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Non-Archimedean weighted spaces

of continuous functions

A.K. KATSARAS - A. BELOYIANNIS

RI1ASSUNTO: Si studiano le proprieta di certi spazi non-Archimedei di funzioni
continue. In particolare si esamina la completezza di questi spazi e si stabiliscono
alcuni teorems del tipo di quello di Arzela-Ascoli

ABSTRACT: Some properties of non-Archimedean weighted spaces of continuous
functions are investigated. Completeness of these spaces is examined and Arzela-Ascoli
type theorems are given.

— Introduction

Weighted spaces of continuous functions were introduced in the com-
plex scalar case by L. NACHBIN in [23] and in the vector case by
J. PROLLA in [25]. Several other authors have continued the investigation
of such spaces. The papers [1], [2]-[13], [17], [18], [25] and many others
deal with problems refering to such spaces. JOSE PAULO CARNEIRO
introduced in [14] the p-adic weighted spaces (see also [15]). Some p-
adic Ascoli type theorems concerning spaces of continuous functions were
given in [16], [22], and [24].
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In this paper, we will study some of the properties of non-Archime-
dean Nachbin spaces. Among other things, we will investigate the com-
pleteness of such spaces and we will obtain some Arzeld-Ascoli type the-
orems. In subsequent papers we will continue with the investigation of
such spaces.

1 — Preliminaries

Throughout this paper, K will stand for a complete non-Archimedean
valued field whose valuation is non-trivial. By a seminorm on a vector
space F over K we will mean a non-Archimedean seminorm. Let F
be a locally convex space over K. The collection of all the continuous
seminorms on F will be denoted by ¢s (F). When the valuation of K is
discrete, we will consider only seminorms p such that p(E) C {|A|, A € K}.
Note that these seminorms generate the topology of E. For a subset S
of E, we will denote by co(S) the absolutely convex hull of S. In case of
a finite set S = {zy,... ,x,}, we have

co(S) = {ixx A € KA < 1}.
k=1

Recall that a subset A of F is called compactoid if, for each neighbour-
hood W of zero in E, there exists a finite subset S of F such that

A Cco(S)+W.

The topological dual space of E will be denoted by E’. By o(E, E’) and
o(E', E) we will denote the weak topology of E and E’, respectively.

The polar and the bipolar set of a subset B of F will be denoted
by B° and B, respectively. A seminorm p on E is called polar if p =
sup{|f|,f € E* |f| < p}. The space E is called a polar space if its
topology is generated by a family of polar seminorms.

If F and F are locally convex spaces over K, then F'®, F’ denotes the
projective tensor product of these spaces. Also by p ® ¢ we will denote
the tensor product of the seminorm p and ¢. For all unexplained terms
concerning non-Archimeaden spaces, we will refer to [29].
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2 — The weighted spaces CV(T,E) and CV,(T,E)

Let T be a Hausdorff topological space and let E be a non-Archime-
dean locally convex space. The space of all continuous E-values functions
on T will be denoted by C(T, E). In case E is the scalar field K, we will
write C(T") instead of C(X,K). If 7 is the topology of T" and if 7y is the
finest zero-dimensional topology on 1" which is coarser than 7, then an
FE-valued function on T is 7-continuous iff is 79-continuous. Since we are
only studying spaces of continuous E-valued on T there is no much loss
of generality if we assume that T is zero-dimensional.

A Nachbin family on T is a family V' of non-negative upper semicon-
tinuous functions on 7' such that: a) For every v, and v, in V' and any
a > 0 there exists v € V such that a vy, avy, < v (pointwise on T). )
For every t € T there exists v € V with v(t) > 0. Let p € ¢s(E) and
v € V. For every E-valued function x on T, we define

Gup(2) = [J2]lvp = sup{v(t)p(2(t)), teT}.

In case x is a K-valued function on 7', we define

¢ (2) = ||lzll, = sup{v()z(t), t€T}.

