Rendiconti di Matematica, Serie VII Volume 16, Roma (1996), 545-562

Non-Archimedean weighted spaces of continuous functions

A.K. KATSARAS – A. BELOYIANNIS

RIASSUNTO: Si studiano le proprietà di certi spazi non-Archimedei di funzioni continue. In particolare si esamina la completezza di questi spazi e si stabiliscono alcuni teoremi del tipo di quello di Arzelà-Ascoli

ABSTRACT: Some properties of non-Archimedean weighted spaces of continuous functions are investigated. Completeness of these spaces is examined and Arzelà-Ascoli type theorems are given.

- Introduction

Weighted spaces of continuous functions were introduced in the complex scalar case by L. NACHBIN in [23] and in the vector case by J. PROLLA in [25]. Several other authors have continued the investigation of such spaces. The papers [1], [2]-[13], [17], [18], [25] and many others deal with problems referring to such spaces. JOSÈ PAULO CARNEIRO introduced in [14] the *p*-adic weighted spaces (see also [15]). Some *p*adic Ascoli type theorems concerning spaces of continuous functions were given in [16], [22], and [24].

A.M.S. Classification: 46S10

KEY WORDS AND PHRASES: Non-Archimedean seminorm – Nachbin family – Compactoid set – Polar space

In this paper, we will study some of the properties of non-Archimedean Nachbin spaces. Among other things, we will investigate the completeness of such spaces and we will obtain some Arzelá-Ascoli type theorems. In subsequent papers we will continue with the investigation of such spaces.

1 – Preliminaries

Throughout this paper, **K** will stand for a complete non-Archimedean valued field whose valuation is non-trivial. By a seminorm on a vector space E over **K** we will mean a non-Archimedean seminorm. Let Ebe a locally convex space over **K**. The collection of all the continuous seminorms on E will be denoted by cs (E). When the valuation of **K** is discrete, we will consider only seminorms p such that $p(E) \subseteq \{|\lambda|, \lambda \in \mathbf{K}\}$. Note that these seminorms generate the topology of E. For a subset Sof E, we will denote by co(S) the absolutely convex hull of S. In case of a finite set $S = \{x_1, \ldots, x_n\}$, we have

$$co(S) = \left\{ \sum_{\kappa=1}^{n} \lambda_{\kappa} x_{\kappa}, \ \lambda_{\kappa} \in \mathbf{K}, |\lambda_{\kappa}| \le 1 \right\}.$$

Recall that a subset A of E is called compactoid if, for each neighbourhood W of zero in E, there exists a finite subset S of E such that

$$A \subseteq co(S) + W$$
.

The topological dual space of E will be denoted by E'. By $\sigma(E, E')$ and $\sigma(E', E)$ we will denote the weak topology of E and E', respectively.

The polar and the bipolar set of a subset B of E will be denoted by B^0 and B^{00} , respectively. A seminorm p on E is called polar if p = $\sup\{|f|, f \in E^*, |f| \leq p\}$. The space E is called a polar space if its topology is generated by a family of polar seminorms.

If E and F are locally convex spaces over \mathbf{K} , then $E \otimes_{\pi} F$ denotes the projective tensor product of these spaces. Also by $p \otimes q$ we will denote the tensor product of the seminorm p and q. For all unexplained terms concerning non-Archimeaden spaces, we will refer to [29].

2- The weighted spaces CV(T, E) and $CV_0(T, E)$

Let T be a Hausdorff topological space and let E be a non-Archimedean locally convex space. The space of all continuous E-values functions on T will be denoted by C(T, E). In case E is the scalar field \mathbf{K} , we will write C(T) instead of $C(X, \mathbf{K})$. If τ is the topology of T and if τ_0 is the finest zero-dimensional topology on T which is coarser than τ , then an E-valued function on T is τ -continuous iff is τ_0 -continuous. Since we are only studying spaces of continuous E-valued on T there is no much loss of generality if we assume that T is zero-dimensional.

A Nachbin family on T is a family V of non-negative upper semicontinuous functions on T such that: a) For every ν_1 and ν_2 in V and any $\alpha \ge 0$ there exists $\nu \in V$ such that $\alpha \nu_1$, $\alpha \nu_2 \le \nu$ (pointwise on T). β) For every $t \in T$ there exists $v \in V$ with v(t) > 0. Let $p \in cs(E)$ and $\nu \in V$. For every E-valued function x on T, we define

$$q_{\nu,p}(x) = \|x\|_{\nu,p} = \sup\{\nu(t)p(x(t)), \quad t \in T\}.$$

In case x is a **K**-valued function on T, we define

$$q_{\nu}(x) = ||x||_{\nu} = \sup\{\nu(t)|x(t)|, \quad t \in T\}.$$

The weighted space CV(T, E) is defined to be the space of all $x \in C(T, E)$ for which $q_{\nu,p}(x) < \infty$ for all $v \in V$ and all $p \in cs(E)$. Note that each $q_{\nu,p}$ is a non-Archimedean seminorm on CV(T, E). On CV(T, E)we will consider the locally convex topology defined by the family of seminorms $\{q_{\nu,p}, \nu \in V, p \in cs(E)\}$. We will denote by $CV_0(T, E)$ the subspace of CV(T, E) consisting of all $x \in C(T, E)$ for which the function $t \to v(t)p(x(t)), t \in T$, vanishes at infinity, for all $v \in V$ and all $p \in cs(E)$. So $x \in CV_0(T, E)$ iff, for any $p \in cs(E)$, any $v \in V$ and any $\varepsilon > 0$ there exists a compact subset Y of T such that $v(t)p(x(t)) < \varepsilon$, for $t \notin Y$. If $E = \mathbf{K}$, we will write CV(T) and $CV_0(T)$ instead of $CV(T, \mathbf{K})$ and $CV_0(T, \mathbf{K})$, respectively.

