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Non-Archimedean weighted spaces

of continuous functions

A.K. KATSARAS – A. BELOYIANNIS

Riassunto: Si studiano le proprietà di certi spazi non-Archimedei di funzioni
continue. In particolare si esamina la completezza di questi spazi e si stabiliscono
alcuni teoremi del tipo di quello di Arzelà-Ascoli

Abstract: Some properties of non-Archimedean weighted spaces of continuous
functions are investigated. Completeness of these spaces is examined and Arzelà-Ascoli
type theorems are given.

– Introduction

Weighted spaces of continuous functions were introduced in the com-

plex scalar case by L. Nachbin in [23] and in the vector case by

J. Prolla in [25]. Several other authors have continued the investigation

of such spaces. The papers [1], [2]-[13], [17], [18], [25] and many others

deal with problems refering to such spaces. Josè Paulo Carneiro

introduced in [14] the p-adic weighted spaces (see also [15]). Some p-

adic Ascoli type theorems concerning spaces of continuous functions were

given in [16], [22], and [24].
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In this paper, we will study some of the properties of non-Archime-

dean Nachbin spaces. Among other things, we will investigate the com-

pleteness of such spaces and we will obtain some Arzelá-Ascoli type the-

orems. In subsequent papers we will continue with the investigation of

such spaces.

1 – Preliminaries

Throughout this paper, K will stand for a complete non-Archimedean

valued field whose valuation is non-trivial. By a seminorm on a vector

space E over K we will mean a non-Archimedean seminorm. Let E

be a locally convex space over K. The collection of all the continuous

seminorms on E will be denoted by cs (E). When the valuation of K is

discrete, we will consider only seminorms p such that p(E) ⊆ {|λ|, λ ∈ K}.

Note that these seminorms generate the topology of E. For a subset S

of E, we will denote by co(S) the absolutely convex hull of S. In case of

a finite set S = {x1, . . . , xn}, we have

co(S) =
{ n∑

κ=1

λκxκ, λκ ∈ K, |λκ| ≤ 1
}

.

Recall that a subset A of E is called compactoid if, for each neighbour-

hood W of zero in E, there exists a finite subset S of E such that

A ⊆ co(S) + W .

The topological dual space of E will be denoted by E′. By σ(E, E′) and

σ(E′, E) we will denote the weak topology of E and E′, respectively.

The polar and the bipolar set of a subset B of E will be denoted

by B0 and B00, respectively. A seminorm p on E is called polar if p =

sup{|f |, f ∈ E∗, |f | ≤ p}. The space E is called a polar space if its

topology is generated by a family of polar seminorms.

If E and F are locally convex spaces over K, then E⊗π F denotes the

projective tensor product of these spaces. Also by p ⊗ q we will denote

the tensor product of the seminorm p and q. For all unexplained terms

concerning non-Archimeaden spaces, we will refer to [29].



[3] Non-Archimedean weighted spaces etc. 547

2 – The weighted spaces CV(T,E) and CV0(T, E)

Let T be a Hausdorff topological space and let E be a non-Archime-

dean locally convex space. The space of all continuous E-values functions

on T will be denoted by C(T,E). In case E is the scalar field K, we will

write C(T ) instead of C(X,K). If τ is the topology of T and if τ0 is the

finest zero-dimensional topology on T which is coarser than τ , then an

E-valued function on T is τ -continuous iff is τ0-continuous. Since we are

only studying spaces of continuous E-valued on T there is no much loss

of generality if we assume that T is zero-dimensional.

A Nachbin family on T is a family V of non-negative upper semicon-

tinuous functions on T such that: a) For every ν1 and ν2 in V and any

α ≥ 0 there exists ν ∈ V such that α ν1, α ν2 ≤ ν (pointwise on T ). β)

For every t ∈ T there exists v ∈ V with v(t) > 0. Let p ∈ cs(E) and

ν ∈ V . For every E-valued function x on T , we define

qν,p(x) = ‖x‖ν,p = sup{ν(t)p(x(t)), t ∈ T} .

In case x is a K-valued function on T , we define

qν(x) = ‖x‖ν = sup{ν(t)|x(t)|, t ∈ T} .