The weighted space CV (T, E) is defined to be the space of all z € C(T', E)
for which ¢,,(x) < oo for all v € V and all p € ¢s(F). Note that
each ¢,, is a non-Archimedean seminorm on CV(T, E). On CV(T,E)
we will consider the locally convex topology defined by the family of
seminorms {g,,,v € V,p € cs(E)}. We will denote by CV,(T, E) the
subspace of CV (T, E) consisting of all z € C(T, E) for which the function
t — v(t)p(z(t)), t € T, vanishes at infinity, for allv € V and all p € ¢s(E).
So xz € CVy(T, E) iff, for any p € cs(E), any v € V and any £ > 0 there
exists a compact subset Y of T such that v(t)p(x(t)) < e, for ¢t ¢ Y.
If £ =K, we will write CV(T') and CVy(T) instead of CV(T,K) and
CVy(T,K), respectively.

EXAMPLES

1) Taking as V' the family of all positive multiples of the R-character-
istic functions of the compact subsets of T', we get that both C'Vy (T, E)
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and CV (T, E) coincide with the space C(T, F) with the topology of uni-
form convergence on the compact subsets of T

2) If V is the family of all positive multiples of the R-characteristic
functions of the finite subsets of T, then the corresponding spaces
CV(T, E) and CVy(T, E) coincide with the space C (T, E) with the topol-
ogy of simple convergence.

3) Let Cy(T, E) denote the space of all bounded continuous E-valued
functions on T and let Cy(T, E) be the space of all continuous E-valued
functions on T which vanish at infinity. On both of these spaces we
consider the topology of uniform convergence. If V' is the of all positive
constant functions on 7', then CV(T,E) and CVy(T, E) coincide with
Cy(T, E) and Cy(T, E), respectively.

4) Let T be locally compact and let
V={lpl,p € Co(T,K)}, where [p[(t) =][p(t)], VIET.

Since, for ¢1, @y € Co(T,K) there exists ¢ € Cy(T,K) with |p| =
max{|¢1], |¢2]} (by [20, Lemma 3.1]) it is easy to see that V' is a Nachbin
family on T'. For this Nachbin family we have that

(%) CV(T,E)=CVy(T,E) =Cy(T,E) (algebraically).

Indeed it is clear that every f € C,(T, E) belongs to CVy(T, E). On the
other hand, suppose that some f € CV(T,FE) is not bounded. Hence
there exists p € cs(E) with sup,c, p(f(t)) = 0co. Let A € K, |A| > 1, and
choose a sequence (t,,) of distinct elements of T  such that p(f(t,)) > |\[*".
Let o: T — K, ¢(t,) = A" and ¢(t) = 0if t #t,, n =1,2,....As in
the proof of 2.5 in [19], there exists w € Co(7T,K) with |p| < |w. Since
sup,, |w(t,)|p(f(t,)) > sup, |A\|™ = oo, we have a contradiction. This
contradiction proves (x). Also the topology of CV (T, E) = CVy(T, E) is
the topology S introduced by PROLLA in [26]. By [19, Proposition 2.5],
B coincides with the strict topology By introduced by the first author
in [19]. Thus both CV(T,E) and CVy(T,E) coincide with the space
Cy(T, E) equipped with the strict topology.

We have the following result that can be easily established
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LEMMA 2.1. «) CVo(T,E) is a closed subspace of CV (T, E).
B) If E is Hausdorff, then CV (T, E) is a Hausdorff space.

LEMMA 2.2. If E is a polar space, then CV (T, E) and CVy(T, E)
are polar spaces.

PrOOF. Since CVy(T, E) is a subspace of CV (T, E), we only need
to prove our result for CV (T, E). Let p a polar continuous seminorm on
E and v € V. Let A € K, with |A] > 1, and choose, for each ¢t € T,
At € K such that [ M| < v(t) < [AN]. Let o1 T — K, p(t) = A, and set
q = qjy|,p- Then

q< qup <|Ng.
We will finish the proof by showing that ¢ is a polar seminorm on
CV(T,E). So let x € CV(T, E) with gq(x) > 6 > 0. There exists t € T
with |p(t)|p(x(t)) > 6. Since p is polar, there exists w € F’, |w| < p,
lw(z(t)) > 0/]p(t)]. Now the mapping

[:CV(TE) =K,  f(y) =etwy(t)),

is a linear form on CV(T, E) with |f| < p and |f(x)| > 6. 0

PROPOSITION 2.3. The mapping w: CV(T) @, E — CV (T, E)

n n
E T @ Up —> E Ty Uy
k=1 k=1

1s a well defined linear map which is one-to-one. Moreover w is a topo-
logical isomorphism between CV(T) @, E and G = w(CV(T) @, E).