EXAMPLES

1) Taking as V the family of all positive multiples of the **R**-characteristic functions of the compact subsets of T, we get that both $CV_0(T, E)$ and CV(T, E) coincide with the space C(T, E) with the topology of uniform convergence on the compact subsets of T.

2) If V is the family of all positive multiples of the **R**-characteristic functions of the finite subsets of T, then the corresponding spaces CV(T, E) and $CV_0(T, E)$ coincide with the space C(T, E) with the topology of simple convergence.

3) Let $C_b(T, E)$ denote the space of all bounded continuous *E*-valued functions on *T* and let $C_0(T, E)$ be the space of all continuous *E*-valued functions on *T* which vanish at infinity. On both of these spaces we consider the topology of uniform convergence. If *V* is the of all positive constant functions on *T*, then CV(T, E) and $CV_0(T, E)$ coincide with $C_b(T, E)$ and $C_0(T, E)$, respectively.

4) Let T be locally compact and let

$$V = \{ |\varphi|, \varphi \in C_0(T, \mathbf{K}) \}, \text{ where } |\varphi|(t) = |\varphi(t)|, \forall t \in T.$$

Since, for $\varphi_1, \varphi_2 \in C_0(T, \mathbf{K})$ there exists $\varphi \in C_0(T, \mathbf{K})$ with $|\varphi| = \max\{|\varphi_1|, |\varphi_2|\}$ (by [20, Lemma 3.1]) it is easy to see that V is a Nachbin family on T. For this Nachbin family we have that

(*)
$$CV(T, E) = CV_0(T, E) = C_b(T, E)$$
 (algebraically).

Indeed it is clear that every $f \in C_b(T, E)$ belongs to $CV_0(T, E)$. On the other hand, suppose that some $f \in CV(T, E)$ is not bounded. Hence there exists $p \in cs(E)$ with $\sup_{t \in T} p(f(t)) = \infty$. Let $\lambda \in \mathbf{K}, |\lambda| > 1$, and choose a sequence (t_n) of distinct elements of T such that $p(f(t_n)) > |\lambda|^{2n}$. Let $\varphi: T \to \mathbf{K}, \varphi(t_n) = \lambda^{-n}$ and $\varphi(t) = 0$ if $t \neq t_n, n = 1, 2, \ldots$. As in the proof of 2.5 in [19], there exists $\omega \in C_0(T, \mathbf{K})$ with $|\varphi| \leq |\omega$. Since $\sup_n |\omega(t_n)|p(f(t_n)) \geq \sup_n |\lambda|^n = \infty$, we have a contradiction. This contradiction proves (*). Also the topology of $CV(T, E) = CV_0(T, E)$ is the topology β introduced by PROLLA in [26]. By [19, Proposition 2.5], β coincides with the strict topology β_0 introduced by the first author in [19]. Thus both CV(T, E) and $CV_0(T, E)$ coincide with the space $C_b(T, E)$ equipped with the strict topology.

We have the following result that can be easily established

LEMMA 2.1. α) $CV_0(T, E)$ is a closed subspace of CV(T, E). β) If E is Hausdorff, then CV(T, E) is a Hausdorff space.

LEMMA 2.2. If E is a polar space, then CV(T, E) and $CV_0(T, E)$ are polar spaces.

PROOF. Since $CV_0(T, E)$ is a subspace of CV(T, E), we only need to prove our result for CV(T, E). Let p a polar continuous seminorm on E and $v \in V$. Let $\lambda \in \mathbf{K}$, with $|\lambda| > 1$, and choose, for each $t \in T$, $\lambda_t \in \mathbf{K}$ such that $|\lambda_t| \leq v(t) \leq |\lambda \lambda_t|$. Let $\varphi: T \to \mathbf{K}, \varphi(t) = \lambda_t$, and set $q = q_{|\varphi|,p}$. Then

$$q \le q_{\nu,p} \le |\lambda| q$$
.

We will finish the proof by showing that q is a polar seminorm on CV(T, E). So let $x \in CV(T, E)$ with $q(x) > \theta > 0$. There exists $t \in T$ with $|\varphi(t)|p(x(t)) > \theta$. Since p is polar, there exists $\omega \in E'$, $|\omega| \leq p$, $|\omega(x(t)) > \theta/|\varphi(t)|$. Now the mapping

$$f: CV(T, E) \to \mathbf{K}, \quad f(y) = \varphi(t)\omega(y(t)),$$

is a linear form on CV(T, E) with $|f| \le p$ and $|f(x)| > \theta$.

PROPOSITION 2.3. The mapping $\omega \colon CV(T) \otimes_{\pi} E \to CV(T, E)$

$$\sum_{\kappa=1}^n x_\kappa \otimes u_\kappa \to \sum_{\kappa=1}^n x_\kappa \, u_\kappa$$

is a well defined linear map which is one-to-one. Moreover ω is a topological isomorphism between $CV(T) \otimes_{\pi} E$ and $G = \omega(CV(T) \otimes_{\pi} E)$.

