
phisms, such that R can be embedded as a solid subspace of Coo(2) =

{f € R - f is continuous, and {w : |f(w)| = +o0} is nowhere dense
in Q} . Moreover, if (ax)xea is any family such that ay € RV X\, and a =
sup, ay € R (where the supremum is taken with respect to R), then a =
sup, ay, with respect to C(RY), and the set {w € Q : (sup, ay)(w) #
sup, ax(w)} is meager in .

DEFINITION 2.3. A sequence (1,), is said to be (o0)-convergent
to r, if there exists a sequence (p,), € R, such that p, L 0 and |r, —r| <
Pn, ¥V n €N, and we will write (o) — lim,, r, = r.

DEFINITION 2.4. A sequence (1,,), is said to be (0)-Cauchy if there
exists a sequence (py,), € R, such that p, | 0 and |r,—7r,| < p,., Vn € N,
and ¥V m > n.

DEFINITION 2.5. Let R be a Riesz space, I be a connected subset
of R. We say that w : I — R is [right, left] continuous at a fized point

o) — lim w(x) = w(xg).
()= _lim  w(a) = w(x)

The map f is called [right, left] continuous if it is [right, left] continuous
at every point xg € 1.

DEFINITION 2.6. If X is any topological space, we indicate by the
symbol Cyp(X) the class of all continuous bounded real-valued functions,
where IR is endowed with the usual topology.



[5] The monotone integral with respect to etc. 495

DEFINITION 2.7. Let X be an arbitrary set, and f € R™. The class
Qr={{zreX: : fle)>t}:teR}U{{zx e X : f(zx) >t} :t R}
is called the upper set system of f.

DEFINITION 2.8. We say that a class C of elements of R™ is
comonotonic if Upee Qy s a chain, or equivalently, if, for each pair of
f,g € C, there is no pair of elements x1, x5 € X, such that f(xy) < f(x3)
and g(z1) > g(@2) (see [9]).

3 — The monotone integral for capacities

DEFINITION 3.1. Let X be any set, and A C P(X) be an algebra.
We say that a set function P : A— R is a capacity if P(0) =0, and
P(A) < P(B) whenever A,B € A, A C B; P is said to be submodular if
A, Be A= P(AUB)+ P(ANB) < P(A)+ P(B);
supermodular, if
A, Be A= P(AUB)+P(ANB) > P(A)+ P(B);
subadditive, if
A, Be A=— P(AUB) < P(A)+ P(B);
superadditive, if
A, Be A— P(AUB)> P(A)+ P(B).
A map P:A— R is said to be a mean if P(A) >0, V A € A, and

P(AUB) = P(A) + P(B), whenever AN B = (). A mean P is o-additive
if inf,, P(A,) = 0, whenever (A,), is a decreasing sequence in A, such
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that N, A, =0, or equivalently if

P( G Bn) — iP(Bn),

whenever (B,), is any disjoint sequence of elements of A, such that
U.—, B, € A
We say that a set function P is a measure if it is a o-additive mean.

DEFINITION 3.2. Assume that A C P(X) is an algebra, F, G C A
are two lattices, such that ) € F, and the complement (with respect to X)
of every element of F belongs to G. A mean P on A is called tight if the
following properties hold:
R)V F e F, Vn e N3G, € G such that F C G,yz C G,Vn,
and inf,, P(G,\ F)=0.

REMARK 3.3. It is easy to see that, if X is a metric space, S = {Borel
sets}, F = {closed sets}, and G = {open sets}, then every o-additive
mean is tight.

DEFINITION 3.4. Let X be a topological space, and assume that A
contains all open subsets of X. We say that a set function P: A — R is
reqular (on A) if, for every E € A,

P(A) =inf{P(V): ACV, Visopen }
and

P(A) =sup{P(C): ADC, C is closed }

DEFINITION 3.5. If K C X is closed, f € [0,1]* is a continuous
function, we say that K < f if f(x) =1, Ve € K. If V C X is open, we
write that f <V if its support is contained in V.

The following result holds:

ProroSITION 3.6. Let X be a compact topological space, and as-
sume that A C P(X) is an algebra, containing the class of all open sets.
Then, every reqular mean P on A is o-additive on A.
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PROOF. Let (A;)r be a sequence of disjoint sets in A, such that
A=, A € A. It is easy to see that

P(A) > f: P(Ay).

We now prove the opposite inequality. Fix ¢ > 0 and A € A, and let Q2
be as in Theorem 2.2. By regularity of P, there exists a meager set J
such that, Vw € Q\ J, there exists a closed set C* C A, such that

P(A)(w) — P(CY)(w) <

DN ™

and there are open sets Uy, Uy D Ay V k, such that

P(UF) (@) = P(A) () < 577

As X is compact, then C¥ is too: so, for each w & J, there exists n(w) €
IN, such that C* c Ul U#. Thus, V w & J, we get:

As the complement of a meager set is dense, we get:
P(A)w) < [ P(A)]w), Ywen

k=1

and hence

P(A) <Y P(A,). 0

As in [5], given a mapping f : X — R and a capacity P, for all
A € A, set: E£ 4 (or simply X; 4, when no confusion can arise) =
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{zeA: f(x)>t}; B (B) ={z e X: f(x)>t}; and, for every t € R,
let uaf(t) = P(EI{A); up(t) = u(t) = P(3,).

