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A complete 24-arc in PG(2,29) with the

automorphism group PSL(2,7)

J. M. CHAO – H. KANETA

Riassunto: Si dimostra che esiste un 24-arco completo in PG(2, 29) che ammette
PSL(2, 7) come gruppo di automorfismi.

Abstract: There exists a complete 24-arc in PG(2, 29) with the projective auto-
morphim group isomorphic to PSL(2.7).

1 – Introduction

Let Fq be the finite field of q elements, and let PG(r, q) be the r-

dimensional projective space over Fq . An n-arc K in PG(r, q) is a

n-point set (n ≥ r + 1) such that any r + 1 points of K are in gen-

eral position, namely no hyperplane contains them. A (q + 1)-point

set {(1, t, t2, . . . , tr); t ∈ Fq ∪ {∞}}, where t = ∞ defines the point

(0, 0, . . . , 1), in PG(r, q) is an arc, provided r ≤ q − 2. An arc pro-

jectively equivalent to the (q + 1)-arc is called a normal rational curve.

An arc contained in a normal rational curve is called classical, while an

arc not contained in any normal rational curve is called non-classical. Let

C be an [n , r+1] MDS code over Fq. The automorphism group Aut(C) of

C is the factor group {A = [σ]D such that CA = C}/{aEn; a ∈ Fq\{0}}.
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Here [σ] is a permutation matrix of degree n such that [x1, . . . , xn][σ] =

[xσ(1), . . . , xσ(n)], and D is a non- singular diagonal matrix with Fq en-

tries. Let G = [gij] be a generator matrix of C, namely r + 1 rows of G

form a basis of C. Then K = {Pj = (g1,j, . . . , gr+1,j)
T ; 1 ≤ j ≤ n} is an

n-arc, and Aut(C) is isomorphic to the automorphism group Aut(K) of

K, the set of projectivities of PG(r, q) leaving K invariant. Conversely

an n-arc in PG(r, q) gives rise to an [n, r + 1] MDS code. We refer [11]

and [10] for detailed information on arcs.

Let m(r, q) be the maximum size of arcs in PG(r, q) . Clearly m(r, q)

= r + 1 if r > q − 2. To be specific we assume that q is odd and q ≥ 7.

As is well known, m(2, q) = q + 1 and a (q + 1)-arc as well as a q-arc in

PG(2, q) is classical. Besides there exists a non-classical arc in PG(2, q).

Let m′(2, q) be the maximum size of non-classical arcs in PG(2, q). So

far m′(2, q) is known up to q ≤ 29:

q 7 9 11 13 17 19 23 25 27 29

m′(2, q) 6 8 10 12 14 14 17 21 22 24

Furthermore non-classical m′(2, q)-arcs are projectively equivalent for q =

9, 11, 13, 17, 25 and 27. It remains open whether non-classical m′(2, 29)-

arcs in PG(2, 29) are unique. (For q ≤ 9 see [9]. For q = 11 see [13].

For q = 13 see [1],[8] and [14]. For q = 17 and 19 see [4] and [14].

For 23 ≤ q ≤ 29 see [6]). When 3 ≤ r ≤ q − 3, there exists a non-

classical arc in PG(r, q) if and only if r ≤ m′(2, q)−4. Let m′(r, q) be the

maximum size of non-classical arcs in PG(r, q) for 3 ≤ r ≤ m′(2, q) − 4

(note that m′(2, q) − 4 ≤ q − 5). We remark that m′(r, q) ≤ q if and

only if m(r, q) = q + 1 and every (q + 1)-arc in PG(r, q) is classical,

where 3 ≤ r ≤ m′(2, q) − 4. The only known case where m′(r, q) > q is

m′(4, 9) = 10.

In this note we shall show that there exists a complete 24-arc in

PG(2, 29) with the automorphism group isomorphic to PSL(2, 7). This

example suggests that m′(2, q)-arcs in PG(2, q) or more generally, m′(r, q)

-arcs in PG(r, q) are worth studying.
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2 – A complete 24-arc in PG(2, 29)

Throughout this section ζ = 3 stands for the primitive element of

F29, ξ = 5 for the primitive element of F7. A point in PG(r, q) with the

homogeneous coordinates [x0, . . . , xr]
T will be denoted by (x0, . . . , xr)

T .

For example e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T are three

points of PG(2, q). A projectivity defined by a non-singular matrix [aij]

with Fq entries will be denoted by (aij).

Lemma 2.1. Let U, V and W be projectivities of PG(2, 29) such that

U =




ζ0 0 0

0 ζ4 0

0 0 ζ12


 , V =




ζ19 ζ0 ζ20

ζ0 ζ20 ζ19

ζ20 ζ19 ζ0


 , W =




0 0 1

1 0 0

0 1 0


 .

Then

(1) U 7 = id, V 2 = id and W 3 = id.

(2) WV = V W 2.

(3) UW = WU 2.