The weighted space CV (T,E) is defined to be the space of all x ∈ C(T,E)

for which qν,p(x) < ∞ for all v ∈ V and all p ∈ cs(E). Note that

each qν,p is a non-Archimedean seminorm on CV (T,E). On CV (T,E)

we will consider the locally convex topology defined by the family of

seminorms {qν,p, ν ∈ V, p ∈ cs(E)}. We will denote by CV0(T,E) the

subspace of CV (T,E) consisting of all x ∈ C(T,E) for which the function

t → v(t)p(x(t)), t ∈ T , vanishes at infinity, for all v ∈ V and all p ∈ cs(E).

So x ∈ CV0(T,E) iff, for any p ∈ cs(E), any v ∈ V and any ε > 0 there

exists a compact subset Y of T such that v(t)p(x(t)) < ε, for t /∈ Y .

If E = K, we will write CV (T ) and CV0(T ) instead of CV (T,K) and

CV0(T,K), respectively.

Examples

1) Taking as V the family of all positive multiples of the R-character-

istic functions of the compact subsets of T , we get that both CV0(T,E)
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and CV (T,E) coincide with the space C(T,E) with the topology of uni-

form convergence on the compact subsets of T .

2) If V is the family of all positive multiples of the R-characteristic

functions of the finite subsets of T , then the corresponding spaces

CV (T,E) and CV0(T,E) coincide with the space C(T,E) with the topol-

ogy of simple convergence.

3) Let Cb(T,E) denote the space of all bounded continuous E-valued

functions on T and let C0(T,E) be the space of all continuous E-valued

functions on T which vanish at infinity. On both of these spaces we

consider the topology of uniform convergence. If V is the of all positive

constant functions on T , then CV (T,E) and CV0(T,E) coincide with

Cb(T,E) and C0(T,E), respectively.

4) Let T be locally compact and let

V = {|ϕ|, ϕ ∈ C0(T,K)}, where |ϕ|(t) = |ϕ(t)|, ∀ t ∈ T .

Since, for ϕ1, ϕ2 ∈ C0(T,K) there exists ϕ ∈ C0(T,K) with |ϕ| =

max{|ϕ1|, |ϕ2|} (by [20, Lemma 3.1]) it is easy to see that V is a Nachbin

family on T . For this Nachbin family we have that

(∗) CV (T,E) = CV0(T,E) = Cb(T,E) (algebraically) .

Indeed it is clear that every f ∈ Cb(T,E) belongs to CV0(T,E). On the

other hand, suppose that some f ∈ CV (T,E) is not bounded. Hence

there exists p ∈ cs(E) with supt∈T p(f(t)) = ∞. Let λ ∈ K, |λ| > 1, and

choose a sequence (tn) of distinct elements of T such that p(f(tn)) > |λ|2n.

Let ϕ: T → K, ϕ(tn) = λ−n and ϕ(t) = 0 if t '= tn, n = 1, 2, . . . .As in

the proof of 2.5 in [19], there exists ω ∈ C0(T,K) with |ϕ| ≤ |ω. Since

supn |ω(tn)|p(f(tn)) ≥ supn |λ|n = ∞, we have a contradiction. This

contradiction proves (∗). Also the topology of CV (T,E) = CV0(T,E) is

the topology β introduced by Prolla in [26]. By [19, Proposition 2.5],

β coincides with the strict topology β0 introduced by the first author

in [19]. Thus both CV (T,E) and CV0(T,E) coincide with the space

Cb(T,E) equipped with the strict topology.

We have the following result that can be easily established



[5] Non-Archimedean weighted spaces etc. 549

Lemma 2.1. α) CV0(T,E) is a closed subspace of CV (T,E).

β) If E is Hausdorff, then CV (T,E) is a Hausdorff space.

Lemma 2.2. If E is a polar space, then CV (T,E) and CV0(T,E)

are polar spaces.

Proof. Since CV0(T,E) is a subspace of CV (T,E), we only need

to prove our result for CV (T,E). Let p a polar continuous seminorm on

E and v ∈ V . Let λ ∈ K, with |λ| > 1, and choose, for each t ∈ T ,

λt ∈ K such that |λt| ≤ v(t) ≤ |λλt|. Let ϕ: T → K, ϕ(t) = λt, and set

q = q|ϕ|,p. Then

q ≤ qν,p ≤ |λ|q .

