A complete 24-arc in PG(2,29) with the automorphism group $\operatorname{PSL}(2,7)$

J. M. CHAO - H. KANETA

Riassunto: Si dimostra che esiste un 24-arco completo in $P G(2,29)$ che ammette $\operatorname{PSL}(2,7)$ come gruppo di automorfismi.

Abstract: There exists a complete 24-arc in $P G(2,29)$ with the projective automorphim group isomorphic to $\operatorname{PSL}(2.7)$.

1 - Introduction

Let F_{q} be the finite field of q elements, and let $P G(r, q)$ be the r dimensional projective space over F_{q}. An n-arc K in $P G(r, q)$ is a n-point set $(n \geq r+1)$ such that any $r+1$ points of K are in general position, namely no hyperplane contains them. A $(q+1)$-point set $\left\{\left(1, t, t^{2}, \ldots, t^{r}\right) ; t \in F_{q} \cup\{\infty\}\right\}$, where $t=\infty$ defines the point $(0,0, \ldots, 1)$, in $P G(r, q)$ is an arc, provided $r \leq q-2$. An arc projectively equivalent to the $(q+1)$-arc is called a normal rational curve. An arc contained in a normal rational curve is called classical, while an arc not contained in any normal rational curve is called non-classical. Let C be an $[n, r+1]$ MDS code over F_{q}. The automorphism group Aut(C) of C is the factor group $\{A=[\sigma] D$ such that $\mathrm{C} A=\mathrm{C}\} /\left\{a E_{n} ; a \in F_{q} \backslash\{0\}\right\}$.

Here $[\sigma]$ is a permutation matrix of degree n such that $\left[x_{1}, \ldots, x_{n}\right][\sigma]=$ $\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]$, and D is a non- singular diagonal matrix with F_{q} entries. Let $G=\left[g_{i j}\right]$ be a generator matrix of C , namely $r+1$ rows of G form a basis of C. Then $K=\left\{P_{j}=\left(g_{1, j}, \ldots, g_{r+1, j}\right)^{T} ; 1 \leq j \leq n\right\}$ is an n-arc, and $\operatorname{Aut}(\mathrm{C})$ is isomorphic to the automorphism group $\operatorname{Aut}(K)$ of K, the set of projectivities of $P G(r, q)$ leaving K invariant. Conversely an n-arc in $P G(r, q)$ gives rise to an $[n, r+1] \operatorname{MDS}$ code. We refer [11] and [10] for detailed information on arcs.

Let $m(r, q)$ be the maximum size of arcs in $P G(r, q)$. Clearly $m(r, q)$ $=r+1$ if $r>q-2$. To be specific we assume that q is odd and $q \geq 7$. As is well known, $m(2, q)=q+1$ and a $(q+1)$-arc as well as a q-arc in $P G(2, q)$ is classical. Besides there exists a non-classical arc in $P G(2, q)$. Let $m^{\prime}(2, q)$ be the maximum size of non-classical arcs in $P G(2, q)$. So far $m^{\prime}(2, q)$ is known up to $q \leq 29$:

q	7	9	11	13	17	19	23	25	27	29
$m^{\prime}(2, q)$	6	8	10	12	14	14	17	21	22	24

Furthermore non-classical $m^{\prime}(2, q)$-arcs are projectively equivalent for $q=$ $9,11,13,17,25$ and 27 . It remains open whether non-classical $m^{\prime}(2,29)$ arcs in $P G(2,29)$ are unique. (For $q \leq 9$ see [9]. For $q=11$ see [13]. For $q=13$ see [1],[8] and [14]. For $q=17$ and 19 see [4] and [14]. For $23 \leq q \leq 29$ see [6]). When $3 \leq r \leq q-3$, there exists a nonclassical arc in $P G(r, q)$ if and only if $r \leq m^{\prime}(2, q)-4$. Let $m^{\prime}(r, q)$ be the maximum size of non-classical arcs in $P G(r, q)$ for $3 \leq r \leq m^{\prime}(2, q)-4$ (note that $\left.m^{\prime}(2, q)-4 \leq q-5\right)$. We remark that $m^{\prime}(r, q) \leq q$ if and only if $m(r, q)=q+1$ and every $(q+1)$-arc in $P G(r, q)$ is classical, where $3 \leq r \leq m^{\prime}(2, q)-4$. The only known case where $m^{\prime}(r, q)>q$ is $m^{\prime}(4,9)=10$.

