Rendiconti di Matematica, Serie VII Volume 16, Roma (1996), 537-544

A complete 24-arc in PG(2,29) with the automorphism group PSL(2,7)

J. M. CHAO – H. KANETA

RIASSUNTO: Si dimostra che esiste un 24-arco completo in PG(2, 29) che ammette PSL(2,7) come gruppo di automorfismi.

ABSTRACT: There exists a complete 24-arc in PG(2, 29) with the projective automorphim group isomorphic to PSL(2.7).

1 – Introduction

Let F_q be the finite field of q elements, and let PG(r,q) be the rdimensional projective space over F_q . An n-arc K in PG(r,q) is a n-point set $(n \ge r+1)$ such that any r+1 points of K are in general position, namely no hyperplane contains them. A (q+1)-point set $\{(1,t,t^2,\ldots,t^r); t \in F_q \cup \{\infty\}\}$, where $t = \infty$ defines the point $(0,0,\ldots,1)$, in PG(r,q) is an arc, provided $r \le q-2$. An arc projectively equivalent to the (q+1)-arc is called a normal rational curve. An arc contained in a normal rational curve is called classical, while an arc not contained in any normal rational curve is called non-classical. Let C be an [n, r+1] MDS code over F_q . The automorphism group Aut(C) of C is the factor group $\{A = [\sigma]D$ such that $CA = C\}/\{aE_n; a \in F_q \setminus \{0\}\}$.

Key Words and Phrases: Arcs - MDS codes

A.M.S. Classification: 11T71 – 94B27

Here $[\sigma]$ is a permutation matrix of degree n such that $[x_1, \ldots, x_n][\sigma] = [x_{\sigma(1)}, \ldots, x_{\sigma(n)}]$, and D is a non-singular diagonal matrix with F_q entries. Let $G = [g_{ij}]$ be a generator matrix of C, namely r + 1 rows of G form a basis of C. Then $K = \{P_j = (g_{1,j}, \ldots, g_{r+1,j})^T; 1 \leq j \leq n\}$ is an n-arc, and Aut(C) is isomorphic to the automorphism group Aut(K) of K, the set of projectivities of PG(r,q) leaving K invariant. Conversely an n-arc in PG(r,q) gives rise to an [n, r + 1] MDS code. We refer [11] and [10] for detailed information on arcs.

Let m(r,q) be the maximum size of arcs in PG(r,q). Clearly m(r,q) = r + 1 if r > q - 2. To be specific we assume that q is odd and $q \ge 7$. As is well known, m(2,q) = q + 1 and a (q + 1)-arc as well as a q-arc in PG(2,q) is classical. Besides there exists a non-classical arc in PG(2,q). Let m'(2,q) be the maximum size of non-classical arcs in PG(2,q). So far m'(2,q) is known up to $q \le 29$:

q	7	9	11	13	17	19	23	25	27	29
m'(2,q)	6	8	10	12	14	14	17	21	22	24

Furthermore non-classical m'(2,q)-arcs are projectively equivalent for q = 9, 11, 13, 17, 25 and 27. It remains open whether non-classical m'(2, 29)-arcs in PG(2, 29) are unique. (For $q \leq 9$ see [9]. For q = 11 see [13]. For q = 13 see [1],[8] and [14]. For q = 17 and 19 see [4] and [14]. For $23 \leq q \leq 29$ see [6]). When $3 \leq r \leq q - 3$, there exists a non-classical arc in PG(r,q) if and only if $r \leq m'(2,q) - 4$. Let m'(r,q) be the maximum size of non-classical arcs in PG(r,q) for $3 \leq r \leq m'(2,q) - 4$ (note that $m'(2,q) - 4 \leq q - 5$). We remark that $m'(r,q) \leq q$ if and only if m(r,q) = q + 1 and every (q + 1)-arc in PG(r,q) is classical, where $3 \leq r \leq m'(2,q) - 4$. The only known case where m'(r,q) > q is m'(4,9) = 10.