PROOF. It is not hard to show that ω is a well defined linear map which is one-to-one. We will show that both ω and ω^{-1} are continuous. So let $v \in V$ and $p \in cs(E)$. If $z \in CV(T) \otimes_{\pi} E$, then for each representation $z = \sum_{\kappa=1}^{m} x_{\kappa} \otimes u_{\kappa}$ of z, we have

$$\sup_{t} \nu(t) p\Big(\sum_{\kappa=1}^{m} x_{\kappa}(t) u_{\kappa}\Big) \leq \sup_{t} \max_{\kappa}(\nu(t)) |x_{\kappa}(t)| p(u_{\kappa}) = \max_{\kappa} (\sup_{t} \nu(t) |x_{\kappa}(t)|) p(u_{\kappa}) = \max_{\kappa} ||x_{\kappa}||_{\nu} p(u_{\kappa}).$$

П

This proves that $q_{\nu,p}(\omega(z)) \leq (q_{\nu} \otimes p)(z)$ and so ω is continuous. On the other hand, given 0 < s < 1, there exists a representation $z = \sum_{\kappa=1}^{n} y_{\kappa} \otimes w_{\kappa}$ of z such that w_1, \ldots, w_n are s-orthogonal with respect to p. Now, for each $t \in T$, we have

$$p\Big(\sum_{\kappa=1}^{n} y_{\kappa}(t)w_{\kappa}\Big) \ge s \max_{\kappa}(|y_{\kappa}(t)|p(w_{\kappa}))$$

and so $q_{\nu,p}(\omega(z)) \ge s \max_{\kappa} \|y_{\kappa}\|_{\nu} p(w_{\kappa}) \ge s(q_{\nu} \otimes p)(z)$. Since 0 < s < 1 was arbitrary, we get that $q_{\nu,p}(\omega(z)) \ge (q_{\nu} \otimes p)(z)$ and so $q_{\nu,p}(\omega(z)) = (q_{\nu} \otimes p)(z)$.

In view of the preceding proposition, we may identify $CV(T) \otimes_{\pi} E$ with the topological subspace $\{\sum_{\kappa=1}^{m} x_{\kappa} u_{\kappa}, x_{\kappa} \in CV(T), u_{\kappa} \in E, m \in \mathbb{N}\}$ of CV(T, E). Analogously, $CV_0(T) \otimes_{\pi} E$ may be identified with the subspace $\{\sum_{\kappa=1}^{m} x_{\kappa} u_{\kappa}, x_{\kappa} \in CV(T), u_{\kappa} \in E, m \in \mathbb{N}\}$ of $CV_0(T, E)$.

PROPOSITION 2.4. If, for every $t \in T$, there exists $x_t \in CV_0(T)$ with $x_t(t) \neq 0$, then $CV_0(T) \otimes_{\pi} E$ is a dense subspace of $CV_0(T, E)$.

PROOF. We may assume that $x_t(t) = 1$ for every $t \in T$. Let $h \in CV_0(T, E)$, $v \in V$ and $p \in cs(E)$. Given $\varepsilon > 0$, there exists a compact subset S of T such that $v(t)p(h(t)) < \varepsilon$ if $t \notin S$. Since v is uppersemicontinuous and S compact, there exists d > 0 such that v(t) < d for each $t \in S$. The set $\Omega = \{t \in T, \nu(t) < d\}$, is open and contains S. Since T is zero-dimensional, there exists a clopen (*i.e.* closed and open) subset D of T such that $S \subseteq D \subseteq \Omega$. For each $t \in S$, set

$$D_t = D \cap \{s, p(h(t) - h(s)) < \varepsilon/d\} \cap \{s, |x_t(s) - 1| < \varepsilon_t\}$$

where ε_t is such that $\varepsilon_t p(h(t)) < \varepsilon/d$. Using the compactness of S, it is clear that there are t_1, \ldots, t_m is S and pairwise disjoint clopen subsets W_1, \ldots, W_m of T covering S and such that $t_{\kappa} \in W_{\kappa} \subseteq D_{t_{\kappa}}$. Let $\chi_{W_{\kappa}}$ denote the **K**-characteristic function of W_{κ} , $y_{\kappa} = x_{t_{\kappa}} \cdot \chi_{W_{\kappa}}$ and $f = \sum_{\kappa=1}^m y_{\kappa} h(t_{\kappa})$. Clearly $f \in CV(T)_0 \otimes E$. We will finish the proof by showing that $q_{\nu,p}(f-h) \leq \varepsilon$. So let $t \in T$. If $t \notin \bigcup_{\kappa=1}^m W_{\kappa}$, then $t \notin S$ and so $\nu(t)p(f(t) - h(t)) = \nu(t)p(h(t)) < \varepsilon$. Let $t \in W_{\kappa}$. Then

$$f(t) = y_{\kappa}(t)h(t_{\kappa}) = x_{t_{\kappa}}(t)h(t_{\kappa})$$

and so
$$f(t) - h(t) = h(t_{\kappa})(x_{t_{\kappa}}(t) - 1) + h(t_{\kappa}) - h(t)$$
 which implies that
 $\nu(t)p(f(t) - h(t)) \leq \nu(t) \cdot \max_{\kappa} \{|1 - x_{t_{\kappa}}(t)|p(h(t_{\kappa})), p(h(t_{\kappa}) - h(t))\} \leq \varepsilon$

Hence the result follows.

REMARK. Our hypothesis about $CV_0(T)$ in the preceding proposition is rather weak and it is satisfied for instance for every Nachbin family V if T is locally compact.

PROPOSITION 2.5. If $E' \neq \{0\}$, then CV(T) (resp. $CV_0(T)$) is topologically isomorphic to a complemented subspace of CV(T, E) (resp. of $CV_0(T, E)$).

