Non-Archimedean weighted spaces of continuous functions

A.K. KATSARAS - A. BELOYIANNIS

Riassunto: Si studiano le proprietà di certi spazi non-Archimedei di funzioni continue. In particolare si esamina la completezza di questi spazi e si stabiliscono alcuni teoremi del tipo di quello di Arzelà-Ascoli

Abstract: Some properties of non-Archimedean weighted spaces of continuous functions are investigated. Completeness of these spaces is examined and Arzelà-Ascoli type theorems are given.

- Introduction

Weighted spaces of continuous functions were introduced in the complex scalar case by L. NACHBin in [23] and in the vector case by J. Prolla in [25]. Several other authors have continued the investigation of such spaces. The papers [1], [2]-[13], [17], [18], [25] and many others deal with problems refering to such spaces. Josè Paulo Carneiro introduced in [14] the p-adic weighted spaces (see also [15]). Some p adic Ascoli type theorems concerning spaces of continuous functions were given in [16], [22], and [24].

[^0]In this paper, we will study some of the properties of non-Archimedean Nachbin spaces. Among other things, we will investigate the completeness of such spaces and we will obtain some Arzelá-Ascoli type theorems. In subsequent papers we will continue with the investigation of such spaces.

1 - Preliminaries

Throughout this paper, \mathbf{K} will stand for a complete non-Archimedean valued field whose valuation is non-trivial. By a seminorm on a vector space E over \mathbf{K} we will mean a non-Archimedean seminorm. Let E be a locally convex space over \mathbf{K}. The collection of all the continuous seminorms on E will be denoted by cs (E). When the valuation of \mathbf{K} is discrete, we will consider only seminorms p such that $p(E) \subseteq\{|\lambda|, \lambda \in \mathbf{K}\}$. Note that these seminorms generate the topology of E. For a subset S of E, we will denote by $\operatorname{co}(S)$ the absolutely convex hull of S. In case of a finite set $S=\left\{x_{1}, \ldots, x_{n}\right\}$, we have

$$
c o(S)=\left\{\sum_{\kappa=1}^{n} \lambda_{\kappa} x_{\kappa}, \lambda_{\kappa} \in \mathbf{K},\left|\lambda_{\kappa}\right| \leq 1\right\} .
$$

Recall that a subset A of E is called compactoid if, for each neighbourhood W of zero in E, there exists a finite subset S of E such that

$$
A \subseteq c o(S)+W
$$

The topological dual space of E will be denoted by E^{\prime}. By $\sigma\left(E, E^{\prime}\right)$ and $\sigma\left(E^{\prime}, E\right)$ we will denote the weak topology of E and E^{\prime}, respectively.

The polar and the bipolar set of a subset B of E will be denoted by B^{0} and B^{00}, respectively. A seminorm p on E is called polar if $p=$ $\sup \left\{|f|, f \in E^{*},|f| \leq p\right\}$. The space E is called a polar space if its topology is generated by a family of polar seminorms.

If E and F are locally convex spaces over \mathbf{K}, then $E \otimes_{\pi} F$ denotes the projective tensor product of these spaces. Also by $p \otimes q$ we will denote the tensor product of the seminorm p and q. For all unexplained terms concerning non-Archimeaden spaces, we will refer to [29].

2 - The weighted spaces $\mathrm{CV}(\mathrm{T}, \mathrm{E})$ and $\mathrm{CV}_{0}(\mathrm{~T}, \mathrm{E})$

Let T be a Hausdorff topological space and let E be a non-Archimedean locally convex space. The space of all continuous E-values functions on T will be denoted by $C(T, E)$. In case E is the scalar field \mathbf{K}, we will write $C(T)$ instead of $C(X, \mathbf{K})$. If τ is the topology of T and if τ_{0} is the finest zero-dimensional topology on T which is coarser than τ, then an E-valued function on T is τ-continuous iff is τ_{0}-continuous. Since we are only studying spaces of continuous E-valued on T there is no much loss of generality if we assume that T is zero-dimensional.