We will finish the proof by showing that q is a polar seminorm on

CV (T,E). So let x ∈ CV (T,E) with q(x) > θ > 0. There exists t ∈ T

with |ϕ(t)|p(x(t)) > θ. Since p is polar, there exists ω ∈ E′, |ω| ≤ p,

|ω(x(t)) > θ/|ϕ(t)|. Now the mapping

f : CV (T,E) → K, f(y) = ϕ(t)ω(y(t)) ,

is a linear form on CV (T,E) with |f | ≤ p and |f(x)| > θ.

Proposition 2.3. The mapping ω: CV (T ) ⊗π E → CV (T,E)

n∑

κ=1

xκ ⊗ uκ →
n∑

κ=1

xκ uκ

is a well defined linear map which is one-to-one. Moreover ω is a topo-

logical isomorphism between CV (T ) ⊗π E and G = ω(CV (T ) ⊗π E).

Proof. It is not hard to show that ω is a well defined linear map

which is one-to-one. We will show that both ω and ω−1 are continuous. So

let v ∈ V and p ∈ cs(E). If z ∈ CV (T )⊗π E, then for each representation

z =
∑m

κ=1 xκ ⊗ uκ of z, we have

sup
t

ν(t)p
( m∑

κ=1

xκ(t)uκ

)
≤ sup

t
max

κ
(ν(t))|xκ(t)|p(uκ) =

= max
κ

(sup
t

ν(t)|xκ(t)|)p(uκ) = max
κ

‖xκ‖νp(uκ) .
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This proves that qν,p(ω(z)) ≤ (qν ⊗ p)(z) and so ω is continuous. On

the other hand, given 0 < s < 1, there exists a representation z =∑n
κ=1 yκ ⊗ wκ of z such that w1, . . . , wn are s-orthogonal with respect to

p. Now, for each t ∈ T , we have

p
( n∑

κ=1

yκ(t)wκ

)
≥ s max

κ
(|yκ(t)|p(wκ))

and so qν,p(ω(z)) ≥ s maxκ ‖yκ‖νp(wκ) ≥ s(qν ⊗ p)(z) .

Since 0 < s < 1 was arbitrary, we get that qν,p(ω(z)) ≥ (qν ⊗ p)(z) and

so qν,p(ω(z)) = (qν ⊗ p)(z).

In view of the preceding proposition, we may identify CV (T ) ⊗π E

with the topological subspace {∑m
κ=1 xκuκ, xκ ∈ CV (T ), uκ ∈ E, m ∈

IN} of CV (T,E). Analogously, CV0(T ) ⊗π E may be identified with the

subspace {∑m
κ=1 xκuκ, xκ ∈ CV (T ), uκ ∈ E, m ∈ IN} of CV0(T,E).

Proposition 2.4. If, for every t ∈ T , there exists xt ∈ CV0(T )

with xt(t) '= 0, then CV0(T ) ⊗π E is a dense subspace of CV0(T,E).

Proof. We may assume that xt(t) = 1 for every t ∈ T . Let h ∈
CV0(T,E), v ∈ V and p ∈ cs(E). Given ε > 0, there exists a compact

subset S of T such that v(t)p(h(t)) < ε if t /∈ S. Since v is upper-

semicontinuous and S compact, there exists d > 0 such that v(t) < d for

each t ∈ S. The set Ω = {t ∈ T, ν(t) < d} , is open and contains S.