PROOF. Let $\varphi \in E'$ and $u \in E$, with $\varphi(u) = 1$, and let $q \in cs(E)$, $|\varphi| \leq q$. For $f \in CV(T, E)$ we have that $\varphi \circ f \in CV(T)$. Define

$$Q: CV(T, E) \to CV(T, E), \quad Q(f) = (\varphi \circ f)u.$$

For every $v \in V$ and $p \in cs(E)$, we have that $\|(\varphi \circ f)u\|_{\nu,p} \leq p(u)\|f\|_{\nu,p}$ and so Q is continuous. Since $Q^2 = Q$, it follows that Q is a continuous projection. We will show that G = Q(CV(T, E)) is topologically isomorphic to CV(T). Indeed, we consider the mapping

$$H: CV(T) \to G, \quad H(x) = Q(xu).$$

Clearly *H* is linear and one-to-one. Also *H* is onto since for $h = (\varphi \circ f)u$, we have $H(\varphi \circ f) = h$. Finally, *H* is a homeomorphism. In fact, it is clear that *H* is continuous. Also H^{-1} is continuous. Indeed, the map $p(w) = |\varphi(w)|$ is a continuous seminorm on *E* and p(u) = 1. Now, for $x \in$ CV(T) and $v \in V$, we have H(x) = xu and $\nu(t)|x(t)| = \nu(t)p(x(t)u) \leq$ $||H(x)||_{\nu,p}$ and so $||x||_{\nu} \leq ||H(x)||_{\nu,p}$. This proves that *H* is a topological isomorphism. The proof for $CV_0(T)$ is analogous.

PROPOSITION 2.6. If CV(T) (resp. $CV_0(T)$) has a non-zero element, then E is topologically isomorphic to a complemented subspace of CV(T, E) (resp. of $CV_0(T, E)$). In particular this happens if T is locally compact.

 $h(t_0) = 1$ for some $t_0 \in T$. Let

$$P: CV(T, E) \to CV(T, E), \quad P(f) = hf(t_0).$$

Then P is a continuous linear projection. Let G = P(CV(T, E)) and consider the mapping

$$S: E \to G, \quad u \to hu.$$

For $p \in cs(E)$ and $v \in V$, we have

$$||hu||_{\nu,p} = ||h||_{\nu}p(u)$$

and so S is continuous. Also S^{-1} is continuous since we can choose $v \in V$ with $v(t_0) > 0$ and so $||h||_{\nu} \neq 0$. This proves that G is topologically isomorphic to E. The proof for the case of $CV_0(T, E)$ is analogous.

3-Completeness

As in the classical case (see [28]), for a topological space Y, we will say that T is a V_Y -space, with respect to a Nachbin family V on T, if any function j from T to Y, whose restriction to each of the sets $\{t \in T, v(t) \ge 1\}, v \in V$, is continuous, is also continuous on T.

PROPOSITION 3.1. α) If T is a V_R -space, then T is also a V_K -space. β) Every V_K -space is also a V_F -space, for every zero-dimensional topological space F.

PROOF. α) Let $f: T \to \mathbf{K}$ be such that its restriction to each of the sets $G_{\nu} = \{t \in T, \quad \nu(t) \geq 1\}, \nu \in V$, is continuous and let (t_{α}) be α net in T which converges to some $t \in T$. let D be a clopen neighbourhood of f(t) in \mathbf{K} . If φ is the \mathbf{R} -characteristic function of D, then φ is continuous and so $h = \varphi \circ f$ is continuous on each $G_v, v \in V$, which implies that his continuous on T. Hence, there exists α_0 such that $|h(t) - h(t_{\alpha})| < 1$ if $\alpha \succeq \alpha_0$. Since h(t) = 1, it follows that $|h(t_{\alpha})| = |h(t_0)| = 1$, for $\alpha \succeq \alpha_0$, and so $f(t_{\alpha}) \in D$. This proves that f is continuous at t. β) The proof is analogous to that of α). THEOREM 3.2. If E is complete and T is a V_K -space then CV(T, E)and $CV_0(T, E)$ are complete.

PROOF. Since $CV_0(T, E)$ is a closed subspace of CV(T, E), it suffices to prove the result for CV(T, E). So let (f_α) be a Cauchy net in CV(T, E). Since for each $t \in T$ there exists v in V with v(t) > 0, it follows that the map $\omega_t : CV(T, E) \to E$, $f \to f(t)$ is continuous and so $(f_\alpha(t))$ is a Cauchy net in E.

Define $f: T \to E$, $f(t) = \lim f_{\alpha}(t)$.

CLAIM 1. The restriction of f to each $G_{\nu} = \{t : v(t) \ge 1\}, v \in V$, is continuous. Indeed, let (t_{δ}) be net in G_{ν} converging to some $t_0 \in G_{\nu}$. Given $\varepsilon > 0$, there exists α_0 such that

$$q_{\nu,p}(f_{\alpha} - f_{\beta}) \leq \varepsilon \quad \text{if} \quad \alpha, \beta \succeq \alpha_0$$

Thus for $\alpha, \beta \succeq \alpha_0$, we have $p(f_{\alpha}(t) - f_{\beta}(t)) \leq \varepsilon$ for each $t \in G_{\nu}$. Since f_{α_0} is continuous at t_0 , there exists δ_0 such that

$$p(f_{\alpha_0}(t_{\delta}) - f_{\alpha_0}(t_0)) < \varepsilon \quad \text{if} \quad \delta \succeq \delta_0.$$

Also, for $t \in G_{\nu}$, we have $p(f_{\alpha_0}(t) - f(t)) \leq \varepsilon$. Now for $\delta \succeq \delta_0$, we have

$$p(f(t_{\delta}) - f(t_{0})) \leq \\ \leq \max \left\{ p(f(t_{\delta}) - f_{\alpha_{0}}(t_{\delta})), \ p(f_{\alpha_{0}}(t_{\delta}) - f_{\alpha_{0}}(t_{0})), \ p(f_{\alpha_{0}}(t_{0}) - f(t_{0})) \right\} \leq \varepsilon . \square$$