In this note we shall show that there exists a complete 24 -arc in $P G(2,29)$ with the automorphism group isomorphic to $P S L(2,7)$. This example suggests that $m^{\prime}(2, q)$-arcs in $P G(2, q)$ or more generally, $m^{\prime}(r, q)$ -arcs in $P G(r, q)$ are worth studying.

2 - A complete 24-arc in $P G(2,29)$

Throughout this section $\zeta=3$ stands for the primitive element of $F_{29}, \xi=5$ for the primitive element of F_{7}. A point in $P G(r, q)$ with the homogeneous coordinates $\left[x_{0}, \ldots, x_{r}\right]^{T}$ will be denoted by $\left(x_{0}, \ldots, x_{r}\right)^{T}$. For example $e_{1}=(1,0,0)^{T}, e_{2}=(0,1,0)^{T}$ and $e_{3}=(0,0,1)^{T}$ are three points of $P G(2, q)$. A projectivity defined by a non-singular matrix $\left[a_{i j}\right]$ with F_{q} entries will be denoted by $\left(a_{i j}\right)$.

Lemma 2.1. Let U, V and W be projectivities of $P G(2,29)$ such that

$$
U=\left(\begin{array}{ccc}
\zeta^{0} & 0 & 0 \\
0 & \zeta^{4} & 0 \\
0 & 0 & \zeta^{12}
\end{array}\right), \quad V=\left(\begin{array}{ccc}
\zeta^{19} & \zeta^{0} & \zeta^{20} \\
\zeta^{0} & \zeta^{20} & \zeta^{19} \\
\zeta^{20} & \zeta^{19} & \zeta^{0}
\end{array}\right), \quad W=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Then
(1) $U^{7}=i d, V^{2}=i d$ and $W^{3}=i d$.
(2) $W V=V W^{2}$.
(3) $U W=W U^{2}$.
(4) $U^{1 / a} V U^{a} W^{\log _{\xi} a}=V U^{-a} V$ for $a=\xi^{k} \in F_{7} \backslash\{0\}$ with $\log _{\xi} a=k$.

Proof. Multiplication of matrices yields (1) to (3). According as k ranges from 0 to 5 , the equality (4) takes the form $U V U=V U^{-1} V$, $U^{3} V U^{5} W=V U^{2} V, U^{2} V U^{4} W^{2}=V U^{3} V, U^{-1} V U^{-1}=V U V, U^{4} V U^{2} W$ $=V U^{5} V$ and $U^{5} V U^{3} W^{2}=V U^{4} V$. These equalities can be verified by matrix multiplication.

THEOREM 2.2. There exists uniquely a group homomorphism φ from $P S L(2,7)$ into $P G L(3,29)$ sending u, v and w to U, V and W respectively, where

$$
u=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad v=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right) \in P S L(2,7)
$$

In fact φ is an isomorphism of $\operatorname{PSL}(2,7)$ into $\operatorname{PGL}(3,29)$.

Proof. Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2,7)$ with $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=1$. Since

$$
g=\left(\begin{array}{cc}
1 & a / c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & c d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
c & 0 \\
0 & c^{-1}
\end{array}\right) \quad \text { if } \quad c \neq 0
$$

we define $\varphi(g)$ to be $U^{a / c} V U^{c d} W^{\log _{\xi} c}$ when $c \neq 0$. Since

$$
g=\left(\begin{array}{cc}
1 & b / d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -c d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
d^{-1} & 0 \\
0 & d
\end{array}\right) \text { if } d \neq 0
$$