In this note we shall show that there exists a complete 24-arc in PG(2, 29) with the automorphism group isomorphic to PSL(2, 7). This example suggests that m'(2, q)-arcs in PG(2, q) or more generally, m'(r, q)-arcs in PG(r, q) are worth studying.

2-A complete 24-arc in PG(2,29)

Throughout this section $\zeta = 3$ stands for the primitive element of F_{29} , $\xi = 5$ for the primitive element of F_7 . A point in PG(r,q) with the homogeneous coordinates $[x_0, \ldots, x_r]^T$ will be denoted by $(x_0, \ldots, x_r)^T$. For example $e_1 = (1, 0, 0)^T$, $e_2 = (0, 1, 0)^T$ and $e_3 = (0, 0, 1)^T$ are three points of PG(2,q). A projectivity defined by a non-singular matrix $[a_{ij}]$ with F_q entries will be denoted by (a_{ij}) .

LEMMA 2.1. Let U, V and W be projectivities of PG(2, 29) such that

$$U = \begin{pmatrix} \zeta^0 & 0 & 0 \\ 0 & \zeta^4 & 0 \\ 0 & 0 & \zeta^{12} \end{pmatrix}, \quad V = \begin{pmatrix} \zeta^{19} & \zeta^0 & \zeta^{20} \\ \zeta^0 & \zeta^{20} & \zeta^{19} \\ \zeta^{20} & \zeta^{19} & \zeta^0 \end{pmatrix}, \quad W = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Then

- (1) $U^7 = id$, $V^2 = id$ and $W^3 = id$.
- (2) $WV = VW^2$.

(3)
$$UW = WU^2$$

(4)
$$U^{1/a}VU^aW^{\log_{\xi}a} = VU^{-a}V$$
 for $a = \xi^k \in F_7 \setminus \{0\}$ with $\log_{\xi}a = k$.

PROOF. Multiplication of matrices yields (1) to (3). According as k ranges from 0 to 5, the equality (4) takes the form $UVU = VU^{-1}V$, $U^3VU^5W = VU^2V$, $U^2VU^4W^2 = VU^3V$, $U^{-1}VU^{-1} = VUV$, $U^4VU^2W = VU^5V$ and $U^5VU^3W^2 = VU^4V$. These equalities can be verified by matrix multiplication.

THEOREM 2.2. There exists uniquely a group homomorphism φ from PSL(2,7) into PGL(3,29) sending u, v and w to U, V and W respectively, where

$$u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad v = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad and \quad w = \begin{pmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{pmatrix} \in PSL(2,7).$$

In fact φ is an isomorphism of PSL(2,7) into PGL(3,29).

PROOF. Let
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2,7)$$
 with $det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 1$. Since
 $g = \begin{pmatrix} 1 & a/c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & cd \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix}$ if $c \neq 0$,

we define $\varphi(g)$ to be $U^{a/c}VU^{cd}W^{\log_{\xi} c}$ when $c \neq 0$. Since

$$g = \begin{pmatrix} 1 & b/d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -cd \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} d^{-1} & 0 \\ 0 & d \end{pmatrix} \text{ if } d \neq 0,$$

we define $\varphi(g)$ to be $U^{b/d}VU^{-cd}VW^{-\log_{\xi}d}$ when $d \neq 0$. In order to see that φ is well defined we shall show that $U^{a/c}VU^{cd}W^{\log_{\xi}c} = U^{b/d}VU^{-cd}VW^{-\log_{\xi}d}$ when $cd \neq 0$. This equality is equivalent to $U^{1/cd}VU^{cd}W^{\log_{\xi}cd} = VU^{-cd}V$, which is nothing but Lemma 2.1(4). We shall show that φ is a homomorphism. Suppose $c \neq 0$. By Lemma 2.1(3) we get $\varphi(gu) = \varphi(g)U$. By Lemma 2.1(1) we get $\varphi(gv) = \varphi(g)V$. The equality $\varphi(gw) = \varphi(g)W$ is trivial. Similarly equalities $\varphi(gu) = \varphi(g)U, \varphi(gv) = \varphi(g)V$ and $\varphi(gw) = \varphi(g)W$ hold even when c = 0 and $d \neq 0$. Since any $h \in PSL(2,7)$ is product of u, v and w, φ is a homomorphism. It remains to show that φ is injective. Assume that $\varphi(g) = id$. If $c \neq 0$, no homogeneous coordinates of $\varphi(g)e_1$ vanish, hence $\varphi(g) \neq id$, a contradiction. We may further assume that c = 0 and $d = \xi^{3k}$, namely $g = id \in PSL(2,7)$.