Since T is zero-dimensional, there exists a clopen (i.e. closed and open)

subset D of T such that S ⊆ D ⊆ Ω. For each t ∈ S, set

Dt = D ∩ {s, p(h(t) − h(s)) < ε/d} ∩ {s, |xt(s) − 1| < εt}

where εt is such that εtp(h(t)) < ε/d. Using the compactness of S, it is

clear that there are t1, . . . , tm is S and pairwise disjoint clopen subsets

W1, . . . , Wm of T covering S and such that tκ ∈ Wκ ⊆ Dtκ . Let χWκ

denote the K-characteristic function of Wκ, yκ = xtκ · χWκ and f =∑m
κ=1 yκh(tκ). Clearly f ∈ CV (T )0 ⊗ E. We will finish the proof by

showing that qν,p(f − h) ≤ ε. So let t ∈ T . If t /∈ ⋃m
κ=1 Wκ, then t /∈ S

and so ν(t)p(f(t) − h(t)) = ν(t)p(h(t)) < ε. Let t ∈ Wκ. Then

f(t) = yκ(t)h(tκ) = xtκ(t)h(tκ)
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and so f(t) − h(t) = h(tκ)(xtκ(t) − 1) + h(tκ) − h(t) which implies that

ν(t)p(f(t) − h(t)) ≤ ν(t) · max
κ

{|1 − xtκ(t)|p(h(tκ)), p(h(tκ) − h(t))} ≤ ε .

Hence the result follows.

Remark. Our hypothesis about CV0(T ) in the preceding proposition

is rather weak and it is satisfied for instance for every Nachbin family V

if T is locally compact.

Proposition 2.5. If E′ '= {0}, then CV (T ) (resp. CV0(T )) is

topologically isomorphic to a complemented subspace of CV (T,E) (resp.

of CV0(T,E)).

Proof. Let ϕ ∈ E′ and u ∈ E, with ϕ(u) = 1, and let q ∈ cs(E),

|ϕ| ≤ q. For f ∈ CV (T,E) we have that ϕ ◦ f ∈ CV (T ). Define

Q : CV (T,E) → CV (T,E), Q(f) = (ϕ ◦ f)u .

For every v ∈ V and p ∈ cs(E), we have that ‖(ϕ ◦ f)u‖ν,p ≤ p(u)‖f‖ν,p

and so Q is continuous. Since Q2 = Q, it follows that Q is a contin-

uous projection. We will show that G = Q(CV (T,E)) is topologically

isomorphic to CV (T ). Indeed, we consider the mapping

H : CV (T ) → G, H(x) = Q(xu) .

Clearly H is linear and one-to-one. Also H is onto since for h = (ϕ◦ f)u,

we have H(ϕ ◦ f) = h. Finally, H is a homeomorphism. In fact, it

is clear that H is continuous. Also H−1 is continuous. Indeed, the map

p(w) = |ϕ(w)| is a continuous seminorm on E and p(u) = 1. Now, for x ∈
CV (T ) and v ∈ V , we have H(x) = xu and ν(t)|x(t)| = ν(t)p(x(t)u) ≤
‖H(x)‖ν,p and so ‖x‖ν ≤ ‖H(x)‖ν,p. This proves that H is a topological

isomorphism. The proof for CV0(T ) is analogous.

Proposition 2.6. If CV (T ) (resp. CV0(T )) has a non-zero ele-

ment, then E is topologically isomorphic to a complemented subspace of

CV (T,E) (resp. of CV0(T,E)). In particular this happens if T is locally

compact.
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Proof. Let h be a non-zero element of CV (T ). We may assume that

h(t0) = 1 for some t0 ∈ T . Let

P : CV (T,E) → CV (T,E), P (f) = hf(t0) .

Then P is a continuous linear projection. Let G = P (CV (T,E)) and

consider the mapping

S : E → G, u → hu .

For p ∈ cs(E) and v ∈ V , we have

‖hu‖ν,p = ‖h‖νp(u)

and so S is continuous. Also S−1 is continuous since we can choose v ∈ V

with v(t0) > 0 and so ‖h‖ν '= 0. This proves that G is topologically

isomorphic to E. The proof for the case of CV0(T,E) is analogous.

3 – Completeness

As in the classical case (see [28]), for a topological space Y , we will

say that T is a VY -space, with respect to a Nachbin family V on T ,

if any function j from T to Y , whose restriction to each of the sets

{t ∈ T, v(t) ≥ 1}, v ∈ V , is continuous, is also continuous on T .

Proposition 3.1. α) If T is a VR-space, then T is also a VK-space.

β) Every VK-space is also a VF -space, for every zero-dimensional topo-

logical space F .