we define $\varphi(g)$ to be $U^{b / d} V U^{-c d} V W^{-\log _{\xi} d}$ when $d \neq 0$. In order to see that φ is well defined we shall show that $U^{a / c} V U^{c d} W^{\log _{\xi} c}=U^{b / d} V U^{-c d} V W^{-\log _{\xi} d}$ when $c d \neq 0$. This equality is equivalent to $U^{1 / c d} V U^{c d} W^{\log _{\xi} c d}=V U^{-c d} V$, which is nothing but Lemma $2.1(4)$. We shall show that φ is a homomorphism. Suppose $c \neq 0$. By Lemma 2.1(3) we get $\varphi(g u)=\varphi(g) U$. By Lemma 2.1(1) we get $\varphi(g v)=\varphi(g) V$. The equality $\varphi(g w)=\varphi(g) W$ is trivial. Similarly equalities $\varphi(g u)=\varphi(g) U, \varphi(g v)=\varphi(g) V$ and $\varphi(g w)=$ $\varphi(g) W$ hold even when $c=0$ and $d \neq 0$. Since any $h \in \operatorname{PSL}(2,7)$ is product of u, v and w, φ is a homomorphism. It remains to show that φ is injective. Assume that $\varphi(g)=i d$. If $c \neq 0$, no homogeneous coordinates of $\varphi(g) e_{1}$ vanish, hence $\varphi(g) \neq i d$, a contradiction. We may further assume that $c=0$ and $\varphi(g)=U^{b / d} W^{-\log _{\xi} d}$. Applying $\varphi(g)$ to a point $(1,1,1)^{T}$, we see that $b=0$ and $d=\xi^{3 k}$, namely $g=i d \in \operatorname{PSL}(2,7)$.

Lemma 2.3. Let

$$
K_{0}=\left\{e_{1}, e_{2}, e_{3}\right\}, \quad K_{i}=\left\{U^{j} V e_{i} ; 0 \leq j \leq 6\right\} \quad(i=1,2,3)
$$

Then $K=K_{0} \cup K_{1} \cup K_{2} \cup K_{3}$ is a $P S L(2,7)$-invariant complete 24-arc in $P G(2,29)$.

Proof. $K_{0} \cup\left\{V e_{i}\right\}$ is a 4-arc. Since U fixes each e_{i} and $U \neq i d$, U does not fix $V e_{i}$. Thus $\left|K_{i}\right|=7$, for the order of U is equal to 7 . $K_{i} \cap K_{j}=\emptyset$ if $1 \leq i<j \leq 3$. Otherwise the intersection is a proper subset of K_{i} invariant under the cyclic group $\langle U\rangle$. Similarly $K_{0} \cap K_{i}=\emptyset$ for $1 \leq$ $i \leq 3$. Therefore K is a 24 -point set. Put $L=\left\{\varphi(g) e_{1} ; g \in \operatorname{PSL}(2,7)\right\}$.

See the proof of Lemma 2.2 for the definition of the isomorphism φ. Clearly L contains K. We shall show that $G=\left\{g \in P S L(2,7) ; \varphi(g) e_{1}=\right.$ $\left.e_{1}\right\}$ consists of 7 points to the effect that $L=K$ (recall that $|P S L(2,7)|=$ 168). Assume $g \in G$ takes the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a d-b c=1$. Since $c \neq 0$ implies that none of the coordinates of $\varphi(g) e_{1}$ vanishes, we have $c=0$. Now $\varphi(g)=U^{b / d} W^{-\log _{\xi} d}$. Hence $W^{-\log _{\xi} d} e_{1}=e_{1}$, which yields d is equal to either 1 or ξ^{3}. Consequently $g=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. This g belongs to G. We will show that K is an arc. To this end we shall show that any three points P_{1}, P_{2} and P_{3} of K cannot be collinear. Put $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}\right\}$. We begin with the case $\mathcal{P} \subset K_{0}$. The three point cannot be collinear. W^{-1} acts as a cyclic permutation on $\left\{K_{1}, K_{2}, K_{3}\right\}$, for $W^{-1} U^{j} V=U^{2 j} V W$ by Lemma 2.1 (1) and (2). Secondly we assume that $\left\{P_{1}, P_{2}\right\} \subset K_{0}$ with $P_{3} \in K_{1}$. Since none of the homogeneous coordinates of P_{3} vanishes, P_{3} cannot lie on the line joining P_{1} and P_{2}. Next we assume that $P_{1} \in K_{0}$ with $\left\{P_{2}, P_{3}\right\} \subset K \backslash K_{0}$. In the case $\left\{P_{2}, P_{3}\right\} \subset K_{i}$ for some $1 \leq i \leq 3$ we may assume that $i=1, P_{2}=V e_{1}$ and $P_{3}=U^{j} V e_{1}$ in view of W and U. The line through P_{2} and P_{3} takes the form

$$
X\left(\zeta^{10+12 j}-\zeta^{10+4 j}\right)-Y\left(\zeta^{1+12 j}-\zeta^{1}\right)+Z\left(\zeta^{9+4 j}-\zeta^{9}\right)=0
$$

