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Embedding Theorems for Sobolev-Besicovitch

spaces W
k,1

ap (IRs)

G. DELL’ACQUA – P. SANTUCCI

Riassunto: Si dimostrano teoremi di inversione di tipo Sobolev per spazi di Sobo-
lev-Besicovitch W k,q

ap di funzioni quasi-periodiche con q ∈ [1, 2]. Lo strumento fonda-
mentale per la dimostrazione del teorema principale è il teorema di Hausdorff-Young
per funzioni quasi-periodiche

Abstract: We show embedding theorems of Sobolev type for Sobolev-Besicovitch
spaces W k,q

ap of almost periodic functions with q ∈ [1, 2]. The fundamental tool for the
proof of the main theorem is the Hausdorff-Young theorem for a.p. functions.

1 – Introduction

In this paper, we prove embedding theorems for Sobolev-Besicovitch

spaces W k,q
ap (IRs) of almost periodic Bq

ap-functions, ∀ q ∈ [1, 2]. This sub-

ject was already dealt with, in the case 1 < q ≤ 2, as a consequence of

embedding theorems for Sobolev-Besicovitch spaces Hk,q
ap (IRs) (see [9]).

Here we prove embeddings for W k,q
ap (IRs) spaces in a direct way, involving

not the Hk,q
ap (IRs) spaces, but the Hausdorff-Young theorem. We remark

that the case q = 1, stated in this paper, is not included in [9]. Indeed,
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the embedding theorem we prove for W k,1
ap (IRs) spaces cannot be obtained

via the H-spaces, as the latter are defined for q > 1 only.

In section 2 we recall some basic notations, definitions and properties

of Bq
ap(IR

s) and W k,q
ap (IRs) spaces.

In section 3 we prove the main theorem, and make some remarks.

2 – Notations and definitions

For any s ∈ IN let P(IRs) denote the complex vector space of all

trigonometric polynomials in s variables, that is P ∈ P(IRs) ⇔ ∃ω ∈ IN,

∃ c1, . . . , cω ∈ C and ∃λ1, . . . , λω ∈ IRs such that λ1, . . . , λω are distinct

and

(2.1) P (x) =
ω∑

j=1

cje
iλj ·x ∀ x ∈ IRs ,

where “•” represents the usual inner product in IRs.

If every cj(j = 1, . . . , ω) is different from zero, the set

σ(P ) := {λ1, . . . , λω}

is called the spectrum of P , and the map

λ → a(λ;P ) := lim
T→∞

1

|QT |

∫

QT

P (x)e−iλ·xdx=

{
cj if λ=λj for some j

0 if λ /∈ σ(P )

is called the Bohr-transform of P . Here QT = [−T, T ]s.

For any fixed q ∈ [1,+∞[ we shall denote by Bq
ap(IR

s) the completion

of P(IRs) with respect to the norm defined by

‖P‖q := lim
T→∞

( 1

|QT |

∫

QT

|P (x)|q dx
)1/q

, ∀P ∈ P(IRs) .

An element f ∈ Bq
ap(IR

s) is defined by a sequence of trigonometric

polynomials (Pn)n∈IN such that

f = lim
n

Pn in Bq
ap(IR

s)
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and

‖f‖q := lim
T→∞

( 1

|QT |

∫

QT

|f(x)|q dx
)1/q

= lim
n→∞

‖Pn‖q .

Recall that the space B∞
ap(IR

s) := C0
ap(IR

s) of all uniformly almost

periodic (u.a.p.) functions is the completion of P(IRs) with respect to

the norm

(2.2) ‖P‖∞ := sup
x∈IRs

|P (x)|, ∀P ∈ P(IRs) .

For these spaces we have the following chain of continuous embed-

dings and inequalities, where q1, q2 > 1 and q1 < q2 < +∞:

(2.3)
C0

ap(IR
s) = B∞

ap(IR
s) ⊂ Bq2

ap(IR
s) ⊂ Bq1

ap(IR
s) ⊂ B1

ap(IR
s) ,

‖f‖∞ ≥ ‖f‖q2 ≥ ‖f‖q1 ≥ ‖f‖1 .

For any f ∈ Bq
ap(IR

s) the map

λ → a(λ; f) := lim
T→∞

1

|QT |

∫

QT

f(x)e−iλ·x dx

will be called the Bohr-transform of f .

We will call the subset of IRs, σ(f), defined by

(2.4) σ(f) := {λ ∈ IRs|a(λ; f) -= 0}

the spectrum of the function f ∈ Bq
ap(IR

s). The members of σ(f) will be

called the Fourier exponents of f .