Proof. α) Let f : T → K be such that its restriction to each of the

sets Gν = {t ∈ T, ν(t) ≥ 1}, ν ∈ V , is continuous and let (tα) be α net

in T which converges to some t ∈ T . let D be a clopen neighbourhood of

f(t) in K. If ϕ is the R-characteristic function of D, then ϕ is continuous

and so h = ϕ ◦ f is continuous on each Gv, v ∈ V , which implies that h

is continuous on T . Hence, there exists α0 such that |h(t) − h(tα)| < 1 if

α 5 α0. Since h(t) = 1, it follows that |h(tα)| = |h(t0)| = 1, for α 5 α0,

and so f(tα) ∈ D. This proves that f is continuous at t.

β) The proof is analogous to that of α).
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Theorem 3.2. If E is complete and T is a VK-space then CV (T,E)

and CV0(T,E) are complete.

Proof. Since CV0(T,E) is a closed subspace of CV (T,E), it suf-

fices to prove the result for CV (T,E). So let (fα) be a Cauchy net in

CV (T,E). Since for each t ∈ T there exists v in V with v(t) > 0, it

follows that the map ωt : CV (T,E) → E, f → f(t) is continuous and so

(fα(t)) is a Cauchy net in E.

Define f : T → E, f(t) = lim fα(t) .

Claim 1. The restriction of f to each Gν = {t : v(t) ≥ 1}, v ∈ V ,

is continuous. Indeed, let (tδ) be net in Gν converging to some t0 ∈ Gν .

Given ε > 0, there exists α0 such that

qν,p(fα − fβ) ≤ ε if α, β 5 α0 .

Thus for α, β 5 α0, we have p(fα(t) − fβ(t)) ≤ ε for each t ∈ Gν . Since

fα0
is continuous at t0, there exists δ0 such that

p(fα0
(tδ) − fα0

(t0)) < ε if δ 5 δ0 .

Also, for t ∈ Gν , we have p(fα0
(t) − f(t)) ≤ ε. Now for δ 5 δ0, we have

p(f(tδ) − f(t0)) ≤
≤max

{
p(f(tδ)−fα0

(tδ)), p(fα0
(tδ)−fα0

(t0)), p(fα0
(t0)−f(t0))

}≤ ε .

Claim 2. f ∈ CV (T,E). Indeed, in view of Claim 1, f is continuous

since T is a VK-space and hence a VE-space (by Proposition 3.1). Let

v ∈ V , p ∈ cs(E), and ε > 0. There exists α0 such that qν,p(fα − fβ) ≤ ε

if α, β 5 α0. Thus, for α, β 5 α0, we have ν(t)p(fα(t) − fβ(t)) ≤ ε and

so ν(t)p(fα0
(t) − f(t)) ≤ ε for each t ∈ T . Now

sup
t∈T

ν(t)p(f(t)) ≤ max{ε, qν,p(fα0
)}

and thus f ∈ CV (T,E).

Claim 3. fα → f in CV (T,E). the proof of this is analogous to that

of Claim 2.
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Combining Proposition 2.4 with the preceding theorem, we get the

following:

Proposition 3.3. Let E be complete and Hausdorff and T a VK-

space. If for every t ∈ T there exists xt ∈ CV0(T ) with xt(t) '= 0, then

CV0(T,E) coincides with the completion CV0(T )⊗̂πE of CV0(T ) ⊗π E.

4 – Compactoid subsets of CV0(T, E)

Given v ∈ V and λ ∈ K, with |λ| > 1, there exists ϕ : T → E such

that |ϕ| ≤ v ≤ |λϕ|. If |µ| > 1 and if ϕ′ : T → E is another function with

|ϕ′| ≤ v ≤ |µϕ′| then |ϕ| ≤ |µϕ′| and |ϕ′| ≤ |λϕ|.
Let now CVco(T,E) be the space of all f ∈ CV (T,E) such that, for

all v ∈ V , there exists ϕ ∈ KT , with |ϕ| ≤ v ≤ |λϕ|, such that (ϕf)(T )

is a compactoid subset of E. If ϕ is such a function and if ϕ′ ∈ KT ,

with |ϕ′| ≤ v ≤ |λϕ′|, then (ϕ′f)(T ) is compactoid. It follows now easily

that CVco(T,E) is a vector subspace of CV (T,E). We will consider on

CVco(T,E) the topology induced by the topology of CV (T,E).