(4) U 1/aV UaW logξa = V U−aV for a = ξk ∈ F7\{0} with logξa = k.

Proof. Multiplication of matrices yields (1) to (3). According as

k ranges from 0 to 5, the equality (4) takes the form UV U = V U−1V ,

U 3V U 5W = V U 2V , U 2V U 4W 2 = V U 3V , U−1V U−1 = V UV , U 4V U 2W

= V U 5V and U 5V U 3W 2 = V U 4V . These equalities can be verified by

matrix multiplication.

Theorem 2.2. There exists uniquely a group homomorphism ϕ

from PSL(2, 7) into PGL(3, 29) sending u, v and w to U, V and W re-

spectively, where

u =

(
1 1

0 1

)
, v =

(
0 −1

1 0

)
and w =

(
ξ 0

0 ξ−1

)
∈ PSL(2, 7) .

In fact ϕ is an isomorphism of PSL(2, 7) into PGL(3, 29).
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Proof. Let g =

(
a b

c d

)
∈ PSL(2, 7) with det

[
a b

c d

]
= 1. Since

g =

(
1 a/c

0 1

) (
0 −1

1 0

) (
1 cd

0 1

) (
c 0

0 c−1

)
if c '= 0 ,

we define ϕ(g) to be Ua/cV U cdW logξc when c '= 0. Since

g=

(
1 b/d

0 1

) (
0 −1

1 0

) (
1 −cd

0 1

) (
0 −1

1 0

) (
d−1 0

0 d

)
if d '=0 ,

we define ϕ(g) to be U b/dVU−cdVW −logξd when d '=0. In order to see that

ϕ is well defined we shall show that Ua/cVU cdW logξc=U b/dV U−cdVW −logξd

when cd '= 0. This equality is equivalent to U 1/cdV U cdW logξcd = V U−cdV ,

which is nothing but Lemma 2.1(4). We shall show that ϕ is a homo-

morphism. Suppose c '= 0. By Lemma 2.1(3) we get ϕ(gu)=ϕ(g)U . By

Lemma 2.1(1) we get ϕ(gv)=ϕ(g)V . The equality ϕ(gw) = ϕ(g)W is

trivial. Similarly equalities ϕ(gu) = ϕ(g)U , ϕ(gv) = ϕ(g)V and ϕ(gw) =

ϕ(g)W hold even when c = 0 and d '= 0. Since any h ∈ PSL(2, 7) is

product of u, v and w, ϕ is a homomorphism. It remains to show that

ϕ is injective. Assume that ϕ(g) = id. If c '= 0, no homogeneous coordi-

nates of ϕ(g)e1 vanish, hence ϕ(g) '= id, a contradiction. We may further

assume that c = 0 and ϕ(g) = U b/dW −logξd. Applying ϕ(g) to a point

(1, 1, 1)T , we see that b = 0 and d = ξ3k, namely g = id ∈ PSL(2, 7).

Lemma 2.3. Let

K0 = {e1, e2, e3}, Ki = {U jV ei; 0 ≤ j ≤ 6} (i = 1, 2, 3) .

Then K = K0 ∪ K1 ∪ K2 ∪ K3 is a PSL(2, 7)-invariant complete 24-arc

in PG(2, 29).

Proof. K0 ∪ {V ei} is a 4-arc. Since U fixes each ei and U '= id,

U does not fix V ei. Thus |Ki| = 7, for the order of U is equal to 7.

Ki∩Kj = ∅ if 1 ≤ i < j ≤ 3. Otherwise the intersection is a proper subset

of Ki invariant under the cyclic group 〈U〉. Similarly K0 ∩Ki = ∅ for 1 ≤
i ≤ 3. Therefore K is a 24-point set. Put L = {ϕ(g)e1; g ∈ PSL(2, 7)}.
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See the proof of Lemma 2.2 for the definition of the isomorphism ϕ.

Clearly L contains K. We shall show that G = {g ∈ PSL(2, 7); ϕ(g)e1 =

e1} consists of 7 points to the effect that L = K ( recall that |PSL(2, 7)| =

168). Assume g ∈ G takes the form

(
a b

c d

)
with ad − bc = 1. Since

c '= 0 implies that none of the coordinates of ϕ(g)e1 vanishes, we have

c = 0. Now ϕ(g) = U b/dW −logξd. Hence W −logξde1 = e1, which yields d is

equal to either 1 or ξ3. Consequently g =

(
1 b

0 1

)
. This g belongs to G.

We will show that K is an arc. To this end we shall show that any three

points P1, P2 and P3 of K cannot be collinear. Put P = {P1, P2, P3}. We

begin with the case P ⊂ K0. The three point cannot be collinear. W −1

acts as a cyclic permutation on {K1, K2, K3}, for W −1U jV = U 2jV W by

Lemma 2.1 (1) and (2). Secondly we assume that {P1, P2} ⊂ K0 with

P3 ∈ K1. Since none of the homogeneous coordinates of P3 vanishes, P3

cannot lie on the line joining P1 and P2. Next we assume that P1 ∈ K0

with {P2, P3} ⊂ K\K0. In the case {P2, P3} ⊂ Ki for some 1 ≤ i ≤ 3 we

may assume that i = 1, P2 = V e1 and P3 = U jV e1 in view of W and U .