DEFINITION 3.7.  We say that a map f : X — IR is measurable if
>/ € A, VtelR. A real-valued measurable map is called random variable
too.

Now, we define a Riemann-type integral, for maps, defined in an
interval of the real line, and taking values in a Dedekind complete Riesz
space.

DEFINITION 3.8.  Let a,b € IR, a < b, and R be as above. We
say that a map g : [a,b] — R is a step function if there exist n + 1
points xg = a < 1 < ... < x, = b, such that g is constant in each
interval of the type |z, 1,x;[ (i = 1,...,n). If g is a step function, we
put fab g(t)y dt =517 (i —xi1) - g(&) , where & is an arbitrary point
of |xi_1, xi[.

DEFINITION 3.9. Let u : [a,b] — R be a bounded function. We call
upper integral [resp. lower integral] of u the element of R given by

b

inf v(t) dt [sup /ab s(t) dt],

vV Jq SESy

where

V. ={v:v is a step function , v(t) > u(t), ¥Vt € [a,b]}
S, = {s: s is a step function , s(t) <wu(t), ¥Vt € [a,bl]}.
We say that u is Riemann integrable (or (R)-integrable), if its lower in-

tegral coincides with its upper integral, and, in this case, we call integral
of u (and write fab u(t) dt) their common value.

DEFINITION 3.10. A measurable nonnegative map f € R™ is inte-
grable if there exists in R the quantity

(3.10.1) /+Oou(t) dt = sup /au(t) dt = (0) — lim au(t) dt,

a>0 a—+oo Jg
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where the integral in (3.10.1) is intended as in Definition 3.9. If f is
integrable, we indicate the element in (3.10.1) by the symbol/ fdP. If f
X

is not necessarily positive, we say that a measurable function f: X — R
is integrable if there exist in R the following quantities:

—+oo
L E/ u(t) dt
0

and

and in this case we set
X

We indicate the quantity [, f dP also by E(f).

It is easy to check that this integral is well-defined, monotone, pos-
itively homogeneous, and satisfies the following properties, ¥V f > 0 (see
also [5], [8]):

a) [y fdP= [y (fANc)dP+ [y f—(fAc)dP, Ve>0.
b) [y fdP=sup,cn [x (fARn)dP = (o) —lim, [y (fAn)dP.
¢) [y fdP=(0)—lim, o [y (fVL-1)dP.

Conversely, let X be any set, and B C [0, +oc[¥ such that 0 € B, and
fAa, fVa—a€ B, whenever a € [0,400[and f € B.If T: B — R is
a monotone (positively homogeneous) “functional”, satisfying a), b) and
c), then there exists a monotone set function P : P(X) — R, such that
T(f) = [y [ dP, where the integral is intended as above.

See representation theorem in [16].

REMARK 3.11. Let P : A — R be a capacity, and  be as in 2.2.
There exists a nowhere dense set N C €2, such that, V w ¢ N, the map
P, : A— IR, defined by setting

is real-valued.
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It is clear that, for each integrable function f, there exists a meager
set M, depending only on f, such that, Vw € Q\ M, [, f dP, =

(Jx [ dP)(w).
The following result holds:

PROPOSITION 3.12.  Let P : P(X) — R be a submodular capacity,
and f,g € R™ two nonnegative integrable maps. Then,

/X(f+g)dP§/X fdP+/X g dP.

PrOOF. Let N and P, be as in Remark 3.11. It is clear that P, is a
submodular capacity, ¥V w € '\ N. By “Subadditivity Theorem” of [9],
we have:

/X(erg)deS/X fde+/X gdP,, Y w¢N.

So, up to the complement of meager sets, one has:

{/X(erg)dP}(W):/X(f+g)de§/X fdpw_i_/xgdpw:

_ UX fdP}(w)—i—[/X gdP}(w)-

Thus, the assertion follows. O
By using the same technique as above, it is easy to prove the following
two propositions:

ProposITION 3.13. IfP: A — R is a mean, and f, g are integrable,
then for every A € A

/A(erg)dP:/AfdPJr/AgdP.

PropoSITION 3.14. If P : P(X) — R is a capacity, and f,g are
integrable and comonotonic, then

/X(f—i—g)dP:/X fdP+/X g dP.
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The proof of the following results are analogous to [9]:

PropPOSITION 3.15. Let P, and P, be two capacities, and assume
that f € RX is an integrable function, w.r. both to P, and P,. Then,
a’) For everyc>0, [y fdlcP)=c [y fdP.
b") Py + Ps is a capacity, and [ fd(Py+ P») = [ fdPi+ [ fdPs.
) If Pi(X) = Py(X) or f > 0, then [P, < P)] = [y fdP <
Jx fdP».]

PrOOF. The result follows from Theorem 2.2 and Proposition 5.2
of [9].