The line does not meet K_{0}, because none of the following three equations has a solution $0<j<7: 12 j \equiv 4 j(\bmod 28), 12 j \equiv 0(\bmod 28)$ and $4 j \equiv 0(\bmod 28)$. In the case $P_{2} \in K_{i}$ and $P_{3} \in K_{k}$ for some $1 \leq i<k \leq 3$ we may assume that $i=1, k=2, P_{2}=U^{j} V e_{1}$ and $P_{3}=V e_{2}$. The line joining P_{2} and P_{3} takes the form

$$
X\left(\zeta^{4 j}-\zeta^{21+12 j}\right)-Y\left(\zeta^{19}-\zeta^{1+12 j}\right)+Z\left(\zeta^{20}-\zeta^{9+4 j}\right)=0
$$

Again the line does not meet K_{0}, because none of the following three equations has a solution $0 \leq j<7:-8 j \equiv 21(\bmod 28), 12 j \equiv 8$ $(\bmod 28)$ and $4 j \equiv 1(\bmod 28)$. Finally assume that $\mathcal{P} \subset K \backslash K_{0}$. In view of U we may assume that $P_{1}=V e_{i}$ for some i. Then $V \mathcal{P}$ contains $e_{i} \in K_{0}$. Since $V \mathcal{P}$ cannot be collinear, \mathcal{P} neither. To complete the proof we shall show that K is complete. Suppose $K \cup\{P\}$ is a 25 -arc. Then $K_{4}=\left\{U^{j} P ; 0 \leq j<7\right\}$ is a 7 -point set (recall that the order of U is equal to 7). We recall a theorem due to T. Szonyi and J.A. Thas [16]; if
q is odd and $n>(2 q+3) / 3$, then an n-arc in $P G(2, q)$ is contained in a unique complete arc. This theorem asserts that $K \cup K_{4}$ is a 31-arc in $P G(2,29)$. This contradicts the fact that $m(2, q)=q+1$ for $q \geq 3$.

Lemma 2.4. Consider a subset $L=\left\{\zeta^{4 j} ; 0 \leq j<7\right\}$ of $P G(1,29)$. The automorphism group $\operatorname{Aut}(L)$, namely the set of fractional linear transformations of $F_{29} \cup\{\infty\}$ leaving L invariant, contains exactly 14 elements; $\zeta^{4 j} t$ and $\zeta^{4 j} / t$.

Proof. By the aid of a computer we verify that among 7 $6 \cdot 5$ fractional linear transformations mapping $\left(1, \zeta^{4}, \zeta^{8}\right)$ to $\left(\zeta^{4 i}, \zeta^{4 j}, \zeta^{4 k}\right)$ only 14 transformations leave L invariant.

REMARK 2.5. Let ρ be a primitive element of F_{25} such that $\rho^{2}=$ $3 \rho+2$ (see Table A of [12]). The the subset $\left\{\rho^{4 j} ; 0 \leq j<6\right\}$ of $P G(1,25)$ turns out to be equivalent to $F_{5} \cup\{\infty\}$. Hence the automorphism group of the subset consists of $6 \cdot 5 \cdot 4$ elements.

THEOREM 2.6. The automorphism group Aut(K) of the arc K in Lemma 2.3 is isomorphic to $\operatorname{PSL}(2,7)$.