CLAIM 2. $f \in CV(T, E)$. Indeed, in view of Claim 1, f is continuous since T is a V_K -space and hence a V_E -space (by Proposition 3.1). Let $v \in V, p \in cs(E)$, and $\varepsilon > 0$. There exists α_0 such that $q_{\nu,p}(f_\alpha - f_\beta) \leq \varepsilon$ if $\alpha, \beta \succeq \alpha_0$. Thus, for $\alpha, \beta \succeq \alpha_0$, we have $\nu(t)p(f_\alpha(t) - f_\beta(t)) \leq \varepsilon$ and so $\nu(t)p(f_{\alpha_0}(t) - f(t)) \leq \varepsilon$ for each $t \in T$. Now

$$\sup_{t \in T} \nu(t) p(f(t)) \le \max\{\varepsilon, q_{\nu, p}(f_{\alpha_0})\}\$$

and thus $f \in CV(T, E)$.

CLAIM 3. $f_{\alpha} \to f$ in CV(T, E). the proof of this is analogous to that of Claim 2.

[9]

Combining Proposition 2.4 with the preceding theorem, we get the following:

PROPOSITION 3.3. Let E be complete and Hausdorff and T a V_K -space. If for every $t \in T$ there exists $x_t \in CV_0(T)$ with $x_t(t) \neq 0$, then $CV_0(T, E)$ coincides with the completion $CV_0(T) \otimes_{\pi} E$ of $CV_0(T) \otimes_{\pi} E$.

4- Compactoid subsets of $CV_0(T, E)$

Given $v \in V$ and $\lambda \in \mathbf{K}$, with $|\lambda| > 1$, there exists $\varphi : T \to E$ such that $|\varphi| \le v \le |\lambda\varphi|$. If $|\mu| > 1$ and if $\varphi' : T \to E$ is another function with $|\varphi'| \le v \le |\mu\varphi'|$ then $|\varphi| \le |\mu\varphi'|$ and $|\varphi'| \le |\lambda\varphi|$.

Let now $CV_{co}(T, E)$ be the space of all $f \in CV(T, E)$ such that, for all $v \in V$, there exists $\varphi \in \mathbf{K}^T$, with $|\varphi| \leq v \leq |\lambda\varphi|$, such that $(\varphi f)(T)$ is a compactoid subset of E. If φ is such a function and if $\varphi' \in \mathbf{K}^T$, with $|\varphi'| \leq v \leq |\lambda\varphi'|$, then $(\varphi'f)(T)$ is compactoid. It follows now easily that $CV_{co}(T, E)$ is a vector subspace of CV(T, E). We will consider on $CV_{co}(T, E)$ the topology induced by the topology of CV(T, E).

PROPOSITION 4.1. $CV_0(T, E)$ is a subspace of $CV_{co}(T, E)$.

PROOF. Let $f \in CV_0(T, E)$ and $v \in V$. Let $|\lambda| > 1$ and $\varphi \in \mathbf{K}^T$ with $|\varphi| \le v \le |\lambda\varphi|$. For $p \in cs(E)$ and $\varepsilon > 0$, there exists a compact subset S of T such that $v(t)p(f(t)) < \varepsilon$ if $t \notin S$. Let d > 0 be such that v(t) < d for all $t \in S$. For each $t \in S$, set

$$W_t = \{s \in T, p(f(s) - f(t)) < \varepsilon/d\}.$$

Each W_t is clopen and $W_t = W_s$ whenever $W_t \cap W_s \neq \emptyset$. By the compactness of S, there are t_1, \ldots, t_n in S such that the sets W_{t_1}, \ldots, W_{t_n} are pairwise disjoint and cover S. If $|\mu| > d$, then

$$(\varphi f)(T) \subseteq co(\mu f(t_1), \dots, \mu f(t_n)) + \{u \in E, p(u) < \varepsilon\} = M.$$

Indeed, the set $D = \{t, \nu(t) < d\}$ is open and contains S. Let now $t \in T$. If $t \in W_{t_i} \cap D$, then

$$\varphi(t)f(t) = \varphi(t)(f(t) - f(t_i)) + \varphi(t)f(t_i)$$

with $|\varphi(t)|p(f(t) - f(t_i)) < \varepsilon$ and $|\varphi(t)| < |\mu|$, which implies that $\varphi(t)f(t) \in M$.

PROPOSITION 4.2. Let F be a Hausdorff polar space and let G denote the dual space of F equipped with the topology of uniform convergence on the compactoid subsets of F. If F is quasi-complete, then G' = F.

PROOF. For $B \subseteq F$, let B^{00} be the bipolar of B with respect to the pair $\langle F, F' \rangle$. Let $\mathcal{B} = \{B^{00}, B \subseteq F, B \text{ compactoid}\}$. Each element B^{00} of \mathcal{B} is compactoid (by [29, Theorem 5.13]). Also B^{00} is closed and bounded and hence complete. Since $(B^{00})^0 = B^0$, it follows that the topology of G coincides with the topology $\tau_{\mathcal{B}}$ of uniform convergence on the members of \mathcal{B} . Since on compactoid subsets of F, the topology of F coincides with the weak topology $\sigma(F, F')$ (by [29, Theorem 5.12]), each B^{00} is weakly complete. Thus, each member of \mathcal{B} is edged, weakly bounded, and weakly complete. Taking the space $M = (F', \sigma(F', F))$, we have that M' = F. It is easy to see that \mathcal{B} is a special covering of M' = F (see [29, Definition 7.3]), and thus (by [29, Proposition 7.4])

$$G' = (M, \tau_{\mathcal{B}})' = M' = F.$$

LEMMA 4.3. Let T be a $V_{\mathbf{K}}$ -space, F = CV(T) and G the dual space of F equipped with the topology of uniform convergence on the compactoid subsets of F. Then the mapping $\Delta : T \to G, t \to \delta_t, \delta_t(x) = x(t)$, is continuous.