LEMMA 2.3. Let

$$K_0 = \{e_1, e_2, e_3\}, \quad K_i = \{U^j V e_i; 0 \le j \le 6\} \qquad (i = 1, 2, 3).$$

Then $K = K_0 \cup K_1 \cup K_2 \cup K_3$ is a PSL(2,7)-invariant complete 24-arc in PG(2,29).

PROOF. $K_0 \cup \{Ve_i\}$ is a 4-arc. Since U fixes each e_i and $U \neq id$, U does not fix Ve_i . Thus $|K_i| = 7$, for the order of U is equal to 7. $K_i \cap K_j = \emptyset$ if $1 \leq i < j \leq 3$. Otherwise the intersection is a proper subset of K_i invariant under the cyclic group $\langle U \rangle$. Similarly $K_0 \cap K_i = \emptyset$ for $1 \leq i \leq 3$. Therefore K is a 24-point set. Put $L = \{\varphi(g)e_1; g \in PSL(2,7)\}$.

See the proof of Lemma 2.2 for the definition of the isomorphism φ . Clearly L contains K. We shall show that $G = \{g \in PSL(2,7); \varphi(g)e_1 =$ e_1 consists of 7 points to the effect that L = K (recall that |PSL(2,7)| =168). Assume $g \in G$ takes the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with ad - bc = 1. Since $c \neq 0$ implies that none of the coordinates of $\varphi(g)e_1$ vanishes, we have c = 0. Now $\varphi(g) = U^{b/d} W^{-\log_{\xi} d}$. Hence $W^{-\log_{\xi} d} e_1 = e_1$, which yields d is equal to either 1 or ξ^3 . Consequently $g = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. This g belongs to G. We will show that K is an arc. To this end we shall show that any three points P_1 , P_2 and P_3 of K cannot be collinear. Put $\mathcal{P} = \{P_1, P_2, P_3\}$. We begin with the case $\mathcal{P} \subset K_0$. The three point cannot be collinear. W^{-1} acts as a cyclic permutation on $\{K_1, K_2, K_3\}$, for $W^{-1}U^jV = U^{2j}VW$ by Lemma 2.1 (1) and (2). Secondly we assume that $\{P_1, P_2\} \subset K_0$ with $P_3 \in K_1$. Since none of the homogeneous coordinates of P_3 vanishes, P_3 cannot lie on the line joining P_1 and P_2 . Next we assume that $P_1 \in K_0$ with $\{P_2, P_3\} \subset K \setminus K_0$. In the case $\{P_2, P_3\} \subset K_i$ for some $1 \leq i \leq 3$ we may assume that i = 1, $P_2 = Ve_1$ and $P_3 = U^j Ve_1$ in view of W and U. The line through P_2 and P_3 takes the form

$$X(\zeta^{10+12j} - \zeta^{10+4j}) - Y(\zeta^{1+12j} - \zeta^{1}) + Z(\zeta^{9+4j} - \zeta^{9}) = 0.$$

The line does not meet K_0 , because none of the following three equations has a solution 0 < j < 7: $12j \equiv 4j \pmod{28}$, $12j \equiv 0 \pmod{28}$ and $4j \equiv 0 \pmod{28}$. In the case $P_2 \in K_i$ and $P_3 \in K_k$ for some $1 \le i < k \le 3$ we may assume that i = 1, k = 2, $P_2 = U^j Ve_1$ and $P_3 = Ve_2$. The line joining P_2 and P_3 takes the form

$$X(\zeta^{4j} - \zeta^{21+12j}) - Y(\zeta^{19} - \zeta^{1+12j}) + Z(\zeta^{20} - \zeta^{9+4j}) = 0$$