The line through P2 and P3 takes the form

X(ζ10+12j − ζ10+4j) − Y (ζ1+12j − ζ1) + Z(ζ9+4j − ζ9) = 0 .

The line does not meet K0, because none of the following three equations

has a solution 0 < j < 7 : 12j ≡ 4j (mod 28), 12j ≡ 0 (mod 28) and

4j ≡ 0 (mod 28). In the case P2 ∈ Ki and P3 ∈ Kk for some 1 ≤ i < k ≤ 3

we may assume that i = 1, k = 2, P2 = U jV e1 and P3 = V e2. The line

joining P2 and P3 takes the form

X(ζ4j − ζ21+12j) − Y (ζ19 − ζ1+12j) + Z(ζ20 − ζ9+4j) = 0 .

Again the line does not meet K0, because none of the following three

equations has a solution 0 ≤ j < 7 : −8j ≡ 21 (mod 28), 12j ≡ 8

(mod 28) and 4j ≡ 1 (mod 28). Finally assume that P ⊂ K\K0. In

view of U we may assume that P1 = V ei for some i. Then V P contains

ei ∈ K0. Since V P cannot be collinear, P neither. To complete the proof

we shall show that K is complete. Suppose K ∪ {P} is a 25-arc. Then

K4 = {U jP ; 0 ≤ j < 7} is a 7-point set (recall that the order of U is

equal to 7). We recall a theorem due to T. Szonyi and J.A. Thas [16]; if
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q is odd and n > (2q + 3)/3, then an n-arc in PG(2, q) is contained in

a unique complete arc. This theorem asserts that K ∪ K4 is a 31-arc in

PG(2, 29). This contradicts the fact that m(2, q) = q + 1 for q ≥ 3.

Lemma 2.4. Consider a subset L = {ζ4j; 0 ≤ j < 7} of PG(1, 29).

The automorphism group Aut(L), namely the set of fractional linear

transformations of F29 ∪ {∞} leaving L invariant, contains exactly 14

elements; ζ4jt and ζ4j/t.

Proof. By the aid of a computer we verify that among 7 · 6 · 5

fractional linear transformations mapping (1, ζ4, ζ8) to (ζ4i, ζ4j, ζ4k) only

14 transformations leave L invariant.

Remark 2.5. Let ρ be a primitive element of F25 such that ρ2 =

3ρ+2 (see Table A of [12]). The the subset {ρ4j; 0 ≤ j < 6} of PG(1, 25)

turns out to be equivalent to F5 ∪ {∞}. Hence the automorphism group

of the subset consists of 6 · 5 · 4 elements.

Theorem 2.6. The automorphism group Aut(K) of the arc K in

Lemma 2.3 is isomorphic to PSL(2, 7).

Proof. A line & satisfying &∩K = {e3} takes the form Xζ4j +Y = 0

(0 ≤ j < 7). Let L be the set of these seven lines, and let G = {A ∈
Aut(K); Ae3 = e3}. Clearly G fixes L. Since Aut(K) acts transitively

on the arc K, it suffices to show that the stabilizer G consists of seven

elements. Note that G contains the cyclic group 〈U〉. We shall show that

G = 〈U〉. Let A = (aij) (1 ≤ i, j ≤ 3) is an element of G. Recall that A

maps a line Xα+Y β+Zγ = 0 to Xα′+Y β′+Zγ′ = 0, where (α′, β′, γ′) =

(α, β, γ)A. Since Ae3 = e3, we have a13 = a23 = 0. Hence A maps a line

Xt+Y = 0 to a line Xt′+Y = 0 with t′ = f(t) = (a11t+a21)/(a12t+a22).

In particular 〈U〉 acts transitively on L. Multiplying some B ∈ 〈U〉 to

A , we may assume that f(1) = 1. In addition the fractional linear

transformation f(t) is equal to either ζ4jt or ζ4j/t by Lemma 2.4. Since

f(1) = 1, j = 0. In the first case we get a12 = a21 = 0 and a11 = a22. The

condition AK = K now implies that A = id. The second case cannot

happen. Assume the contrary. Then a11 = a22 = 0 and a12 = a21. Now

Ae1 and Ae2 must be equal to e2 and e1 respectively. Thus a31 = a32 = 0.

Consequently A must fix (1, 1, ζ15)T ∈ K2. Hence a12 = a33, and A is

now completely determined. However we can easily see that AK '= K.
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Remark 2.7. The 24-arc K in PG(2, 29) lies on the sextic curve

X5Y + Y 5Z + Z5X + ζ24X2Y 2Z2 = 0.
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