PROPOSITION 3.16. If f >0 and (P,), is a sequence of capacities,
such that P, < P,;1 ¥ n and (o) — lim,, P,(A) = P(A)V A € A, then
(o) =lim, [y fdP,= [y fdP.

PROOF. See 5.2.iv of [9)].

THEOREM 3.17.  Let P : P(X) — R be a submodular capacity.
Then, for every class C of integrable comonotonic functions, there exists
a mean p: P(X) — R, such that

P(A) <u(A), v AeP(X),

and

/X fdu:/x FdP, v fec.

PrROOF. The proof is a direct consequence of the Hahn-Banach

Theorem for Riesz-space-valued functionals (see Proposition 10.1 of [9]
and [4]).

4 — The Riesz representation theorem

Throughout this section, R is a Dedekind complete Riesz space and
X is any normal topological space, that is, such that every disjoint pair
of closed sets can be separated by disjoint open sets. (We note that there
exist some normal topological spaces which are not Ty : see also [14].)
From now on, we denote by G = { open subsets of X}, and F = { closed
subsets of X}. We will prove a representation theorem for Riesz-space-
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valued functionals (For similar theorems existing in literature, see [10],
[13], [22], [24].) We begin with a preliminary Lemma.

LEMMA 4.1. Let &:G — R be a subadditive set function, and put
p(E)=inf{{(V):VegG, VDOE},YEecP(X). Then, p is subadditive.

Proor. Let F;, F, C X. Choose arbitrarily two open sets V; D
E; (i =1,2). One has:

p(ELU Ey) < (V1 UV,) <£(V1) +£(V2).
By arbitrariness of V; and V,, we get
p(EvU Ey) < p(Er) + p(E»),
that is, subadditivity of u.

LEMMA 4.2.  Let p: P(X) — R be a subadditive capacity, such
that p(E) = inf{u(V) : V. O E, V is open }, ¥V E € P(X), and let
M={FE € P(X): wE) =sup{u(K) : K C E, K is closed } }. Then
AN B¢ e M, whenever A, B € M.

PRrROOF. Let A, B € M.
There exist two nets of closed sets,

{Ki}ou {Ko%}om Ké C A, KO% C BVY «,
and two nets of open sets,
(Vi s AV3}s, VA D A, VED BV B,

such that
K.cAcVy, KXcBcCV;, Va, 8,

and
int (V1 (K2)7) = (0) = limy (Vi1 (K2)%) =01

As

ANBT CVIN(K2) C (Vin(ED)U(KAN (VA U(VEN(K2)) Y a, B,



[13] The monotone integral with respect to etc. 503

then
0<HANBY) < (o)~ lim u(VE N (L)) +
(0) = limy (L0 (VEY) + (o) — fim (V3 1 (K2)) =
= (0) = Jim (K3 0 (VE)) = sup (e 0 (V)) <
<sup {u(H): HC AN B°, H closed}.

On the other hand, it is easy to check that
w(ANB®) >sup {u(H): HC AN B, H closed }.
Therefore, A N B¢ € M. O

THEOREM 4.3. Let R be a Dedekind complete Riesz space, and
assume that T' is a positive linear R-valued mapping, defined on Cp(X).
Then, there exists an algebra M C P(X), containing all closed sets in X,
and there exists a unique subadditive capacity p : P(X) — R, such that
W is a mean on M, and:

T(f) = [ fdu ¥ f€C(X)

p(E) =inf {u(V): ECV, V open }, VE € P(X)
u(E) =sup {u(K): E DK, K closed }, VE € M
IfEeM, ACE and u(E) =0, then A € M.

-0

ProOF. We divide the proof in steps.

STEP 1. Definition and subadditivity of p.
For every open set V, set

EV) =sup{T(f): f <V}

We note that this definition makes sense: indeed, for each open set V' and
for every f <V, one has: T'(f) <T'(1), and so {(V) < T'(1), by virtue of
monotonicity of T. For an arbitrary set £ C X, put

WE)=it{e(V): ECV, Veg)

First, we remark that for every open subset V' C X, u(V) = ¢(V) and
that p is monotonic.
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We now prove that
p(Vi UVz) < u(Vi) + u(Va)

for each pair (Vi,V5) of open sets. Fix arbitrarily ¢ < V; U V,. By a
classical result, there exist two continuous real-valued functions hy, hs,
such that h; < V;(i = 1,2) and hy(x) + he(x) = 1, V& € supp g. So,
hig < Vi, g = h1g+ hag, and hence

T(g) = T(hig) + T'(hag) < p(V1) + pu(Va).

By arbitrariness of g, we obtain subadditivity of u on G. Thus, by
Lemma 4.1, p is subadditive on P(X).

STEP 2. Additivity of pu.

Set M={E C X : u(F)=sup {u(K): K C E: K is closed }. We
prove that V' € M, for all open set V. In order to do this, it is enough
to show that, for every f < V. there exists a closed set K C V, such that
u(K) > T(f).

Fix f < V and denote by K the support of f. Moreover, let W be
any open set, containing K. We have: f < W, and so T(f) < p(W).
Hence, T(f) < p(K). As K C V, then V € M.