Proposition 4.1. CV0(T,E) is a subspace of CVco(T,E).

Proof. Let f ∈ CV0(T,E) and v ∈ V . Let |λ| > 1 and ϕ ∈ KT with

|ϕ| ≤ v ≤ |λϕ|. For p ∈ cs(E) and ε > 0, there exists a compact subset S

of T such that v(t)p(f(t)) < ε if t /∈ S. Let d > 0 be such that v(t) < d

for all t ∈ S. For each t ∈ S, set

Wt = {s ∈ T, p(f(s) − f(t)) < ε/d} .

Each Wt is clopen and Wt = Ws whenever Wt ∩ Ws '= 6. By the com-

pactness of S, there are t1, . . . , tn in S such that the sets Wt1 , . . . , Wtn

are pairwise disjoint and cover S. If |µ| > d, then

(ϕf)(T ) ⊆ co(µf(t1), . . . , µf(tn)) + {u ∈ E, p(u) < ε} = M .

Indeed, the set D = {t, ν(t) < d} is open and contains S. Let now t ∈ T .

If t ∈ Wti ∩ D, then

ϕ(t)f(t) = ϕ(t)(f(t) − f(ti)) + ϕ(t)f(ti)
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with |ϕ(t)|p(f(t) − f(ti)) < ε and |ϕ(t)| < |µ|, which implies that

ϕ(t)f(t) ∈ M .

Proposition 4.2. Let F be a Hausdorff polar space and let G

denote the dual space of F equipped with the topology of uniform con-

vergence on the compactoid subsets of F . If F is quasi-complete, then

G′ = F .

Proof. For B ⊆ F , let B00 be the bipolar of B with respect to the

pair 〈F, F ′〉. Let B = {B00, B ⊆ F, B compactoid} . Each element

B00 of B is compactoid (by [29, Theorem 5.13]). Also B00 is closed and

bounded and hence complete. Since (B00)0 = B0, it follows that the

topology of G coincides with the topology τB of uniform convergence on

the members of B. Since on compactoid subsets of F , the topology of

F coincides with the weak topology σ(F, F ′) (by [29, Theorem 5.12]),

each B00 is weakly complete. Thus, each member of B is edged, weakly

bounded, and weakly complete. Taking the space M = (F ′, σ(F ′, F )),

we have that M ′ = F . It is easy to see that B is a special covering of

M ′ = F (see [29, Definition 7.3]), and thus (by [29, Proposition 7.4])

G′ = (M, τB)′ = M ′ = F .

Lemma 4.3. Let T be a VK-space, F = CV (T ) and G the dual space

of F equipped with the topology of uniform convergence on the compactoid

subsets of F . Then the mapping ∆ : T → G, t → δt, δt(x) = x(t), is

continuous.

Proof. In view of Theorem 3.2, F is complete and G′ = F by the

preceding proposition. We first observe that ∆ is continuous as a map

from T to the weak dual F ′
σ of F . To prove our result, it suffices (in view

of Proposition 3.1) to show that, for each v ∈ V , the restriction of ∆ to

Yν = {t ∈ T, ν(t) ≥ 1} is continuous. Since

∆(Yν) ⊆ {x ∈ F, ‖x‖ν ≤ 1}0 ,

∆(Yν) is an equicontinuous subset of F ′. Since F is a polar space (by

Lemma 2.2), its topology coincides with the topology of uniform conver-

gence on the equicontinuous subsets of F ′. By [21, Proposition 3.12], each
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equicontinuous subset of F ′ is a compactoid subset of G. Since G′ = F ,

on ∆(Yν) the topology of G coincides with the weak topology σ(G, G′).

Now ∆ : Yν → ∆(Yν) is continuous since it is continuous if we consider

on ∆(Yν) the weak topology.

Lemma 4.4. If T is a VK-space, then every compactoid subset D of

CV (T ) is equicontinuous.

Proof. Let F = CV (T ) and let G, ∆ be as in the preceding Lemma.

