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A complete 24-arc in PG(2,29) with the
automorphism group PSL(2,7)

J. M. CHAO - H. KANETA

RIASSUNTO: Si dimostra che esiste un 24-arco completo in PG(2,29) che ammette
PSL(2,7) come gruppo di automorfismi.

ABSTRACT: There exists a complete 24-arc in PG(2,29) with the projective auto-
morphim group isomorphic to PSL(2.7).

1 — Introduction

Let F, be the finite field of ¢ elements, and let PG(r,q) be the r-
dimensional projective space over F, . An n-arc K in PG(r,q) is a
n-point set (n > r + 1) such that any r + 1 points of K are in gen-
eral position, namely no hyperplane contains them. A (¢ + 1)-point
set {(1,t,¢%,...,t");t € F, U {oo}}, where t = oo defines the point
(0,0,...,1), in PG(r,q) is an arc, provided » < ¢ — 2. An arc pro-
jectively equivalent to the (¢ + 1)-arc is called a normal rational curve.
An arc contained in a normal rational curve is called classical, while an
arc not contained in any normal rational curve is called non-classical. Let
C be an [n,r+1] MDS code over F;,. The automorphism group Aut(C) of
C is the factor group {A = [0]D such that CA = C}/{aE,; a € F,\{0}}.

KEY WORDS AND PHRASES: Arcs — MDS codes
A.M.S. CLASSIFICATION: 11T71 — 94B27
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Here [0] is a permutation matrix of degree n such that [zy,... ,x,][0] =
[To(1), -+ s To@m), and D is a non- singular diagonal matrix with F, en-
tries. Let G = [g;;] be a generator matrix of C, namely r + 1 rows of G
form a basis of C. Then K = {P; = (g14,--- +gr41;)7; 1 <j < n}is an
n-arc, and Aut(C) is isomorphic to the automorphism group Aut(K’) of
K, the set of projectivities of PG(r,q) leaving K invariant. Conversely
an n-arc in PG(r,q) gives rise to an [n,r + 1] MDS code. We refer [11]
and [10] for detailed information on arcs.

Let m(r, q) be the maximum size of arcs in PG(r, q) . Clearly m(r, q)
=r+1if r > g — 2. To be specific we assume that ¢ is odd and ¢ > 7.
As is well known, m(2,q) = g+ 1 and a (¢ + 1)-arc as well as a g-arc in
PG(2,q) is classical. Besides there exists a non-classical arc in PG(2,q).
Let m’(2,q) be the maximum size of non-classical arcs in PG(2,q). So
far m/(2, ¢) is known up to ¢ < 29:

q 719 11 13 17 19 23 | 25 27 | 29
m'(2,q) 6 | 8 10 12 14 14 17 | 21 22 24

Furthermore non-classical m’(2, g)-arcs are projectively equivalent for ¢ =
9,11,13,17,25 and 27. It remains open whether non-classical m’(2,29)-
arcs in PG(2,29) are unique. (For ¢ < 9 see [9]. For ¢ = 11 see [13].
For ¢ = 13 see [1],[8] and [14]. For ¢ = 17 and 19 see [4] and [14].
For 23 < ¢ < 29 see [6]). When 3 < r < g — 3, there exists a non-
classical arc in PG(r, q) if and only if r < m/(2, q) —4. Let m/(r, q) be the
maximum size of non-classical arcs in PG(r,q) for 3 < r < m/(2,q) — 4
(note that m’(2,q) —4 < ¢ —5). We remark that m/(r,q) < ¢ if and
only if m(r,q) = q + 1 and every (¢ + 1)-arc in PG(r,q) is classical,
where 3 < r < m/(2,q) — 4. The only known case where m/(r,q) > q is
m'(4,9) = 10.

In this note we shall show that there exists a complete 24-arc in
PG(2,29) with the automorphism group isomorphic to PSL(2,7). This
example suggests that m’(2, ¢)-arcs in PG(2, q) or more generally, m’(r, q)
-arcs in PG(r,q) are worth studying.
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2 — A complete 24-arc in PG(2,29)

Throughout this section ¢ = 3 stands for the primitive element of
Fyy, £ =5 for the primitive element of F7. A point in PG(r,q) with the
homogeneous coordinates [z, ... ,z,|’ will be denoted by (zq,...,z,)T.
For example ¢; = (1,0,0)7, e; = (0,1,0)” and e3 = (0,0,1)7 are three
points of PG(2,¢q). A projectivity defined by a non-singular matrix [a;;]
with F, entries will be denoted by (a;;).