PROOF. It is not hard to show that w is a well defined linear map
which is one-to-one. We will show that both w and w™! are continuous. So
let ve Vandpecs(E). If z € CV(T)®, E, then for each representation
z=> 1,2, ®u, of z, we have

supr(Op( 3 . (thu) < smpmas(v()) () =

= max(sup v(t)]a.(¢) )p(ux) = max ||z [l.p(u.)

K
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This proves that ¢, ,(w(z)) < (¢, ® p)(2) and so w is continuous. On
the other hand, given 0 < s < 1, there exists a representation z =
> Ys @w, of z such that wy,... ,w, are s-orthogonal with respect to
p. Now, for each t € T', we have

p(3 peltyw) > smax(ly. (Blp(w,))

and 50 g,,,(w(2)) = s max [|yx[lp(ws) = s(q, ©p)(2) .
Since 0 < s < 1 was arbitrary, we get that ¢, ,(w(2)) > (¢, ® p)(z) and

50 ¢up(W(2)) = (@ @ p)(2). :

In view of the preceding proposition, we may identify CV(T) @, E
with the topological subspace {>°" | z,u,, z, € CV(T), u, € E, m €
IN} of CV(T, E). Analogously, CVy(T) ®, E may be identified with the
subspace {>1" | z,u,, z, € CV(T), u, € E, m € N} of CVo(T, E).

PROPOSITION 2.4.  If, for every t € T, there exists x; € CVy(T)
with z,(t) # 0, then CVo(T) ®, E is a dense subspace of CVo(T, E).

PROOF. We may assume that z;(t) = 1 for every t € T. Let h €
CVy(T,E), v eV and p € cs(F). Given € > 0, there exists a compact
subset S of T such that v(t)p(h(t)) < e if t ¢ S. Since v is upper-
semicontinuous and S compact, there exists d > 0 such that v(¢) < d for
eacht € S. Theset Q@ = {t € T, v(t) < d}, is open and contains S.
Since T is zero-dimensional, there exists a clopen (i.e. closed and open)
subset D of T such that S C D C ). For each t € S, set

D, =Dn{s,p(h(t) — h(s)) <e/d}N{s,|xs(s) — 1| <e;}

where ¢, is such that ,p(h(t)) < €/d. Using the compactness of S, it is
clear that there are t1,...,%,, is S and pairwise disjoint clopen subsets
Wi,..., Wy, of T covering S and such that t, € W,, C D,_. Let xw,
denote the K-characteristic function of W,, y. = =z, - xw, and f =
S yh(te). Clearly f € CV(T)y ® E. We will finish the proof by
showing that ¢, ,(f —h) <e. Solett e T. If t ¢ U, W,,, then t ¢ S
and so v(t)p(f(t) — h(t)) = v(t)p(h(t)) < e. Let t € W,.. Then
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and so f(t) — h(t) = h(ts)(x, (t) — 1) + h(t,) — h(t) which implies that
v(t)p(f(t) = h(t)) < v(t) - max{[1 -z, (8)|p(h(tx)), p(h(ts) — h(t))} <.

Hence the result follows. 0

REMARK. Our hypothesis about C'V,(T') in the preceding proposition
is rather weak and it is satisfied for instance for every Nachbin family V'
if T is locally compact.

ProposITION 2.5. If E' # {0}, then CV(T) (resp. CVo(T)) is
topologically isomorphic to a complemented subspace of CV (T, E) (resp.
of CVo(T', E)).

PROOF. Let ¢ € E' and u € F, with ¢p(u) = 1, and let ¢ € cs(FE),
lo| < q. For f € CV(T, E) we have that ¢ o f € CV(T). Define

Q:CV(T,E) - CV(T,E), Q(f)=(poflu.