For any f ∈ Bq
ap(IR

s) one has:

(2.5) lim
|λ|→+∞

a(λ; f) = 0 ;

(2.6) σ(f) is at most countable ;

(2.7) σ(f) = ∅ ⇔ a(λ; f) = 0 ∀λ ∈ IRs ⇔ f = 0 ∈ B1
ap(IR

s) .
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Let us recall Hausdorff-Young theorem for Bq
ap spaces, which will be used

later (for a proof, see [3], [4], [7]).

Theorem 2.1 (Hausdorff-Young). If f ∈ Bq
ap(IR

s) then

(2.8)
( ∑

λ∈σ(f)

|a(λ; f)|q′)1/q′

≤ ‖f‖q if q ∈]1, 2]

and

(2.9) ‖f‖q ≤
( ∑

λ∈σ(f)

|a(λ; f)|q′)1/q′

if q ∈ [2,+∞[ .

Here q′ = q
q−1

, and the series in (2.9) need not converge.

In the subsequent sections we will use the following inequalities as

well:

A)
∑ν

i=1 ar
i ≤

( ∑ν
i=1 ai

)r

≤ 2(ν−1)(r−1)
( ∑ν

i=1 ar
i

)
∀ r ≥ 1, ai ≥ 0.

B) For any multi-index α = (α1, . . . , αs) ∈ INs
0 set |α| := α1+. . .+αs;

moreover, set x
αj
j = 1 if xj = αj = 0 and (x)α := xα1

1 . . . xαs
s for any

x ∈ IRs. Then ∃ p0, p1 ∈ IR+ s.t. ∀λ ∈ IRs, ν ∈ IN0

p0|λ|2ν ≤
∑

|α|=ν

|(λ)α|2 ≤ p1|λ|2ν .

Definition 2.1. (i) For any q ∈ [1,+∞], k ∈ IN0 and P ∈ P(IRs)

we set

(2.10)

‖P‖Wk,q : =
( ∑

|α|≤k

‖∂αP‖q
q

)1/q

,

‖P‖Wk,∞ : =
∑

|α|≤k

‖∂αP‖∞ .

Here ∂α = ∂α1
1 . . . ∂αs

s and ∂j = ∂
∂xj

. Equations (2.10) define norms on

P(IRs) and we have ‖P‖W0,q = ‖P‖q.

(ii) For any q ∈ [1,+∞] we shall denote by W k,q
ap (IRs) the completion

of P(IRs) with respect to the norm ‖ · ‖Wk,q . These spaces are called

Sobolev-Besicovitch spaces of order k and type Bq.

We define a norm in the space W k,q
ap (IRs) in the following way:

(2.11) ‖f‖Wk,q :=
( ∑

|α|≤k

‖∂αf‖q
q

)1/q

.
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One can easily prove that the norm (2.11) is equivalent to

(2.12)
∑

|α|≤k

‖∂αf‖q .

In what follows, we shall use both norms (2.11) and (2.12).

Clearly, W k,q
ap (IRs) ⊆ Bq

ap(IR
s) ∀ k ≥ 0, ∀ q ≥ 1.

According to definition (ii), an element f of W k,q
ap (IRs) is defined

by a sequence (Pn)n∈IN of trigonometric polynomials converging to f in

Bq
ap(IR

s), such that (∂αPn)n∈IN is a Cauchy sequence in Bq
ap(IR

s) for any

multi-index α with |α| ≤ k. Since the space Bq
ap(IR

s) is complete, we can

define an element fα in Bq
ap(IR

s) by

(2.13) fα := lim
n

∂αPn ,

and we call fα the strong α-derivative of f and write

∂αf := fα .

Observe that for any ϕ ∈ C∞
ap(IR

s) an integration by parts gives

lim
T→∞

1

|QT |

∫

QT

(∂αPn(x))ϕ(x)dx=(−1)|α| lim
T→∞

1

|QT |

∫

QT

Pn(x)∂αϕ(x)dx ,

since an u.a.p. function is bounded on IRs, so that the asymptotic means

on the boundary vanish.

To each function f ∈ Bq
ap(IR

s) we associate formally the Bohr-Fourier

series

(2.14) f ∼
∑

λ∈σ(f)

a(λ; f)eiλ·x .

Let us show the relationship between the Bohr-Fourier series of f and

fα. Let f ∈ W k,q
ap (IRs), Pn → f in Bq

ap and |α| ≤ k. For any λ ∈ IRs we

can write

a(λ; fα) = lim
n

a(λ; ∂αPn) = lim
n

lim
T→+∞

1

|QT |

∫

QT

(∂αPn(x)e−iλ·x)dx =

= lim
n

lim
T→∞

(−1)|α|(λ)α 1

|QT |

∫

QT

Pn(x)∂αϕ(x)dx = i|α|(λ)αa(λ; f) .
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It follows that fα has the same Fourier exponents as f , expect λ = 0

if 0 is in the spectrum of f . Moreover the Fourier coefficients of f and fα

are related by

(2.15) a(λ, fα) = i|α|(λ)αa(λ; f), ∀λ ∈ σ(f) .