Now, we prove additivity of u on M. First of all, we prove that

p(Ky U Ks) = p(Ky) + p(Ks),
whenever K; and K, are two closed disjoint subsets of X. By normality
of X, there exist two open disjoint sets V;, such that V; D K; (i = 1,2).

Fix arbitrarily an open set W D K; U K5. By Theorem 2.2, there exists
a meager set N C (2, such that

u(W A V) (w) = sup {T(f)(w) : f < WAV}, Y g N (i =1,2).

So, for every € > 0 and w ¢ N, there exist some continuous functions
fiws fow,such that f;, < W NV, and

T(fi)(w) > (W N Vi) () = 5, i = 1.2,
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We have, up to the complement of meager sets,

p(E) (W) + p(EK2)(w) < p(W N Vi) (w) + p(WNVe)(w) <

<
< T(H)(w) + T(f)(@) + 2 < p(W)(w) +=.
As the complement of a meager set is dense, we get
Py (W) + p(E) (W) < p(W)(w) +e, Vwe .
By arbitrariness of €, we obtain
n(Ky) + p(K2) < p(W).

By arbitrariness of W, we deduce:

n(Ky) + p(K2) < p(Ky U Ks),

and therefore equality by the first step.
Now we prove that, if £y and E, are two disjoint sets, such that

w(E;) =sup {u(K): K C E;, K is closed }, (i =1,2)

then p(Er) + p(E2) = pu(EL U Ey) = sup{u(K) : K C E, U Ey, K is
closed}.

To prove this, choose arbitrarily two closed sets K; C E; (i = 1,2).
We have:

n(Er U Ey) > sup {u(K) : K C EyUEy} > p(Ki UKs) = p(Ky) + p(Ks)
and hence
u(ErU Ey) = sup {u(K) : K C EyU Ep} 2 p(Er) + p(E2) 2 p(Ey U Es),
by virtue of subadditivity of x. So, the inequalities above are the required
equalities.

We now prove that M is an algebra. First of all, thanks to Lemma 4.2,

M is closed with respect to set differences. Moreover, as A U B =
(AN B¢)U B, by virtue of the previous result, it follows that AUB € M.
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Furthermore, as AN B = AN (AN B¢, we have that AN B € M. So,
M is an algebra.

STEP 3. T(f) = [ [ dp, V [ €Cy(X).

First of all, we observe that it will be enough to prove the inequality

(+) (/)< [ fdu ¥ S € CX).

Indeed, by changing f with —f, from (+) we get:

() =Tz~ [ (5 du=[ fdn

Let ’s prove (+).
Fix f € C(X), and let [a,b] be an interval, containing the range of
f- Choose arbitrarily € > 0. Then, there exists a division yp = a < y; <
. <Y, =b,such that y;, —y;_1 <e, Vi=1,... ,n. Set

Ei={reX :yi1<flx)<y}(@i=1,...,n).

As f is continuous, then {F;}?_, is a partition of elements of M. There
exists a meager set L. C €2, such that, forallw & L andi=1,... ,n, there
exists open sets Vi, V¥ D E;, such that u(V¥)(w) < p(E;)(w) + £, and
f(z) <y;+e, Vae V¥ For each fixed w &€ L, let (h?); be a partition of
the unity for {V*}”_, : we have that f =Y, h?f.

Ashy f<(y;+¢e) h¢,and y; + ¢ < f(z) +2 ¢ on E;, then one has:

3

n

T(Hlw) = [ 7 Hlw) < [D @i+ )T W) <

7 =1

[Z yi + (V)] (@ <Z vi + &) (u( ;) (w) +

i=1

) [/E fd“] )+ 2 e [uX))(w) +e=

=1

UX I dp }( ) +&(2 p(X)(w) + 1),

IN

3
)<
n)_

| N
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There exists a closed nowhere dense set L' C Q, such that, V w ¢
L', [u(X)](w) € R. By arbitrariness of ¢, we get

(++) T(H)(w) < [ /s du} ), Vwg L.

As Q\ L' is (open and) dense, then (++) holds for all w € Q. Thus,
T(f) < fx fdp ¥ f€C(Q).

STEP 4. Uniqueness of u.

Let py and po be two means, for which the assertion of Theorem 4.3
holds, and fix a closed set K. Choose arbitrarily an open set V' : then,

by Urysohn ’s Lemma, there exists a continuous function f such that
K < f < V. We have:

p1(K) =/ XK dp S/ fdpm=T(f) :/ fdps S/ Xv dpz = p2(V).
b'e b's b's b'e
By arbitrariness of V, we get:
w1 (K) <inf{ps(V): K CV, V open } = us(K).

Similarly, we can prove the opposite inequality, and so p; and s coincide
on the class of all closed sets, and, by construction, they are equal on the
whole of P(X).

The proof of 4 is straightforward. So, the theorem is completely
proved. U

REMARK 4.4. Under the same hypotheses as in Theorem 4.3, we can
claim that there exists a mean v : P(X) — R, satisfying 1.), 3.), 4.) and
2.) of 4.3 for every E € M, where M is as in the proof of 4.3.