PROOF. In view of Theorem 3.2, F is complete and G' = F by the preceding proposition. We first observe that Δ is continuous as a map from T to the weak dual F'_{σ} of F. To prove our result, it suffices (in view of Proposition 3.1) to show that, for each $v \in V$, the restriction of Δ to $Y_{\nu} = \{t \in T, \nu(t) \geq 1\}$ is continuous. Since

$$\Delta(Y_{\nu}) \subseteq \{x \in F, \|x\|_{\nu} \le 1\}^0,\$$

 $\Delta(Y_{\nu})$ is an equicontinuous subset of F'. Since F is a polar space (by Lemma 2.2), its topology coincides with the topology of uniform convergence on the equicontinuous subsets of F'. By [21, Proposition 3.12], each

equicontinuous subset of F' is a compactoid subset of G. Since G' = F, on $\Delta(Y_{\nu})$ the topology of G coincides with the weak topology $\sigma(G, G')$. Now $\Delta : Y_{\nu} \to \Delta(Y_{\nu})$ is continuous since it is continuous if we consider on $\Delta(Y_{\nu})$ the weak topology.

LEMMA 4.4. If T is a V_K -space, then every compactoid subset D of CV(T) is equicontinuous.

PROOF. Let F = CV(T) and let G, Δ be as in the preceding Lemma. Since D^0 is a neighbourhood of zero in G, given $t \in T$ and $\mu \neq 0$ in \mathbf{K} , there exists an open subset A of T containing t such that

$$\Delta(A) \subseteq \mu D^0 + \delta_t \,.$$

If now $x \in D$ and $s \in A$, then $\delta_s - \delta_t \in \mu D^0$ and so $|x(s) - x(t)| \leq |\mu|$, which proves that D is equicontinuous at t.

PROPOSITION 4.5. Let T be a V_K -space and E a polar space. Then, every compactoid subset D of $CV_{co}(T, E)$ is equicontinuous.

PROOF. Let $f \in CV_{co}(T, E)$. For each $x' \in E'$, the function $x' \circ f$ is in CV(T). Let

$$f: E' \to CV(T), \quad x' \to x' \circ f.$$

If we consider on E' the topology τ_{co} of uniform convergence on the compactoid subsets of E, then \tilde{f} is continuous. In fact, let $v \in V$ and choose $\varphi \in \mathbf{K}^T$ with $|\varphi| \leq v \leq |\lambda\varphi|, |\lambda| > 1$. Since $M = (\varphi f)(T)$ is compactoid in E, its polar M^0 is a neighborhood of zero for τ_{co} . Moreover

$$\tilde{f}(\lambda^{-1}M^0) \subseteq \{ x \in CV(T), \ \|x\|_{\nu} \le 1 \}$$

which proves the continuity of \tilde{f} . Let now $p \in cs(E)$ be a polar seminorm and set

$$B_p = \{ u \in E, p(u) \le 1 \}$$

We will show that the set

$$H = \bigcup \left\{ \tilde{f}(B_p^0), \ f \in D \right\}$$

is a compactoid subset of CV(T). Indeed, let $v \in V$. Since D is a compactoid, there are f_1, \ldots, f_n in $CV_{co}(T, E)$ such that

$$D \subseteq co(f_1, \dots, f_n) + W, \quad W = \{f \in CV_{co}(T, E), q_{\nu, p}(f) \le 1\}.$$

Let $f = \sum_{i=1}^{n} \lambda_i f_i + h$ in $D, h \in W, |\lambda_i| \le 1$. Then

$$\tilde{f}(B_p^0) \subseteq \sum_{i=1}^n \lambda_i \tilde{f}_i(B_p^0) + \tilde{h}(B_p^0) \,.$$

Each B_p^0 is a τ_{co} -compactoid and so $\tilde{f}_i(B_p^0)$ is a compactoid subset of CV(T). Thus, the absolutely convex hull M of $\bigcup_{\kappa=1}^n \tilde{f}_i(B_p^0)$ is compactoid in CV(T) and so there exists x_1, \ldots, x_m in CV(T) such that

$$M \subseteq co(x_1, \dots, x_m) + W_1, \quad W_1 = \{x \in CV(T), \|x\|_{\nu} \le 1\}.$$

Since $h(B_p^0) \subseteq W_1$, for $h \in W$, if follows that

$$H \subseteq co(x_1, \ldots x_m) + W_1,$$

which proves that H is compacted in CV(T). In view of Lemma 4.4, H is equicontiunuous. Thus, given $t_0 \in T$ and $\mu \neq 0$ in \mathbf{K} , there exist a neighbourhood A of t_0 in T such that

$$|\tilde{f}(x')(t) - \tilde{f}(x')(t_0)| \le |\mu| \quad \text{for all} \quad f \in D, \ x' \in B_p^0, \ t \in A,$$

and so

$$\mu^{-1}(f(t) - f(t_0)) \in B_p^{00} = B_p$$

if $t \in A$. Hence, for all $t \in A$, $f \in D$, we have $p(f(t) - f(t_0)) \le |\mu|$, and so the result follows.

The following is an Arzelá-Ascoli type theorem for $CV_0(T, E)$.

THEOREM 4.6. Let E be a polar space, T a V_K -space and D a subset of $CV_0(T, E)$. Then, D is compactoid iff:

- a) D is equicontiunuous.
- b) For each $t \in T$, the set $D(t) = \{f(t), f \in D\}$ is a compactoid subset of E.
- c) For any $p \in cs(E)$, $v \in V$ and $\varepsilon > 0$, there exists a compact subset S of T such that $v(t)p(f(t)) < \varepsilon$ for all $f \in D$ and all $t \notin S$.