Therefore, we have

(2.16) fα(x) ∼
∑

λ∈σ(f)

i|α|a(λ; f)eiλ·x .

Observe that, when fα represents the ordinary derivative of f , the

Bohr-Fourier series of fα coincides with the right-hand side of (2.16).

3 – Embedding theorems

Suppose Λ ⊆ IRs \{0}, cardΛ = cardIN and that Λ has only one limit

point, the point at infinity. Let us restrict ourselves to the case where

the elements of Λ can be ordered with respect to the absolute value, that

is to say

Λ = {λ1, λ2, . . . , λj, . . . } with |λ1| ≤ |λ2| ≤ . . . ≤ |λj| ≤ . . . .

Finally, let us suppose that there exists β ≥ 0 such that

(3.1)
∑

λ∈Λ

1

|λ|γ < +∞ ∀ γ > β .

Let us set

Bq
ap(Λ) := {f ∈ Bq

ap(IR
s) : σ(f) ⊆ Λ} .

We define analogously W k,q
ap (Λ), C0

ap(Λ) and C0,µ
ap (Λ), where C0,µ

ap (IRs) is

the space of the u.a.p. functions that are holderian with exponent µ,

equipped with the usual norm.

Theorem 3.1. Let Λ satisfy the above conditions and let q ∈ [1, 2].

the following statements hold.
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i) If kq > β then

W k,q
ap (Λ) ↪→ C0

ap(Λ) .

Moreover, if kq > β ≥ (k − 1)q then

W k,q
ap (Λ) ↪→ C0,µ

ap (Λ) ∀µ ∈
[
0, k − β

q

[
.

ii) If kq = β then

W k,q
ap (Λ) ↪→ Br

ap(Λ) ∀ r ≥ 1 .

iii) If kq < β < 2kq
2−q

then

W k,q
ap (Λ) ↪→ Br

ap(Λ) ∀ r ∈
[
1,

βq

β − kq

[
.

Proof. We will prove the theorem only in the case q = 1.

Recall that σ(f) ⊆ Λ means also that we consider functions with

vanishing asymptotic mean.

i) Let us consider the Bohr-Fourier series (2.14) and (2.16) of f and

fα, for any multi-index α such that |α| ≤ k. Observe that

(3.2)

|a(λ; f)||(λ)α| = lim
T→+∞

1

|QT |
∣∣∣
∫

QT

fα(x)e−iλ·xdx
∣∣∣ ≤

≤ lim
T→+∞

1

|QT |

∫

QT

|fα|dx = ‖fα‖1 .

By (3.2) and inequality (B), we get

n+p∑

j=n+1

|a(λj; f)| =
n+p∑

j=n+1

|a(λj; f)||λj|k · 1

|λj|k ≤

≤ 1

p
1/2
0

n+p∑

j=n+1

∣∣a(λj; f)
∣∣ ∑

|α|=k

∣∣(λj)α| 1

|λj|k ≤

≤ 1

p
1/2
o

∑

|α|=k

‖fα‖1

n+p∑

j=n+1

1

|λj|k .
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Since k > β and (3.1) holds with γ = k, we obtain

‖f‖∞ ≤
∞∑

j=1

|a(λ; f)| ≤ C1‖f‖Wk,1

for some C1 ≥ 0 independent of f . Thus the Bohr-Fourier series of

f is absolutely convergent and hence, as is well known, unconditionally

uniformly convergent to an u.a.p. function f∗ such that ‖f −f∗‖Wk,1 = 0.

Therefore f ∈ C0
ap(IR

s).

Recall that the usual norm of the space C0,µ
ap (IRs) is given by

‖f‖Co,µ = ‖f‖∞ + [f ]µ ,

where

[f ]µ = sup
x+=y

|f(x) − f(y)|
|x − y|µ

and that the following inequality holds (see for example [3])

(3.3) [f ]µ ≤
∞∑

j=1

∣∣a(λj; f)
∣∣[eiλj(·)]µ ≤ 21−µ

∞∑

j=1

|a(λj; f)
∣∣|λj|µ .