Indeed, by well-known extension theorems, 1| has a finitely additive
extension v : P(X) — R. We can prove that T'(f) = [ fdv, V f €
Cy(X) : in fact, just sets in M are involved, so [, f dv = [, f dp when
f € C(X).

REMARK 4.5. A consequence of Theorem 4.3 and Proposition 3.6
is that, if X is a compact normal topological space, then y and v are
o-additive on M. However, in general, we cannot obtain o-additivity of
p or v on the Borel o-field (see also [24]).
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5 — Convergence in distribution

Throughout this section, we will follow an approach similar to the
ones in [3] and [14].

Let X be a normal topological space, A C P(X) be an algebra, B
be the class of all Borel sets of X, and R be a Dedekind complete Riesz
space.

We begin with the following:

DEerFINITION 5.1. Let P,, P : A — R be means. We say that P,
converges weakly to P, and write P, = P, if

(0) — lim /xfdp”:/x FdP, Y feCy(X).

n—+o00
We now prove the following characterization of weak convergence (see
also [3], [14], [20]), which is a version of Portmanteau’s theorem.

THEOREM 5.2.  If P is tight, then, the following conditions are
equivalent:

(5.2.1) P, =P
(5.2.2) (o) = limsup P,(F) < P(F), for all closed set F
(5.2.3) (o) —liminf P,(B) > P(B), for all open set B.

n

PROOF. The proof is analogous to the classical one.

A consequence of Theorem 4.3 is the following:

THEOREM 5.3. Let (P, : B — R), be a sequence of means, such
that
(0)—1171511 fdP, e R, V fe€C(X).

X
Then there exists a reqular mean P, such that

(o)fligbn/x fdPn:/X fdP, Y € Cy(X).
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PRrROOF. Let T(f) = (o) —lim,, [y f dP,,V f € Cy(X). It is easy to
check that T satisfies the hypotheses of Theorem 4.3. So, there exists a
regular set function p, such that T'(f) = [y f du, V f € C(X). Then,
there exists a mean P : P(X) — R, regular on M, coinciding with p on
the algebra M generated by open sets.

By proceeding as in Step 3 of Theorem 4.3, one readily shows that
Jx fdP = [y fdu, ¥ f€C(X). Thus, the assertion follows. 0

REMARK 5.4. We notice that, if R is super Dedekind complete (that
is R is Dedekind complete and every supremum of elements of R can be
viewed as a suitable countable supremum), then every regular set function
is tight.

DEFINITION 5.5. We say that a capacity P : A — R satisfies
the countable chain condition (shortly, CCC) when for every family of
pairwise disjoint sets D, D C A, such that P(D) # 0V D € D, then D
is countable (see [18]).

Observe that, if R is super Dedekind complete, then every measure
P satisfies (CCC) (see [18]). Moreover, if P is a mean, satisfying (CCC),
then, for each f € R™, theset V; = {a € R: P({zx € X : f(z) = a}) #
0} is countable.

THEOREM 5.6. Let (P,), be a sequence of means, and suppose that
P is a tight mean, satisfying (CCC). Then, the following conditions are
equivalent:

(5.6.1) P, =P

(5.6.2) (0) —lim P,(A) = P(A), for all subsets
A C X such that P(OA) = 0.
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PrOOF. (5.6.1) = (5.6.2) Applying (5.2.2) and (5.2.3), we have:
P(4)

v

(0) — lim sup P,(A4) > (o) — limnsup P,(A) >
(0 )—hmmf P.(A) = (0) — liminf P, (A%) >
P(A%) = P(A) = P(4),

v

| \/

if P(OA) =0 : thus, P(A) = (o) — lim,, P,(A).

(5.6.2) = (5.6.1) Let f € Cy(X), and pick a, € IR, such that
a< f(x) < p, Vo e X Then, Ve >0, wecan find o = ay < ag <
<oy =0, a; — a1 < g, such that P{z € X : f(z) = ay}) = 0. Set

Ci={re X a1 < f(z) <a;}.

If y is a boundary point of C;, then f(y) is either a;_; or «;; hence,
P(9C;) = 0. One has:

.
S ai P(C /fdP <Za, (C), ¥ € IN;
i=1

Zazlp /fdP<Zaz z

As P(0C;) = 0, then, by hypothesis, we have:

k
—hmZaP Z

( —llgnZazlp ZOKZlP

But
O<ZaPnz ZallP ) < e P(X).

From this, it follows that

OS‘/X fdP—(o)—limnsup /X

(X)7

o<| [ rar-( ().
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So, (o) —lim, [y f dP, = [y f dP, and the theorem is completely
proved. O

Let X, Y and P be as in 5.2, and B [£] be the class of all Borelian
subsets of X [Y]. Given a measurable map h: X — Y, and a mean P :
B — R, define Ph™" : £ — R, by setting Ph='(A) = P(h™'A), V A€ &.

It is easy to prove the following:

THEOREM 5.7. Let (P,), be a sequence of means, and suppose that
P is a tight mean. Let h : X — Y be a measurable mapping, and denote
by D), the set of discontinuities of h. If P, = P and P(D;) = 0, then
P,h~t = Ph™1.

The following result holds.