PROOF. Necessity: Assume that D is compactoid. Part a) follows from the preceding proposition in view of Proposition 4.1. As regards part b), since for each $t \in D$ there exists $v \in V$ with v(t) > 0, it follows that the mapping

$$\varphi_t : CV_0(T, E) \to E, \quad \varphi_t(f) = f(t),$$

is continuous and so $D(T) = \varphi_t(D)$ is compactoid. Finally, to show part c), let f_1, \ldots, f_n in $CV_0(T, E)$ be such that

$$D \subseteq co(f_1, \ldots, f_n) + \{f, q_{\nu, p}(f) < \varepsilon\}.$$

Let S be a compact subset of T such that $v(t)p(f_i(t)) < \varepsilon$ for all $t \in S$, $i = 1, \ldots, n$. Let now $f \in D$, $f = \sum_{i=1}^n \lambda_i + h$, $|\lambda_i| \le 1$, $q_{\nu,p}(h) < \varepsilon$. Then, for $t \notin S$, we have $v(t)p(f(t)) < \varepsilon$.

Sufficiency: Assume that D satisfies properties a), b), c). Since co(D) also has properties a), b), c), when D does, we may assume that D is absolutely convex. Let

$$d > \sup_{t \in S} \nu(t)$$
 and $B = \{t \in T, \nu(t) < d\}.$

Then B is open and contains S. For each $t \in S$, there exists a clopen set W_t with $t \in W_t \subseteq B$, such that $p(f(t) - f(s)) < \varepsilon_1 = \frac{\varepsilon}{d|\lambda|}$ for all $f \in D$ and all $s \in W_t$. It is now clear, using the compactness of S, that there are t_1, \ldots, t_m in S and pairwise disjoint clopen sets A_1, \ldots, A_m covering S, $t_{\kappa} \in A$, such that $p(f(t) - f(t_{\kappa})) < \varepsilon_1$ for all $t \in A_{\kappa}$ and all $f \in D$. Since $D(t_{\kappa})$ is an absolutely convex compactoid, there are $f_{\kappa 1}, \ldots, f_{\kappa n_{\kappa}}$ in D such that

$$D(t_{\kappa}) \subseteq \lambda \cdot co(f_{\kappa 1}(t_{\kappa}), \dots, f_{\kappa n_{\kappa}}(t_{\kappa})) + B_{p,\varepsilon_{1}},$$

where $|\lambda| > 1$ and $B_{p,\varepsilon_1} = \{u \in E, p(u) \leq \varepsilon_1\}$. If $\chi_{A_{\kappa}}$ is the **K**-characteristic function of A_{κ} , we will show that

(*)
$$D \subseteq \lambda \cdot co(H) + \{f, q_{\nu, p}(f) \le \varepsilon\},\$$

$$f(t_{\kappa}) = \lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j}(t_{\kappa}) + w_{\kappa}, \ |\lambda_{\kappa j}| \le 1, \ p(w_{\kappa}) \le \varepsilon_1.$$

 Set

$$h = f - \lambda \sum_{\kappa=1}^{m} \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j} \chi_{A_{\kappa}}$$

and let $t \in B$. If $t \in A_{\kappa}$, then

$$h(t) = f(t) - \lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j}(t) =$$

= $[f(t) - f(t_{\kappa})] + \left[f(t_{\kappa}) - \lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j}(t_{\kappa})\right] + \lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} (f_{\kappa j}(t) - f_{\kappa j}(t_{\kappa}))$
= $[f(t) - f(t_{\kappa})] + w_{\kappa} + \lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} [f_{\kappa j}(t) - f_{\kappa j}(t_{\kappa})].$

Since

$$u(t)p(f(t) - f(t_{\kappa})) < d\varepsilon_1 < \varepsilon, \ \nu(t)p(w_{\kappa}) < \varepsilon$$

and

$$|\lambda|\nu(t)p(f_{\kappa j}(t) - f_{\kappa j}(t_{\kappa})) < |\lambda| \cdot d \cdot \frac{\varepsilon}{|\lambda| \cdot d} = \varepsilon,$$

it follows that $v(t)p(h(t)) < \varepsilon$. If $t \notin \bigcup_{\kappa=1}^{m} A_{\kappa}$, then $t \notin S$ and so $v(t)p(h(t)) = v(t)p(f(t)) < \varepsilon$. Thus $q_{\nu,p}(h) \leq \varepsilon$. which proves (*).

Taking T the set \mathbb{N} of positive integers, with the discrete topology, and as V the family of al constant positive functions on \mathbb{N} , we get as a corollary the following

PROPOSITION 4.7. If E is a polar space, then a subset D of $c_0(E)$ is compactoid iff:

- 1) For each $n \in \mathbb{N}$, the set $\{x_n, x \in D\}$ is compactoid in E.
- 2) For each $p \in cs(E)$ and each $\varepsilon > 0$, there exists n_0 such that $p(x_n) < \varepsilon$ for all $x \in D$ and all $n \ge n_0$.

In case $E = \mathbf{K}$ in the preceding proposition, we get we known result that a subset D of c_0 is compact iff there exists $y \in c_0$ such that

$$D \subseteq \hat{y} = \{x \in c_0, |x_n| \le |y_n| \text{ for all } n \in \mathbf{N}\}.$$

Finally, taking as V the family of all positive constant functions on T, we get the following.