If µ satisfies 0 < µ < k − β, using (B) and (3.2) yields

n+p∑

j=n+1

∣∣a(λj; f)
∣∣|λj|µ =

n+p∑

j=n+1

∣∣a(λj; f)
∣∣|λj|k · 1

|λj|k−µ
≤

≤ 1

p
1/2
0

n+p∑

j=n+1

∣∣a(λj; f)
∣∣ ∑

|α|=k

∣∣(λj)α
∣∣ 1

|λj|k−µ
≤

≤ 1

p
1/2
0

∑

|α|=k

‖fα‖1

n+p∑

j=n+1

1

|λj|k−µ
≤ C2‖f‖Wk,1 ,

for some C2 > 0 independent of f .
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As µ ∈]0, m − β[⊂]0, 1[, (3.3) gives

[f ]µ ≤
∞∑

j=1

∣∣a(λj; f)
∣∣[eiλj(·)]µ ≤

∞∑

j=1

21−µ
∣∣a(λj; f)

∣∣|λj|µ ≤ C3‖f‖Wk,1 ,

for some C3 > 0 independent of f .

Therefore,

‖f‖C0,µ = ‖f‖∞ + [f ]µ ≤ C4‖f‖Wk,1 ,

with C4 = C2 + C3.

ii) Let us choose r such that r > 2, and let r′ = r
r−1

. Using inequali-

ties (A), (B) and (3.2) we get

n+p∑

j=n+1

∣∣a(λj; f)
∣∣r′
=

n+p∑

j=n+1

∣∣a(λj; f)
∣∣r′( ∑

|α|=k

∣∣(λj)α
∣∣
)r′( ∑

|α|=k

∣∣(λj)α
∣∣
)−r′

=

=
n+p∑

j=n+1

( ∑

|α|=k

|a(λj; f)|
∣∣(λj)α

∣∣
)r′( ∑

|α|=k

∣∣(λj)α
∣∣
)−r′

≤
(3.4)

≤
n+p∑

j=n+1

( ∑

|α|=k

‖fα‖1

)r′( ∑

|α|=k

∣∣(λj)α
∣∣
)−r′

≤

≤ C5

∑

|α|=k

‖fα‖r′
1

( n+p∑

j=n+1

1

|λ|kr′

)
,

for some C5 > 0 independent of f .

Since kr′ = β r
r−1

> β, we can apply (3.1) with γ = kr′. Inequality

(3.4) and Hausdorff-Young theorem then give

‖f‖r ≤
( ∞∑

j=1

∣∣a(λj; f)
∣∣r′)1/r′

≤ C‖f‖Wk,1

for any r > 2 and for some C > 0 independent of f .

Now, the thesis follows from (2.3).

iii) Let r > 2 and r′ = r
r−1

as before. Since k < β < 2k, it follows

that [
2,

β

β − k

[
-= ∅ .
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As kr′ > β ⇔ r < β
β−k

, by (3.1), (3.4) and Hausdorff-Young theorem

we get

‖f‖r ≤
( ∞∑

j=1

∣∣a(λj; f)
∣∣r′)1/r′

≤ M‖f‖Wk,1

for some M > 0 independent of f . Since (2.3) holds, the proof for the

case q = 1 is complete.

The same technique works also when 1 < q ≤ 2. However, this result

has already been proved in [9] in a wider context, as a consequence of

embedding theorems for the spaces Hk,q
ap (IRs).

Remark 3.1. While proving the first part of Theorem 3.1, we have

proved something more, i.e. that if kq > β then

∞∑

j=1

∣∣a(λj; f)
∣∣ < +∞ .

This is a generalization of a result given by Stein and Weiss [12, p.249],

in the case q = 2, in the context of periodic functions of class Ck.

The condition kq > β is sharp for the absolute convergence of a

Fourier series. Indeed, if the dimension s is even, the series

∑

|j|>1

|j|−s(log |j|)−1eic|j| log(|j|)ae2πij·x

with c -= 0 and 0 < a < 2
s
, is the Fourier series of a function of class

Cs/2, but is not absolutely convergent (see [12, p.282]).

Theorem 3.1 generalized also the classical result given in [13, p.242]

for the periodic case with s = 1.

Under the same assumption for Λ as in Theorem 3.1, we have the

following

Corollary 3.1. If q ∈ [1, 2] and k > βq then, for any n ∈ IN

W k+n,q
ap (Λ) ⊂ Cn

ap(Λ) .

Proof. For any α ∈ INs
0 with |α| ≤ n , fα belongs to W k,q

ap (Λ), with

k > βq. Hence, we have that f ∈ Cn
ap(Λ) by Theorem 3.1.
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Remark 3.2. Under the hypothesis of Corollary 3.1, the Bohr-

Fourier series of fα is absolutely convergent, and therefore unconditionally

uniformly convergent, for any α such that |α| ≤ n.
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