Proof. A line ℓ satisfying $\ell \cap K=\left\{e_{3}\right\}$ takes the form $X \zeta^{4 j}+Y=0$ $(0 \leq j<7)$. Let \mathcal{L} be the set of these seven lines, and let $G=\{A \in$ $\left.\operatorname{Aut}(K) ; A e_{3}=e_{3}\right\}$. Clearly G fixes \mathcal{L}. Since $\operatorname{Aut}(K)$ acts transitively on the arc K, it suffices to show that the stabilizer G consists of seven elements. Note that G contains the cyclic group $\langle U\rangle$. We shall show that $G=\langle U\rangle$. Let $A=\left(a_{i j}\right)(1 \leq i, j \leq 3)$ is an element of G. Recall that A maps a line $X \alpha+Y \beta+Z \gamma=0$ to $X \alpha^{\prime}+Y \beta^{\prime}+Z \gamma^{\prime}=0$, where $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=$ $(\alpha, \beta, \gamma) A$. Since $A e_{3}=e_{3}$, we have $a_{13}=a_{23}=0$. Hence A maps a line $X t+Y=0$ to a line $X t^{\prime}+Y=0$ with $t^{\prime}=f(t)=\left(a_{11} t+a_{21}\right) /\left(a_{12} t+a_{22}\right)$. In particular $\langle U\rangle$ acts transitively on \mathcal{L}. Multiplying some $B \in\langle U\rangle$ to A, we may assume that $f(1)=1$. In addition the fractional linear transformation $f(t)$ is equal to either $\zeta^{4 j} t$ or $\zeta^{4 j} / t$ by Lemma 2.4. Since $f(1)=1, j=0$. In the first case we get $a_{12}=a_{21}=0$ and $a_{11}=a_{22}$. The condition $A K=K$ now implies that $A=i d$. The second case cannot happen. Assume the contrary. Then $a_{11}=a_{22}=0$ and $a_{12}=a_{21}$. Now $A e_{1}$ and $A e_{2}$ must be equal to e_{2} and e_{1} respectively. Thus $a_{31}=a_{32}=0$. Consequently A must fix $\left(1,1, \zeta^{15}\right)^{T} \in K_{2}$. Hence $a_{12}=a_{33}$, and A is now completely determined. However we can easily see that $A K \neq K$.

Remark 2.7. The 24 -arc K in $P G(2,29)$ lies on the sextic curve $X^{5} Y+Y^{5} Z+Z^{5} X+\zeta^{24} X^{2} Y^{2} Z^{2}=0$.

REFERENCES

[1] A.H. Ali: Classification of arcs in the plane of order 13, Ph.D. thesis, University of Sussex, 1993.
[2] A.H. Ali - J.W.P. Hirschfeld - H. Kaneta: The automorphism group of a complete $(q-1)$-arc in $P G(2, q)$, J. Combin. Des., 2 (1994), 131-145.
[3] A.H.Ali - J.W.P. Hirschfeld - H. Kaneta: On the size of arcs in projective spaces, IEEE, Information Theory, 41 (1995), 1649-1656.
[4] J M. Chao - H. Kaneta: Classical arcs in $P G(r, q)$ for $11 \leq q \leq 19$, to appear in the Proceedings of Combinatrics '94, Roma \& Montesilvano (PE).
[5] J M. Chao - H. Kaneta: Cyclic groups of order $q \pm 1$ and arcs in $P G(2, q)$, submitted.
[6] J.M. Chao - H. Kaneta: Classical arcs in $P G(r, q)$ for $23 \leq q \leq 29$, in preparation.
[7] J.C. Fisher - J.W.P. Hirschfeld - J. A. Thas: Complete arcs in planes of square order, Ann. Discrete Math., 30 (1986), 243-250.
[8] D.G. Gordon: Orbits of arcs in projective spaces, Finite Geometry and Combinatrics London, Math. Soc. Lecture Notes 191, Cambridge University Press, Cambridge 1993, 161-171.
[9] J.W.P. Hirschfeld: Projective Geometries over Finite Fields, Oxford University, Oxford 1979.
[10] J.W.P. Hirschfeld - L. Strome: The packing problem in statistics, coding theory and finite projective spaces, to appear in J. Stat. Plann. Inferences
[11] J.W.P. Hirschfeld - J. A. Thas: General Galois Geometries, Oxford University Press, Oxford 1991.
[12] R. Lidle - H. Niederreiter: Finite Fields, Encyclopedia of, Math. and its Applications, Vol.20, Cambridge University Press, 1984.
[13] A.R. SADEH: The classification of k-arcs and cubic surfaces with twenty-seven lines, Ph.D. thesis, University of Sussex, 1984.
[14] M. Scipioni: Sugli archi completi nei piani desarguesiani, Tesi di laurea, University of Rome"La Sapienza", 1990.
[15] B. Segre: Le geometrie di Galois, Ann. Mat. Pura Appl., 48 (1959), 1-97.
[16] T. Szonyi: Complete arcs in Galois planes, Seminario di Geometrie Combinatorie diretto da G. Tallini, n. 94, University of Rome "La Sapienza", 1989.

Lavoro pervenuto alla redazione il 9 novembre 1995 ed accettato per la pubblicazione il 3 giugno 1996.

Bozze licenziate il 2 settembre 1996