Again the line does not meet K_0 , because none of the following three equations has a solution $0 \leq j < 7 : -8j \equiv 21 \pmod{28}$, $12j \equiv 8 \pmod{28}$ and $4j \equiv 1 \pmod{28}$. Finally assume that $\mathcal{P} \subset K \setminus K_0$. In view of U we may assume that $P_1 = Ve_i$ for some i. Then $V\mathcal{P}$ contains $e_i \in K_0$. Since $V\mathcal{P}$ cannot be collinear, \mathcal{P} neither. To complete the proof we shall show that K is complete. Suppose $K \cup \{P\}$ is a 25-arc. Then $K_4 = \{U^j P; 0 \leq j < 7\}$ is a 7-point set (recall that the order of U is equal to 7). We recall a theorem due to T. Szonyi and J.A. Thas [16]; if q is odd and n > (2q+3)/3, then an n-arc in PG(2,q) is contained in a unique complete arc. This theorem asserts that $K \cup K_4$ is a 31-arc in PG(2,29). This contradicts the fact that m(2,q) = q+1 for $q \ge 3$.

LEMMA 2.4. Consider a subset $L = \{\zeta^{4j}; 0 \leq j < 7\}$ of PG(1, 29). The automorphism group Aut(L), namely the set of fractional linear transformations of $F_{29} \cup \{\infty\}$ leaving L invariant, contains exactly 14 elements; $\zeta^{4j}t$ and ζ^{4j}/t .

PROOF. By the aid of a computer we verify that among $7 \cdot 6 \cdot 5$ fractional linear transformations mapping $(1, \zeta^4, \zeta^8)$ to $(\zeta^{4i}, \zeta^{4j}, \zeta^{4k})$ only 14 transformations leave L invariant.

REMARK 2.5. Let ρ be a primitive element of F_{25} such that $\rho^2 = 3\rho + 2$ (see Table A of [12]). The the subset $\{\rho^{4j}; 0 \le j < 6\}$ of PG(1, 25) turns out to be equivalent to $F_5 \cup \{\infty\}$. Hence the automorphism group of the subset consists of $6 \cdot 5 \cdot 4$ elements.

THEOREM 2.6. The automorphism group Aut(K) of the arc K in Lemma 2.3 is isomorphic to PSL(2,7).

PROOF. A line ℓ satisfying $\ell \cap K = \{e_3\}$ takes the form $X\zeta^{4j} + Y = 0$ $(0 \leq j < 7)$. Let \mathcal{L} be the set of these seven lines, and let $G = \{A \in A\}$ $\operatorname{Aut}(K)$; $Ae_3 = e_3$. Clearly G fixes \mathcal{L} . Since $\operatorname{Aut}(K)$ acts transitively on the arc K, it suffices to show that the stabilizer G consists of seven elements. Note that G contains the cyclic group $\langle U \rangle$. We shall show that $G = \langle U \rangle$. Let $A = (a_{ij})$ $(1 \leq i, j \leq 3)$ is an element of G. Recall that A maps a line $X\alpha + Y\beta + Z\gamma = 0$ to $X\alpha' + Y\beta' + Z\gamma' = 0$, where $(\alpha', \beta', \gamma') =$ $(\alpha, \beta, \gamma)A$. Since $Ae_3 = e_3$, we have $a_{13} = a_{23} = 0$. Hence A maps a line Xt + Y = 0 to a line Xt' + Y = 0 with $t' = f(t) = \frac{a_{11}t + a_{21}}{a_{12}t + a_{22}}$. In particular $\langle U \rangle$ acts transitively on \mathcal{L} . Multiplying some $B \in \langle U \rangle$ to A, we may assume that f(1) = 1. In addition the fractional linear transformation f(t) is equal to either $\zeta^{4j}t$ or ζ^{4j}/t by Lemma 2.4. Since f(1) = 1, j = 0. In the first case we get $a_{12} = a_{21} = 0$ and $a_{11} = a_{22}$. The condition AK = K now implies that A = id. The second case cannot happen. Assume the contrary. Then $a_{11} = a_{22} = 0$ and $a_{12} = a_{21}$. Now Ae_1 and Ae_2 must be equal to e_2 and e_1 respectively. Thus $a_{31} = a_{32} = 0$. Consequently A must fix $(1,1,\zeta^{15})^T \in K_2$. Hence $a_{12} = a_{33}$, and A is now completely determined. However we can easily see that $AK \neq K$.