THEOREM 5.8. Let P : B — R be a mean, and assume that f :
IR — IR is a measurable bounded map, and h : X — IR is a measurable
function. Then,

(5.8.1) /X foth:/R fapPnt,

provided that both of members make sense.

PRrROOF. Straightforward.
We now state the following (see also [3]):

THEOREM 5.9. Let P,,P : A — R be means, and suppose that P
1s tight. Assume that P, = P and h : X — IR is a bounded measurable
function, such that P(Dy) = 0.

Then, (0) —lim,_, o [y h dP,= [y hdP.

Let now P be a measure. Given a random variable f , we call dis-
tribution of f associated with P the set function Py, defined by setting
Pi(A) = P(f'(A)), for all Borel sets A C RR.

DEFINITION 5.10. We say that the sequence (f,), converges in
distribution to f if Py, = Py.
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We begin with a Fatou’s-type theorem.
THEOREM 5.11.  Let (f,). be a sequence of random variables, con-

vergent in distribution to a random variable f, and assume that P is a
tight mean, satisfying (CCC). Then,

/X |f] dP < (o) —limninf /X || dP.

PROOF. (see also [3]) For every a € IR", choose

ey < [l <o
o\t = 0, if |z|>«

If v is such that P({z € X : |f(z)| = a}) = 0, then we get

/ fldP = (0) — lim ol dP <
{zeX:|f(z)|<a} noF0 Jae X fn(z)|<a}

< (0) - limninf/x £, dP,

by virtue of Theorem 5.7. As

a——+00

O-tm [ ilap=sw [ ygap= [ |7ap

a +
{2€ X1 fu(@)| <0} T rexifa@)i<a)
(see also [5]), then the assertion follows. 0
DEFINITION 5.12. We say that the sequence (f,)n is uniformly

integrable if
sup |fn| dP € R,

nelN JX

and

(o) — lim [(0) — limsup

a—+oo n /{a:eX:Ifn(JC)ZOC}
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Now, we state a Vitali-type theorem for the involved integral, with
respect to convergence in distribution (see also [3]).

THEOREM 5.13.  Let (f,), be a uniformly integrable sequence of ran-
dom variables, convergent in distribution to a random variable f. Assume
that P is a measure, satisfying (CCC). Then,

(1) — lim / fn dP = /fdP

n—-+oo

Moreover, if 0 < f,, f are integrable, (f,), converges in distribution to
f, and (1) holds, then (f,)n is uniformly integrable.

PROOF. (see also [3]) By hypothesis, we have:

sup/ |fn| dP € R.
n X

So, by virtue of Theorem 5.11, it follows that f is integrable. Set now,
for every a > 0,

0, if |z|>«

xz, if || <a
hau:)z{ e = e X fw) =)

By convergence in distribution of (f,), to f and Theorem 5.9, if
P(Z,) =0, we get:

(0) — lim /hofndP /hofdP

n——+oo

Moreover,

/ fnsz/ ha o fo dP + f. dP:
X X

{zeX:|fn(x)|>a}

/ fdP:/ haofdP—l—/ f dp.
X X {zeX:|f(x)|>a}
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Let W ={a € R" : P(Z,) = 0}. Then,

(0)—limnsup‘/X fdP—/X fn dP‘ =
= (o) — lim (o) — lim sup ‘/X fdP—/X fn dP‘ <

a—+o0, aeW

< (0) — lim 0) — limsu / | dP+
N ( ) a—rtoo, a€W ( ) nENp {z€X:|fn(z)|>a} ‘f ‘
+ (o) — lim |f| dP.

a=rtoo, a€W Jize X:|f(x)|>a}

From uniform integrability of (f,), and fundamental properties of the
(monotone) integral, (1) follows.

Conversely, if f,,, f > 0 are integrable and satisfy (1), then, by virtue
of the previous step, we get:

(0) = lim fn dP = fdP, ¥V aeW.
ot Jee X fo(w)|>a} {z€X:|f(z)|>a}
So,
0 < (o) — limsup / fn dP <
n {z€X:fn(z)>a}
< (o) — lim fn dP — f dP+
" JeeX: fn(z)>a} {zeX:f(z)>a}

+/ fdp = fdP, YacW.
{veX:f(2)2a} {seX:f(x)>a}

Hence,
(0) — lim (0) — limsup / fn dP = 0.
aeW n {ze€X:|fn(2)|2a}
As the net
{(0) — limsup / fn dP}oer+
n {zeX:|[fn(x)|>a}

is decreasing as « increases, then

(0) — lim (o) —limsup

/ fo dP =0, 0
a——+oo n {zeX:|fn(z)|>a}
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A consequence of Theorem 5.13 is the following:

THEOREM 5.14 (Dominated convergence Lebesgue theorem). Let
(fn)n be a sequence of random wvariables, convergent in distribution to
a random variable f. Assume also (CCC). Moreover, suppose that there
exists an integrable random variable h such that |f.(z)| < |h(z)|, for
P-almost all x € X.