For every v € V and p € ¢s(E), we have that |[(¢ o f)ull,, < p(w)|fl.,»
and so @ is continuous. Since Q? = @, it follows that @ is a contin-
uous projection. We will show that G = Q(CV (T, E)) is topologically
isomorphic to CV(T). Indeed, we consider the mapping

H:CV(T)— G, H(z)=Q(zu).

Clearly H is linear and one-to-one. Also H is onto since for h = (¢ o f)u,
we have H(p o f) = h. Finally, H is a homeomorphism. In fact, it
is clear that H is continuous. Also H~! is continuous. Indeed, the map
p(w) = |@(w)] is a continuous seminorm on E and p(u) = 1. Now, for z €
CV(T) and v € V, we have H(z) = zu and v(t)|z(t)| = v(t)p(z(t)u) <
|H(x)||,, and so ||z||, < || H(x)]||,,. This proves that H is a topological
isomorphism. The proof for C'V,(T') is analogous.

ProPOSITION 2.6. If CV(T) (resp. CVo(T)) has a non-zero ele-
ment, then E is topologically isomorphic to a complemented subspace of
CV(T,E) (resp. of CVo(T, E)). In particular this happens if T is locally
compact.
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PROOF. Let h be a non-zero element of CV (T'). We may assume that
h(ty) = 1 for some t, € T. Let

P:CV(T,E) = CV(T,E), P(f)=hf(t).

Then P is a continuous linear projection. Let G = P(CV (T, E)) and
consider the mapping

S:E—G, u-—hu.

For p € ¢s(E) and v € V', we have

[Pullyp = [IAl[p(w)

and so S is continuous. Also S~! is continuous since we can choose v € V
with v(t9) > 0 and so ||h], # 0. This proves that G is topologically
isomorphic to E. The proof for the case of C'V, (T, F) is analogous. 0

3 — Completeness

As in the classical case (see [28]), for a topological space Y, we will
say that T is a Vy-space, with respect to a Nachbin family V on T,
if any function j from 7 to Y, whose restriction to each of the sets
{teT, wv(t)>1}, veV,iscontinuous, is also continuous on 7.

PROPOSITION 3.1. «) IfT is a Vi-space, then T is also a Vi -space.
B) Every Vi-space is also a Vg-space, for every zero-dimensional topo-
logical space F'.

PRrROOF. a) Let f: T — K be such that its restriction to each of the
sets G, ={teT, v(t)>1}, veV,iscontinuous and let (¢,) be o net
in T" which converges to some t € T'. let D be a clopen neighbourhood of
f(t) in K. If ¢ is the R-characteristic function of D, then ¢ is continuous
and so h = @ o f is continuous on each G,, v € V, which implies that h
is continuous on 7'. Hence, there exists o such that |h(t) — h(t,)| < 1 if
a = . Since h(t) = 1, it follows that |h(t.)| = |h(to)| = 1, for a = ay,
and so f(t,) € D. This proves that f is continuous at t.

B) The proof is analogous to that of «). 0
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THEOREM 3.2. If E is complete and T is a Vi -space then CV (T, E)
and CVo(T, E) are complete.

PRrOOF. Since CVy(T, E) is a closed subspace of CV (T, E), it suf-
fices to prove the result for CV(T, E). So let (f,) be a Cauchy net in
CV(T,E). Since for each t € T there exists v in V with v(t) > 0, it
follows that the map w, : CV(T,E) — E, f — f(t) is continuous and so
(fa(t)) is a Cauchy net in E.

Define f: T — E, f(t) =lim f,(t).