Since D0 is a neighbourhood of zero in G, given t ∈ T and µ '= 0 in K,

there exists an open subset A of T containing t such that

∆(A) ⊆ µD0 + δt .

If now x ∈ D and s ∈ A, then δs − δt ∈ µD0 and so |x(s) − x(t)| ≤ |µ|,
which proves that D is equicontinuous at t.

Proposition 4.5. Let T be a VK-space and E a polar space. Then,

every compactoid subset D of CVco(T,E) is equicontinuous.

Proof. Let f ∈ CVco(T,E). For each x′ ∈ E′, the function x′ ◦ f is

in CV (T ). Let

f̃ : E′ → CV (T ), x′ → x′ ◦ f .

If we consider on E′ the topology τco of uniform convergence on the

compactoid subsets of E, then f̃ is continuous. In fact, let v ∈ V and

choose ϕ ∈ KT with |ϕ| ≤ v ≤ |λϕ|, |λ| > 1. Since M = (ϕf)(T ) is

compactoid in E, its polar M 0 is a neighborhood of zero for τco. Moreover

f̃(λ−1M 0) ⊆ {x ∈ CV (T ), ‖x‖ν ≤ 1}

which proves the continuity of f̃ . Let now p ∈ cs(E) be a polar seminorm

and set

Bp = {u ∈ E, p(u) ≤ 1} .

We will show that the set

H =
⋃ {

f̃(B0
p), f ∈ D

}
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is a compactoid subset of CV (T ). Indeed, let v ∈ V . Since D is a

compactoid, there are f1, . . . , fn in CVco(T,E) such that

D ⊆ co(f1, . . . , fn) + W, W = {f ∈ CVco(T,E), qν,p(f) ≤ 1} .

Let f =
∑n

i=1 λifi + h in D, h ∈ W, |λi| ≤ 1. Then

f̃(B0
p) ⊆

n∑

i=1

λif̃i(B
0
p) + h̃(B0

p) .

Each B0
p is a τco-compactoid and so f̃i(B

0
p) is a compactoid subset of

CV (T ). Thus, the absolutely convex hull M of
⋃n

κ=1 f̃i(B
0
p) is compactoid

in CV (T ) and so there exists x1, . . . , xm in CV (T ) such that

M ⊆ co(x1, . . . , xm) + W1, W1 = {x ∈ CV (T ), ‖x‖ν ≤ 1} .

Since h̃(B0
p) ⊆ W1, for h ∈ W , if follows that

H ⊆ co(x1, . . . xm) + W1 ,

which proves that H is compactoid in CV (T ). In view of Lemma 4.4, H

is equicontiunuous. Thus, given t0 ∈ T and µ '= 0 in K, there exist a

neighbourhood A of t0 in T such that

|f̃(x′)(t) − f̃(x′)(t0)| ≤ |µ| for all f ∈ D, x′ ∈ B0
p, t ∈ A,

and so

µ−1(f(t) − f(t0)) ∈ B00
p = Bp

if t ∈ A. Hence, for all t ∈ A, f ∈ D, we have p(f(t) − f(t0)) ≤ |µ|, and

so the result follows.

The following is an Arzelá-Ascoli type theorem for CV0(T,E).

Theorem 4.6. Let E be a polar space, T a VK-space and D a subset

of CV0(T,E). Then, D is compactoid iff:

a) D is equicontiunuous.

b) For each t ∈ T , the set D(t) = {f(t), f ∈ D} is a compactoid subset

of E.

c) For any p ∈ cs(E), v ∈ V and ε > 0, there exists a compact subset S

of T such that v(t)p(f(t)) < ε for all f ∈ D and all t /∈ S.
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Proof. Necessity : Assume that D is compactoid. Part a) follows

from the preceding proposition in view of Proposition 4.1. As regards

part b), since for each t ∈ D there exists v ∈ V with v(t) > 0, it follows

that the mapping

ϕt : CV0(T,E) → E, ϕt(f) = f(t) ,

is continuous and so D(T ) = ϕt(D) is compactoid. Finally, to show part

c), let f1, . . . , fn in CV0(T,E) be such that

D ⊆ co(f1, . . . , fn) + {f, qν,p(f) < ε} .