PROPOSITION 4.8. Let E be a polar space and let $C_0(T, E)$ have the topology of uniform convergence. Then a subset D of $C_0(T, E)$ is compactoid iff:

- 1) D is equicontinuous.
- 2) For each $t \in T$, the set D(t) is compactoid in E.
- 3) D vanishes uniformly at infinity, i.e. for each $\varepsilon > 0$ and each $p \in cs(E)$ there exists a compact subset S of T such that $p(f(t)) < \varepsilon$ for all $f \in D$ and all $t \notin S$.

REFERENCES

- [1] F. BASTIN: On bornological $C\overline{V}(X)$ spaces, Arch. Math., 53 (1989), 394-398.
- [2] F. BASTIN B. ERNST: A criterion for CV(X) to be quasinormable, Results in Math., **14** (1988), 223-230.
- [3] K. D. BIERSTEDT: The approximation property for weighted function spaces, Bonner Math. Schiften, 81 (1975), 3-25.
- [4] K. D. BIERSTEDT: Tensor Products of weighted spaces, Bonner Math. Schriften, 81 (1975), 25-58.
- [5] K. D. BIERSTEDT: Gewichtete Räme Stetigen Vectorwertigen Functionen und das injective tensorproductI, Reine Angew. Math., 259 (1973), 186-290.
- [6] K. D. BIERSTEDT J. BONET: Completeness of the (LB)-space VC(X), Arch. Math., 56 (56), 281-285.
- [7] K. D. BIERSTEDT J. BONET: Dual Density Contribution in (DF)-space I, Resultate Math., 14 (1988), 242-274.
- [8] K. D. BIERSTEDT J. BONET: Some results on VC(X), pp. 181-194 in: T. TERZIOGLOU (Ed.), Advances in the Theory of Frechét Spaces, (Kluwer Academic publishers) 1989.

- [9] K. D. BIERSTEDT R. MEISE: Distinguish echelon space and the projective description for weighted inductive limits of type $V_dC(X)$, pp. 169-226 in: Aspects of Mathematics and its Applications, (Elservier Science Publ. B.V. North-Holland Math. Library) 1986.
- [10] K. D. BIERSTEDT R. MEISE W. H. SUMMERS: A Projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160.
- [11] K. D. BIERSTEDT R. MEISE W. H. SUMMERS: Köthe Sets and Köthe Sequence Spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory (North-Holland Math. Studies) 71, 1982.
- [12] J. BONET: A projective description of weighted inductive limits of spaces of vector valued functions, Collectanea Math., 34 (1983), 115-125.
- [13] J. BONET: On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20.
- [14] J. P. Q. CARNEIRO: Non-Archimedean weighted approximation, (in Portuguese) An. Acad. Brasil. Ci., 50 (1) (1978), 1-34.
- [15] J. P. Q. CARNEIRO: Non-Archimedean weighted approximation, in: Approximation Theory and Functional Analysis, (J.B. Prolla, editor) 121-131 (North-Holland Publ. Co. Amsterdam) 1979.
- [16] N. DE GRANDE-DE KIMPE: The Non-Archimedean space $C^{\infty}(X)$, Comp. Math., 48 (1983), 297-309.
- [17] B. ERNST: On the uniqueness of weighted (DF)-topologie, Bull. Roy. Sci. de Liege, 5-6 (1987), 451-461.
- [18] B. ERNST P. SCNETTLER: On Weighted Spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559.
- [19] A. K. KATSARAS: The Strict Topology in non-Archimedean vector-valued Function Spaces, Proc. Kon. Ned. Akad. Wet. A, 87 (2) (1984), 189-201.
- [20] A. K. KATSARAS: The Strict Topology in non-Archimedean Function Spaces, Inter. J. Math. & Math. Sci., 7 (1) (1984), 23-33.
- [21] A. K. KATSARAS C. PETALAS T. VIDALIS: Non-Archimedean Sequential Spaces and the Finest Locally Convex with the same Compactoid Sets, Acta Math. Univ. Comenianae, LXIII (1) (1994), 55-75.
- [22] J. MARTINEZ-MAURICA S. NAVARRO: *p-adic Ascoli theorems*, Revista Math. Univ. Computence de Madrid, 3 (1) (1990), 19-27.
- [23] L. NACHBIN: Elements of Approximation Theory, Van Nostrand Math. Studies, 14 (1967).
- [24] C. PEREZ-GARCIA: P-adic Ascoli theorems and Compactoid Polynomials, Indag Math. N.S., 3 (2) (1992), 203-210.
- [25] J. B. PROLLA: Weighted Spaces of vector-valued continuous functions, Ann. Mat. Pura. Appl., (4) 89 (1971), 145-158.

- [26] J. B. PROLLA: Approximation of vector-valued functions, (North Holland Publ. Co., Amsterdam, New York, Oxford) 1977.
- [27] A. VAN ROOIJ: Non-Archimedean Functional Analysis, (Marcel Dekker, New York) 1978.
- [28] W. M. RUESS W. H. SUMMERS: Compactness in Space of vector-valued continuous functions and Asymptotic Almost Periodicity, Math. Nachr., 135 (1988), 7-33.
- [29] W. H. SCHIKHOF: Locally Convex Spaces over Non-spherically Complete Fields I, II, Bull. Soc. Math. Belg. Ser. B, 38 (1986), 187-224.

Lavoro pervenuto alla redazione il 14 novembre 1995 modificato il 7 maggio 1996 ed accettato per la pubblicazione il 11 luglio 1996. Bozze licenziate il 10 settembre 1996

INDIRIZZO DEGLI AUTORI:

A. K. Katsaras – A. Beloyiannis – Department of Mathematics University of Ioannina – 451 10 Ioannina, Greece E-mail: katsara@cc.oui.gr