CrLAmM 1. The restriction of f to each G, = {t : v(t) > 1}, v € V,
is continuous. Indeed, let (¢5) be net in G, converging to some ty, € G,,.
Given € > 0, there exists ag such that

QV,p(fa_f,B)SE if a;ﬂiao-

Thus for a, 8 = o, we have p(f,(t) — f3(t)) < e for each t € G,. Since
fao 1s continuous at t,, there exists oy such that

P(fao(ts) = fao(to)) <& if 6= .
Also, for t € G,,, we have p(f.,(t) — f(t)) <e. Now for § > &y, we have

p(f(ts) = f(to)) <
<max {p(f(ts) = faq (ts)); P(faq(ts) = fao (t0)); P(fay(to) = f(to))} < €. O

Cramm 2. f € CV(T, E). Indeed, in view of Claim 1, f is continuous
since T is a Vi-space and hence a Vg-space (by Proposition 3.1). Let
veV,péeces(E), and € > 0. There exists o such that g, ,(fo — f5) <€
if o, 8 > ap. Thus, for a, 8 = ag, we have v(t)p(fa(t) — f5(t)) < € and
50 V(t)p(fao (t) — f(t)) <€ for each t € T. Now

sup v(t)p(f(t)) < max{e, q,,(fao)}

and thus f € CV(T, E). 0

CrLam 3. f, — fin CV(T, E). the proof of this is analogous to that
of Claim 2. O
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Combining Proposition 2.4 with the preceding theorem, we get the
following:

PRrROPOSITION 3.3. Let E be complete and Hausdorff and T a Vi -
space. If for every t € T there exists x; € CVo(T) with z.(t) # 0, then
CVy(T, E) coincides with the completion CVo(T)&,E of CVo(T) @, E.

4 — Compactoid subsets of CV(T, E)

Given v € V and A € K, with |A| > 1, there exists ¢ : T — E such
that || < v < |Ap|. If |u| > 1 and if ¢’ : T'— E is another function with
0] < v < |pg'| then [p] < |pg'| and [¢'] < [Ag|.

Let now CV,,(T, E) be the space of all f € CV (T, E) such that, for
all v € V, there exists ¢ € K7, with |¢| < v < |A\y|, such that (pf)(T)
is a compactoid subset of E. If ¢ is such a function and if ¢’ € K7,
with |¢'| < v < |A¢'|, then (¢’ f)(T) is compactoid. It follows now easily
that CV,,(T, E) is a vector subspace of CV (T, E). We will consider on
CV.(T, E) the topology induced by the topology of CV (T, E).

PROPOSITION 4.1. CVy(T, E) is a subspace of CV,(T, E).

PROOF. Let f € CVo(T,E) and v € V. Let |A\| > 1 and ¢ € K” with
|| < v <|Ag|. For p € cs(E) and € > 0, there exists a compact subset S
of T such that v(t)p(f(t)) <eif t ¢ S. Let d > 0 be such that v(t) < d
forallt € S. For each t € S, set

Wi ={s € T,p(f(s) = (1)) <e/d}.

Each W, is clopen and W, = W, whenever W; N W, # ©. By the com-
pactness of S, there are ¢y,...,t, in S such that the sets W,,,... , W,
are pairwise disjoint and cover S. If |u| > d, then

n

(@h)(T) € co(uf(t), ..., puf(tn)) +{u € E,p(u) <e} = M.

Indeed, the set D = {t,v(t) < d} is open and contains S. Let now ¢t € T'.
If t € W;, N D, then

p(t)f(t) = o) (f(t) = f(t:) + @) (L)
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with |o(t)[p(f(t) — f(t;)) < € and |p(t)] < |w|, which implies that
p(t)f(t) € M. 0

PROPOSITION 4.2. Let F be a Hausdorff polar space and let G
denote the dual space of F equipped with the topology of uniform con-

vergence on the compactoid subsets of F'. If F' is quasi-complete, then
G =F.

PRroOF. For B C F, let B be the bipolar of B with respect to the
pair (F, F'). Let B={B%, B CF, B compactoid}. Each element
B of B is compactoid (by [29, Theorem 5.13]). Also B is closed and
bounded and hence complete. Since (B%)? = B it follows that the
topology of G coincides with the topology 75 of uniform convergence on
the members of B. Since on compactoid subsets of F', the topology of
F' coincides with the weak topology o(F, F’) (by [29, Theorem 5.12]),
each B is weakly complete. Thus, each member of B is edged, weakly
bounded, and weakly complete. Taking the space M = (F',o(F', F)),
we have that M’ = F. It is easy to see that B is a special covering of
M' = F (see [29, Definition 7.3]), and thus (by [29, Proposition 7.4])

G =(M,m5) =M =F. 0

LEMMA 4.3. LetT be a Vk-space, F = CV(T) and G the dual space
of F equipped with the topology of uniform convergence on the compactoid
subsets of F. Then the mapping A : T — G, t — §;, §(z) = x(t), is
CONLINUOUS.