LEMMA 2.1. Let U,V and W be projectivities of PG(2,29) such that

<O 0 0 C19 CO <20 0 0 1
U=|0 ¢ 0|, V=[¢ ¢ ¢, W=[1 0 0
0 0 412 CQO Clg CO 0 1 0
Then
(1) U" =id, V2 = id and W3 = id.

(2) WV =V
(3) UW = WU2.
(4) UYVevUW'ee* = VUV for a = £* € F:\{0} with log.a = k.

ProOF. Multiplication of matrices yields (1) to (3). According as
k ranges from 0 to 5, the equality (4) takes the form UVU = VU 'V,
UVUSW = VUV, U*VUW? =VU3V,U'VU ' = VUV, U'VU*W
= VUV and UVU3W? = VU*V. These equalities can be verified by

matrix multiplication.

THEOREM 2.2. There exists uniquely a group homomorphism ¢
from PSL(2,7) into PGL(3,29) sending u,v and w to U,V and W re-
spectively, where

11 0 -1 £ 0
u—< ), v—( ) and w—( )ePSL(2,7).
0 1 1 0 0 ¢t

In fact ¢ is an isomorphism of PSL(2,7) into PGL(3,29).
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we define (g) to be UY VU W€ when ¢ # 0. Since

1 b/d 0 -1 1 —cd 0 -1 d?t 0
=)0 G ) ) e

0 1 1 0 0 1 1 0 0 d
we define (g) to be UY VU ¢4V ~1°¢¢? when d#0. In order to see that
¢ is well defined we shall show that U/ VU W eeee= b/ 4y [J—ed /)y ~loged
when cd # 0. This equality is equivalent to U/ VU dWosscd = Y74V
which is nothing but Lemma 2.1(4). We shall show that ¢ is a homo-
morphism. Suppose ¢ # 0. By Lemma 2.1(3) we get ¢(gu)=¢(g)U. By
Lemma 2.1(1) we get ¢(gv)=p(g)V. The equality ¢(gw) = ¢(g)W is
trivial. Similarly equalities ¢(gu) = ¢(g9)U, ¢(gv) = ¢(9)V and ¢(gw) =
©(g)W hold even when ¢ = 0 and d # 0. Since any h € PSL(2,7) is
product of u, v and w, ¢ is a homomorphism. It remains to show that
© is injective. Assume that ¢(g) = id. If ¢ # 0, no homogeneous coordi-
nates of p(g)e; vanish, hence ¢(g) # id, a contradiction. We may further
assume that ¢ = 0 and ¢(g) = UY?W'°2e?. Applying ¢(g) to a point
(1,1,1)", we see that b = 0 and d = £3*, namely g = id € PSL(2,7).

LEMMA 2.3. Let
K():{el,eg,eg}, Kl:{UJVe“ 0§]§6} (Z: 1,2,3)

Then K = Ko U K, U Ky U K3 is a PSL(2,7)-invariant complete 24-arc
in PG(2,29).

PrROOF. Ky U {Ve;} is a 4-arc. Since U fixes each e; and U # id,
U does not fix Ve;,. Thus |K;| = 7, for the order of U is equal to 7.
K,NK; = 0if1 <i < j < 3. Otherwise the intersection is a proper subset
of K; invariant under the cyclic group (U). Similarly KoNK; = 0 for 1 <
i < 3. Therefore K is a 24-point set. Put L = {¢(g)e;; g € PSL(2,7)}.
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See the proof of Lemma 2.2 for the definition of the isomorphism .
Clearly L contains K. We shall show that G = {g € PSL(2,7); ¢(g)e1 =
e1} consists of 7 points to the effect that L = K ( recall that |[PSL(2,7)| =

168). Assume g € G takes the form (Z 2) with ad — bec = 1. Since

¢ # 0 implies that none of the coordinates of ¢(g)e; vanishes, we have
c=0. Now p(g) = UY?W1°8¢d, Hence W'°8¢%e; = e, which yields d is

0 ll) . This g belongs to G.
We will show that K is an arc. To this end we shall show that any three
points Py, P, and P; of K cannot be collinear. Put P = { Py, P», P3}. We
begin with the case P C K. The three point cannot be collinear. W1
acts as a cyclic permutation on {K;, Ky, K3}, for WUV = U*'VW by
Lemma 2.1 (1) and (2). Secondly we assume that {P;, P} C K, with
P; € K;. Since none of the homogeneous coordinates of P; vanishes, P;

equal to either 1 or £3. Consequently g =

cannot lie on the line joining P, and P;. Next we assume that P, € K
with {Ps, P3} C K\Kj. In the case {Ps, P3} C K, for some 1 < i <3 we
may assume that i = 1, P, = Ve, and P; = U’Ve,; in view of W and U.
The line through P, and P takes the form

X(C10+12j o <10+4j) o Y(<1+12j _ Cl) + Z(c9+4j _ CQ) =0.