Then,

(0) — lim /andP:/X fdP.

n—-+o0o

REMARK 5.15. We note that the hypotheses of Theorem 5.13 are
not enough to get convergence in L', even if R = IR and the functions f,
and f are nonnegative; therefore, in general, Scheffé ’s theorem does not
hold. Indeed, any sequence of (uniformly bounded) random variables,
convergent in distribution but not in probability, will give an example.

We now investigate some relations between convergence in distribu-

tion and convergence in measure.

DEFINITION 5.16. Let R be a Dedekind complete Riesz space. Given
a random variable f |, we call distribution function of f the function

F; : IR — R, defined by setting Fr(x) = P({z € X : f(2) <z}), z € R.

Similarly as in the real case, it is easy to prove the following

ProroSITION 5.17. If P is o-additive, then the distribution func-
tion Fy satisfies the following properties:

(5.17.1) F; is an increasing function.
6472 (o) lm Fy@) =0 (o) lim_ Fylx) = P(Y)

(5.17.3) Fy is right-continuous at every point x € IR.
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PROPOSITION 5.18.  Let (f,)n be a sequence of random variables,
convergent in measure to f. Then,

(5.18.1) (o) —lim Fy, (x) = Fy(x), for every x € IR,
such that Fy is continuous at x.

Conversely, if f(x) =a V¥V x € X, and condition (5.18.1) holds, then (f,)n
converges in measure to f.

PROOF. The proof is analogous to the classical one.

THEOREM 5.19. For everyn € Ny , let P, : B — R be a mean,
such that the sequence (P,(IR)), is bounded. Set ®,(z) = P,(] — o0, z]),
and assume that P§(A) = inf{Py,(V) : V open, V' D A} satisfies (CCC).
Moreover, suppose that

(5.19.1) (o) — lim Py(] —o0,z]) = (0) — lim Py([z,+oo]) = 0.

T——00 r—+00

Then, the following are equivalent:

(5.19.1) (Pyn),, weakly converges to P,.

(5.19.3) (o) —lim @, (x) = ®o(z), for each continuity point x of Py.

PROOF. The proof is straightforward.

We note that, in general, condition (5.19.1.) is strictly weaker than
o-additivity of Py (see [17]), but it cannot be dropped, even if R = IR
(see also [17]), in order to prove the implication [(5.19.3.) = (5.19.2.)].

6 — Laws of large numbers

From now on, we assume that P is a measure. We begin with the
following definition:
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DEFINITION 6.1. Let R be a Dedekind complete Riesz space, and
(an)n @ sequence in R. We call series associated with (a,) the sequence

(S,), defined by setting

Sl = a;
Sn = Sn—l + Qp, ne ]N7

and we indicate this series by the symbol Y.° | a,. We say that the series
>0, a, converges to L € R if L = (o) — lim,, S,,.

We introduce the following condition:
H1) For every i € IN, for each A; belonging to the o-algebra o(f1,... , fi)
generated by fi,...,fi, Vj>i>h e IN, it holds:

/A,. fu f; dP = 0.

We observe that, in the real case, H1) is equivalent to the following
hypothesis:

E(f7z+j|0-(f17‘- . 7fn—1)) = 0, W n, ] € IN.

REMARK 6.2 We note that it is not advisable to proceed in terms of
conditional expectation.

Indeed, let R = IR?>, P: A — R be a measure, P = (P;, P,), where
P (X) = Py(X) =1, and assume that [, fdP # [ [ dPs.
Put B = {0, X} : then, it is easy to check that a mapping g € RY is
B-measurable if and only if it is constant. Then,

c=cP(X)= [ fap (=12

and so
/ f d_Pl = / f dP2 .
X X
contradiction.

Thus, in this case, we cannot define a real-valued map g, playing the
same role, as the conditional expectation in the case R = IR.
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The main result of this section is the strong law of large numbers.

THEOREM 6.3. Let (f,), be a sequence of random variables, such

that f2 is integrable, ¥ n, and satisfying condition H1). Moreover, suppose

that the series Y .o, (.];) converges. Set f, = % Soiy fi. Then, the

sequence (f,)n converges to 0 almost everywhere.

In order to prove this theorem, we introduce two Lemmas.

LEMMA 6.4. Let fi,..., fn,... be random wvariables, satisfying
H1), and suppose that f? is integrable, V n € IN. If S; = 31, fi, and
up < ... < wu, are positive real numbers, then

i E
Pz e X :|S;(x)| <wy, ¥Vj)>PX
j=1

PROOF. First of all, we prove that

(%) E((fu+ £;)*) = E(fi) + E(f),¥ h,j € N, h# .

Without loss of generality, we can suppose that h < j. In H1), choose
i =h, and A; = X; then, E(f, f;) =0, and so (x) follows.
From (x) we obtain:

=3 B

Set now a; = =5, Vi=1,...,n; a1 =0, and
[

EZ '—Oé]+1 Sj(l’)]2, VZEGX
=1

It is:

T) =3 (0 - ay) B(S?).

j=1

For every j, put

B, ={z e X :[S(x)] <u;, Yi<j;|Si(z) >u;},
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and set
A={r e X :|Sj(z) <u;, Vji=1,...,n}

It is easy to check that B, N B; = 0, Vi # [, and |J/_, B; = A°. For

=1
every ¢ and j, with ¢ < j, we have:

| stap= [ star

by virtue of H1), and hence

Thus,
> B =30 i) BSD) 23 (e~ ) Y0 P(B) =

that is the assertion.