PRrROOF. In view of Theorem 3.2, F' is complete and G’ = F' by the
preceding proposition. We first observe that A is continuous as a map
from T to the weak dual F! of F'. To prove our result, it suffices (in view
of Proposition 3.1) to show that, for each v € V, the restriction of A to
Y, ={teT, v(t) > 1} is continuous. Since

A(Y,) C{x € F,|lzfl, <1}°,

A(Y,) is an equicontinuous subset of F’. Since F' is a polar space (by
Lemma 2.2), its topology coincides with the topology of uniform conver-
gence on the equicontinuous subsets of F’. By [21, Proposition 3.12], each
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equicontinuous subset of F” is a compactoid subset of G. Since G' = F,
on A(Y,) the topology of G coincides with the weak topology o(G,G").
Now A :Y, — A(Y,) is continuous since it is continuous if we consider
on A(Y,) the weak topology. 0

LEMMA 4.4. IfT is a Vi-space, then every compactoid subset D of
CV(T) is equicontinuous.

PROOF. Let F' = CV(T) and let G, A be as in the preceding Lemma.
Since DY is a neighbourhood of zero in G, given t € T and p # 0 in K,
there exists an open subset A of T' containing ¢ such that

A(A) C uD° + 6, .

If now z € D and s € A, then 6, — d; € uD° and so |z(s) — z(t)| < |ul,
which proves that D is equicontinuous at t. 0

PROPOSITION 4.5. Let T be a Vi-space and E a polar space. Then,
every compactoid subset D of CV,,(T, E) is equicontinuous.

PROOF. Let f € CV,(T,E). For each 2’ € F’, the function 2’ o f is
in CV(T). Let
f:E -CV(T), 2 —a'of.
If we consider on E’ the topology 7., of uniform convergence on the
compactoid subsets of E, then f is continuous. In fact, let v € V and
choose p € K with |p] < v < |Ap|, |A| > 1. Since M = (pf)(T) is
compactoid in E, its polar M?° is a neighborhood of zero for 7,,. Moreover

FOATIM®) C{z e CV(D), ], <1}

which proves the continuity of f. Let now p € ¢s(E) be a polar seminorm
and set

We will show that the set

H=J{f(BY), feD}
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is a compactoid subset of CV(T'). Indeed, let v € V. Since D is a
compactoid, there are fi,..., f, in CV,, (T, F) such that

D g CO(fl, . ,fn) + W, W - {f € C‘/;O(T7E)7 qu(f) S 1} .

Let f=Y0"  Nfi+hin D,h e W, |\| <1. Then

f(BY) € Z Nifi(BY) + h(BY).

i=1

Each B) is a 7,-compactoid and so ﬂ-(Bg) is a compactoid subset of
CV(T). Thus, the absolutely convex hull M of J!'_, ﬁ-(Bg ) is compactoid
in CV(T') and so there exists z1, ... ,z, in CV(T) such that

M Cco(zy,... ,xm)+ Wy, W,={zeCV(T),|z|, <1}.
Since E(Bg) C Wy, for h € W, if follows that
H C co(xy,...x)+ Wy,

which proves that H is compactoid in CV(T'). In view of Lemma 4.4, H
is equicontiunuous. Thus, given t5 € T and p # 0 in K, there exist a
neighbourhood A of ty in T" such that

[f(@)(t) = f(@')(to)l < |ul forall feD,a €B), teA,

and so

p=H(f(t) = f(to)) € B, = B,
if t € A. Hence, for all t € A, f € D, we have p(f(t) — f(to)) < |u|, and
so the result follows. 0

The following is an Arzeld-Ascoli type theorem for CVy (T, E).