The line does not meet K, because none of the following three equations
has a solution 0 < 7 < 7 : 125 = 45 (mod 28), 12§ = 0 (mod 28) and
45 = 0 (mod 28). In the case P, € K; and P; € K}, for some 1 <i < k <3
we may assume that i = 1, k = 2, P, = U'Ve, and P; = Ve,. The line
joining P, and P; takes the form

X(C4j _ C21+12j) _ Y(Clg _ C1+12j) 4 Z(C20 _ <-9+4j) =0.

Again the line does not meet Kj, because none of the following three
equations has a solution 0 < j < 7 : —8j = 21 (mod 28), 12j = 8
(mod 28) and 45 = 1 (mod 28). Finally assume that P C K\K,. In
view of U we may assume that P, = Ve; for some ¢. Then VP contains
e; € Ky. Since VP cannot be collinear, P neither. To complete the proof
we shall show that K is complete. Suppose K U {P} is a 25-arc. Then
Ky = {U’P;0 < j < T} is a 7-point set (recall that the order of U is
equal to 7). We recall a theorem due to T. Szonyi and J.A. Thas [16]; if
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q is odd and n > (2¢ + 3)/3, then an n-arc in PG(2,q) is contained in
a unique complete arc. This theorem asserts that K U K, is a 31-arc in
PG(2,29). This contradicts the fact that m(2,¢q) = ¢+ 1 for ¢ > 3.

LEMMA 2.4. Consider a subset L = {¢*; 0 < j < T} of PG(1,29).
The automorphism group Aut(L), namely the set of fractional linear
transformations of Fay U {o0} leaving L invariant, contains ezxactly 14
elements; Yt and Y /t.

PrOOF. By the aid of a computer we verify that among 7-6 -5
fractional linear transformations mapping (1, %, ¢®) to (¢*, ¢, ¢**) only
14 transformations leave L invariant.

REMARK 2.5. Let p be a primitive element of Fbs such that p? =
3p+2 (see Table A of [12]). The the subset {p*; 0 < j < 6} of PG(1,25)
turns out to be equivalent to F5 U {oo}. Hence the automorphism group
of the subset consists of 6 - 5 - 4 elements.

THEOREM 2.6. The automorphism group Aut(K) of the arc K in
Lemma 2.3 is isomorphic to PSL(2,7).

PROOF. A line / satisfying /N K = {e3} takes the form X(* +Y =0
(0 < j < 7). Let L be the set of these seven lines, and let G = {A €
Aut(K); Aez = e3}. Clearly G fixes L. Since Aut(K) acts transitively
on the arc K, it suffices to show that the stabilizer G consists of seven
elements. Note that G contains the cyclic group (U). We shall show that
G = (U). Let A = (a;;) (1 <i,j <3)is an element of G. Recall that A
maps a line Xa+Y f+Zy =0to Xa/+Y '+ 2" = 0, where (¢/, £/, ') =
(a, B, 7)A. Since Aez = e3, we have a;3 = a3 = 0. Hence A maps a line
Xt+Y =0toaline Xt'+Y =0 with ¢/ = f(t) = (ant+a)/ (a2t +ass).
In particular (U) acts transitively on £. Multiplying some B € (U) to
A, we may assume that f(1) = 1. In addition the fractional linear
transformation f(t) is equal to either (¥t or ¢(*//t by Lemma 2.4. Since
f(1) =1, 5 =0. In the first case we get a;o = ag; = 0 and a;; = agy. The
condition AK = K now implies that A = id. The second case cannot
happen. Assume the contrary. Then a;; = a2 = 0 and a5 = as;. Now
Ae, and Ae, must be equal to e; and e; respectively. Thus as; = ag, = 0.
Consequently A must fix (1,1,¢*)" € K,. Hence a;3 = ass, and A is
now completely determined. However we can easily see that AK # K.
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REMARK 2.7. The 24-arc K in PG(2,29) lies on the sextic curve

XY +YZ + 725X + (M*X?Y?Z2 = 0.
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