REMARK 2.7. The 24-arc K in PG(2, 29) lies on the sextic curve $X^5Y + Y^5Z + Z^5X + \zeta^{24}X^2Y^2Z^2 = 0.$

REFERENCES

- A.H. ALI: Classification of arcs in the plane of order 13, Ph.D. thesis, University of Sussex, 1993.
- [2] A.H. ALI J.W.P. HIRSCHFELD H. KANETA: The automorphism group of a complete (q-1)-arc in PG(2,q), J. Combin. Des., **2** (1994), 131-145.
- [3] A.H.ALI J.W.P. HIRSCHFELD H. KANETA: On the size of arcs in projective spaces, IEEE, Information Theory, 41 (1995), 1649-1656.
- [4] J M. CHAO H. KANETA: Classical arcs in PG(r,q) for $11 \le q \le 19$, to appear in the Proceedings of Combinatrics '94, Roma & Montesilvano (PE).
- [5] J M. CHAO H. KANETA: Cyclic groups of order $q \pm 1$ and arcs in PG(2,q), submitted.
- [6] J.M. CHAO H. KANETA: Classical arcs in PG(r,q) for $23 \le q \le 29$, in preparation.
- [7] J.C. FISHER J.W.P. HIRSCHFELD J. A. THAS: Complete arcs in planes of square order, Ann. Discrete Math., 30 (1986), 243–250.
- [8] D.G. GORDON: Orbits of arcs in projective spaces, Finite Geometry and Combinatrics London, Math. Soc. Lecture Notes 191, Cambridge University Press, Cambridge 1993, 161-171.
- [9] J.W.P. HIRSCHFELD: Projective Geometries over Finite Fields, Oxford University, Oxford 1979.
- [10] J.W.P. HIRSCHFELD L. STROME: The packing problem in statistics, coding theory and finite projective spaces, to appear in J. Stat. Plann. Inferences
- [11] J.W.P. HIRSCHFELD J. A. THAS: General Galois Geometries, Oxford University Press, Oxford 1991.
- [12] R. LIDLE H. NIEDERREITER: *Finite Fields, Encyclopedia of*, Math. and its Applications, Vol.20, Cambridge University Press, 1984.
- [13] A.R. SADEH: The classification of k-arcs and cubic surfaces with twenty-seven lines, Ph.D. thesis, University of Sussex, 1984.
- [14] M. SCIPIONI: Sugli archi completi nei piani desarguesiani, Tesi di laurea, University of Rome "La Sapienza", 1990.
- [15] B. SEGRE: Le geometrie di Galois, Ann. Mat. Pura Appl., 48 (1959), 1-97.

[16] T. SZONYI: Complete arcs in Galois planes, Seminario di Geometrie Combinatorie diretto da G. Tallini, n. 94, University of Rome "La Sapienza", 1989.

> Lavoro pervenuto alla redazione il 9 novembre 1995 ed accettato per la pubblicazione il 3 giugno 1996. Bozze licenziate il 2 settembre 1996

INDIRIZZO DEGLI AUTORI:

J.M. Chao – H. Kaneta – Department of Mathematics – Faculty of Science – Okayama University – Okayama 700, Japan