THEOREM 4.6. Let E be a polar space, T' a Vi -space and D a subset

of CVo(T, E). Then, D is compactoid iff:

a) D is equicontiunuous.

b) For each t € T, the set D(t) = {f(t), f € D} is a compactoid subset
of E.

c) Foranyp € cs(E), v eV ande > 0, there exists a compact subset S
of T such that v(t)p(f(t)) <e forall f € D and allt ¢ S.
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PROOF. Necessity: Assume that D is compactoid. Part a) follows
from the preceding proposition in view of Proposition 4.1. As regards
part b), since for each ¢ € D there exists v € V with v(t) > 0, it follows
that the mapping

(pt:CV’O(TvE)%Ev Spt(f):f(t)7

is continuous and so D(T') = (D) is compactoid. Finally, to show part
c), let fi,..., f, in CVy(T, E) be such that

D Cco(fiy--- s fo) +{frap(f) <e}.

Let S be a compact subset of T such that v(t)p(f;(t)) < e for all t € S,
i=1,...,n. Letnow f € D, f =" A+h, [N <1, ¢ph) <e
Then, fro ¢t ¢ S, we have v(t)p(f(t)) < e.

Sufficiency: Assume that D satisfies properties a), b), c¢). Since
co(D) also has properties a), b), ¢), when D does, we may assume that
D is absolutely convex. Let

d>supv(t) and B={teT,v(t)<d}.

tesS

Then B is open and contains S. For each t € S, there exists a clopen set
W, with ¢t € W, € B, such that p(f(t) — f(s)) <e1 = g5; forall f € D
and all s € W,. It is now clear, using the compactness of S, that there
are ty,...,t, in S and pairwise disjoint clopen sets Ay, ..., A,, covering
S, t. € A, such that p(f(t) — f(t.)) < e, forallt € A, and all f € D.
Since D(t,) is an absolutely convex compactoid, there are f.i1,... , fun.

in D such that

D(t.) CA-co(fu1(tu)s - s fune(ts)) + Bpey s

where [A\| > 1 and B,., = {u € E, p(u) < e}. If x4, is the K-
characteristic function of A,., we will show that

(%) D CA-co(H) +{f,q.,(f) <e},
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where H = {f.jxa.,k =1,...,m, j =1,... ,n.}. In fact, let f € D.
Then

f(tm) = )‘Z)‘njfnj(tN) + Wy, ’)‘Hj| <1, p(wn) <er.
j=1

Set

m  Ng

h = f - )\ZZ)\njfk&jXAn

k=1 j=1
and let t € B. If t € A,., then

Nk

() = () = A3 Ay Fus(t) =
= [70) = F0)+ [F(0) = A3 Aoy (0] A D M) = 102

) — F] 4w+ NS AU (0) — Loyt

Since

v()p(f(t) = f(tx)) <dey <&, v(t)p(wy) <e
and

NOR (s (1) = Fei(te) < N+ g =,

it follows that v(t)p(h(t)) < e. If t ¢ U._, A., then t ¢ S and so
v(t)p(h(t)) = v(t)p(f(t)) < e. Thus g, ,(h) < e. which proves (x). 0

Taking T the set IN of positive integers, with the discrete topology,
and as V the family of al constant positive functions on IN, we get as a

corollary the following

PROPOSITION 4.7. If E is a polar space, then a subset D of c¢y(E)
18 compactoid iff:
1) For each n € IN, the set {x,,x € D} is compactoid in E.
2) Foreachp € cs(E) and eache > 0, there exists ng such that p(z,) < &
for all x € D and all n > ny.
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In case E = K in the preceding proposition, we get we known result
that a subset D of ¢q is compact iff there exists y € ¢y such that

DCjg={x€cy, |z, <|y,| forall neN}.

Finally, taking as V the family of all positive constant functions on
T, we get the following.

PROPOSITION 4.8.  Let E be a polar space and let Co(T, E) have
the topology of uniform convergence. Then a subset D of Co(T, E) is
compactoid iff:

1) D is equicontinuous.
2) For each t € T, the set D(t) is compactoid in E.

3) D wanishes uniformly at infinity, i.e. for each ¢ > 0 and each p €
cs(E) there exists a compact subset S of T such that p(f(t)) < e for
all feD andallt ¢ S.
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