LEMMA 6.5. Let R be a Dedekind complete Riesz space, R >
Q1,... 0, > 0 be such that the series Zj’;l j—g converges, and set o, =
>i-1 aj. Then, (o) —lim, %% = 0.

PRrROOF. Fix n € IN, and set k = [{/n]. It holds:

o< O 1zk: +1z”: <1z’“:k2+
ST 2 @ T @ > =2 @
n2  n2 = n2 A n2 =
N z”: a, k& o N 2": @ _
Pl S Ul B R S R A
I & o &
< E j—2 + Z j_2 — 0
j=1 j=k

Thus, the assertion follows.
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We are now able to prove the strong law of large numbers (Theo-
rem 6.3).

Proor. Fix n,m € IN and € > 0, and set
STL = Z fj? 1/1 = Sn7 }/2 = fn+17"- 7Ym = fn—&-m—l‘
j=1

It is easy to see that the maps Y; (j = 1,... ,m) satisfy the hypotheses
of Lemma 6.4.
For every j=1,... ,mput T; = >7_, Y. Set

Con={reX:|fix)<eVi=nn+1,...,n+m}
Then we have
Com={zeX:|Tjx)<(G+n—-1eVji=1,...,m}

Hence, by Lemma 6.4, we get:

m E(Y? E(S?
P(C:, ) > P(X) — 7:21 — n(_jl))2 = P(X) - ngsfz)
M =

Pt A n?e* L= je
So, there exists a sequence (p,).(¢) € R, p, } 0, such that

P(C,) > P(X) - 252 P
and hence

E(S:)  Pa

P(ﬂ C:;,m) = inf P(C%,,) > P(X) -

n2 g2 g2 :

Let EE =(-_, C=, :then

n,m

P(U Ez) = (o) — lim P(E;) > P(X) — (o) — lim B

n n?e
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By hypotheses (see also Lemma 6.4), we have:

n

E(S}) =Y E(f}), VneN,

j=1
and so B(S?)
(0) — lim = ;2 =0.
Thus, B
P(X)>P(J N {ze X :|fi@)] <c}) > P(X),
nojzn
and therefore the sequence (f,), converges to 0 almost everywhere. [

Now we state a version of the weak law of large numbers, and we
observe that the assertion still is true, even if we assume that P is only
a finitely additive positive R-valued set function.

THEOREM 6.6. Let (f.). be a sequence of random wvariables, such
that E(f,) =0 and f? is integrable, ¥V n € IN, and suppose that

E((fo+ fm)?) = E(f2) + E(f2), ¥V n,m € IN.

If (o) — lim,, n% > E(f?) =0, then (o) — lim, E(f_nz) =0, where f,
is as in Theorem 6.3.

Proor. We have:

By virtue of the hypotheses, we get:
(0) —lim E(f,”) =0,

that is the assertion. 0

REMARK 6.7. We consider now the case when (X,,), is a sequence
of random variables defined on a probability space (£2,%, P) and Z is a
sub-o-algebra of X.
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For every A € ¥ we set P(A)=P(A|Z)=E(14]Z). Then P : £ — L.
Moreover, if X € L, we can define E(X) = E(X|2) € L, C Ly. E(X)
is a random variable obtained by integrating X with respect to P.

In fact, given X in L, we can consider a sequence of random variables
(X,)n such that X, (w) < X,,11(w) for almost every w and sup,, X,, = X
a.e. Then, using Beppo Levi’s Theorem,

E(X|2) =sup E(X,|2) =lim E(X,|2).

So P : %Y — Li(Q2,P) C Ly(Q Z,P) C Ly(Q, %, P) is a measure
(observe in fact that if A4,, A € ¥ such that A, 1 A itis 14, T 14 and
so E(14,|2) 1 E(14|2). ) Finally, if X in L,(Q, %, P), then [ XdP =
E(X|Z). This is obvious for simple functions, and it is possible to obtain
for the general case using classical techniques.

If we suppose that E(XhleAi) = E(X,X;14,|Z) = 0 for every j >
i>h,A; € 0(Xy, -+, X;) (this hypothesis is stronger then H1)), in fact it
means that E(X;X,|ZVo(Xy, -, X;)) = XpE(Xi)|ZVo(Xy, -+, X)) =
0; and if B

2
> EXZ) = Y EE) ¢ 1,

]2

then using Theorem 6.3 X, converges to 0 P almost everywhere, i.e.
P(A|Z) = 0 where A = {w : X — 0}. This implies that P(A4) = 0.
Conversely if P(A) =0 then P(A|Z) = 0. So

X,—0 P—ae. ifand only if X, =0 P —a.e.
So, we note that, in this particular case, the classical result given in Theo-

rem 6.3, for R = IR, is obtained by modifying the hypothesis: in particular
by strengthening H1 and by weakening the convergence of > j%E (X212).
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