Let S be a compact subset of T such that v(t)p(fi(t)) < ε for all t ∈ S,

i = 1, . . . , n. Let now f ∈ D, f =
∑n

i=1 λi + h, |λi| ≤ 1, qν,p(h) < ε.

Then, fro t /∈ S, we have v(t)p(f(t)) < ε.

Sufficiency : Assume that D satisfies properties a), b), c). Since

co(D) also has properties a), b), c), when D does, we may assume that

D is absolutely convex. Let

d > sup
t∈S

ν(t) and B = {t ∈ T, ν(t) < d} .

Then B is open and contains S. For each t ∈ S, there exists a clopen set

Wt with t ∈ Wt ⊆ B, such that p(f(t) − f(s)) < ε1 = ε
d|λ| for all f ∈ D

and all s ∈ Wt. It is now clear, using the compactness of S, that there

are t1, . . . , tm in S and pairwise disjoint clopen sets A1, . . . , Am covering

S, tκ ∈ A, such that p(f(t) − f(tκ)) < ε1 for all t ∈ Aκ and all f ∈ D.

Since D(tκ) is an absolutely convex compactoid, there are fκ1, . . . , fκnκ

in D such that

D(tκ) ⊆ λ · co(fκ1(tκ), . . . , fκnκ(tκ)) + Bp,ε1
,

where |λ| > 1 and Bp,ε1
= {u ∈ E, p(u) ≤ ε1}. If χAκ is the K-

characteristic function of Aκ, we will show that

(∗) D ⊆ λ · co(H) + {f, qν,p(f) ≤ ε} ,
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where H = {fκjχAκ , κ = 1, . . . , m, j = 1, . . . , nκ}. In fact, let f ∈ D.

Then

f(tκ) = λ
nκ∑

j=1

λκjfκj(tκ) + wκ, |λκj| ≤ 1, p(wκ) ≤ ε1 .

Set

h = f − λ
m∑

κ=1

nκ∑

j=1

λκjfκjχAκ

and let t ∈ B. If t ∈ Aκ, then

h(t) = f(t) − λ
nκ∑

j=1

λκjfκj(t) =

= [f(t) − f(tκ)] +
[
f(tκ) − λ

nκ∑

j=1

λκjfκj(tκ)
]
+ λ

nκ∑

j=1

λκj(fκj(t) − fκj(tκ))

= [f(t) − f(tκ)] + wκ + λ
nκ∑

j=1

λκj[fκj(t) − fκj(tκ)] .

Since

ν(t)p(f(t) − f(tκ)) < dε1 < ε, ν(t)p(wκ) < ε

and

|λ|ν(t)p(fκj(t) − fκj(tκ)) < |λ| · d · ε

|λ| · d
= ε ,

it follows that v(t)p(h(t)) < ε. If t /∈ ⋃m
κ=1 Aκ, then t /∈ S and so

v(t)p(h(t)) = v(t)p(f(t)) < ε. Thus qν,p(h) ≤ ε. which proves (∗).

Taking T the set IN of positive integers, with the discrete topology,

and as V the family of al constant positive functions on IN, we get as a

corollary the following

Proposition 4.7. If E is a polar space, then a subset D of c0(E)

is compactoid iff:

1) For each n ∈ IN, the set {xn, x ∈ D} is compactoid in E.

2) For each p ∈ cs(E) and each ε > 0, there exists n0 such that p(xn) < ε

for all x ∈ D and all n ≥ n0.
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In case E = K in the preceding proposition, we get we known result

that a subset D of c0 is compact iff there exists y ∈ c0 such that

D ⊆ ŷ = {x ∈ c0, |xn| ≤ |yn| for all n ∈ N} .

Finally, taking as V the family of all positive constant functions on

T , we get the following.

Proposition 4.8. Let E be a polar space and let C0(T,E) have

the topology of uniform convergence. Then a subset D of C0(T,E) is

compactoid iff:

1) D is equicontinuous.

2) For each t ∈ T , the set D(t) is compactoid in E.

3) D vanishes uniformly at infinity, i.e. for each ε > 0 and each p ∈
cs(E) there exists a compact subset S of T such that p(f(t)) < ε for

all f ∈ D and all t /∈ S.
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