A Nachbin family on T is a family V of non-negative upper semicontinuous functions on T such that: a) For every ν_{1} and ν_{2} in V and any $\alpha \geq 0$ there exists $\nu \in V$ such that $\alpha \nu_{1}, \alpha \nu_{2} \leq \nu($ pointwise on $T) . \beta$) For every $t \in T$ there exists $v \in V$ with $v(t)>0$. Let $p \in c s(E)$ and $\nu \in V$. For every E-valued function x on T, we define

$$
q_{\nu, p}(x)=\|x\|_{\nu, p}=\sup \{\nu(t) p(x(t)), \quad t \in T\}
$$

In case x is a \mathbf{K}-valued function on T, we define

$$
q_{\nu}(x)=\|x\|_{\nu}=\sup \{\nu(t)|x(t)|, \quad t \in T\} .
$$

The weighted space $C V(T, E)$ is defined to be the space of all $x \in C(T, E)$ for which $q_{\nu, p}(x)<\infty$ for all $v \in V$ and all $p \in c s(E)$. Note that each $q_{\nu, p}$ is a non-Archimedean seminorm on $C V(T, E)$. On $C V(T, E)$ we will consider the locally convex topology defined by the family of seminorms $\left\{q_{\nu, p}, \nu \in V, p \in c s(E)\right\}$. We will denote by $C V_{0}(T, E)$ the subspace of $C V(T, E)$ consisting of all $x \in C(T, E)$ for which the function $t \rightarrow v(t) p(x(t)), t \in T$, vanishes at infinity, for all $v \in V$ and all $p \in \operatorname{cs}(E)$. So $x \in C V_{0}(T, E)$ iff, for any $p \in c s(E)$, any $v \in V$ and any $\varepsilon>0$ there exists a compact subset Y of T such that $v(t) p(x(t))<\varepsilon$, for $t \notin Y$. If $E=\mathbf{K}$, we will write $C V(T)$ and $C V_{0}(T)$ instead of $C V(T, \mathbf{K})$ and $C V_{0}(T, \mathbf{K})$, respectively.

EXAMPLES

1) Taking as V the family of all positive multiples of the \mathbf{R}-characteristic functions of the compact subsets of T, we get that both $C V_{0}(T, E)$
and $C V(T, E)$ coincide with the space $C(T, E)$ with the topology of uniform convergence on the compact subsets of T.
2) If V is the family of all positive multiples of the \mathbf{R}-characteristic functions of the finite subsets of T, then the corresponding spaces $C V(T, E)$ and $C V_{0}(T, E)$ coincide with the space $C(T, E)$ with the topology of simple convergence.
3) Let $C_{b}(T, E)$ denote the space of all bounded continuous E-valued functions on T and let $C_{0}(T, E)$ be the space of all continuous E-valued functions on T which vanish at infinity. On both of these spaces we consider the topology of uniform convergence. If V is the of all positive constant functions on T, then $C V(T, E)$ and $C V_{0}(T, E)$ coincide with $C_{b}(T, E)$ and $C_{0}(T, E)$, respectively.
4) Let T be locally compact and let

$$
V=\left\{|\varphi|, \varphi \in C_{0}(T, \mathbf{K})\right\}, \quad \text { where } \quad|\varphi|(t)=|\varphi(t)|, \quad \forall t \in T
$$

Since, for $\varphi_{1}, \varphi_{2} \in C_{0}(T, \mathbf{K})$ there exists $\varphi \in C_{0}(T, \mathbf{K})$ with $|\varphi|=$ $\max \left\{\left|\varphi_{1}\right|,\left|\varphi_{2}\right|\right\}($ by $[20$, Lemma 3.1]) it is easy to see that V is a Nachbin family on T. For this Nachbin family we have that

$$
\begin{equation*}
C V(T, E)=C V_{0}(T, E)=C_{b}(T, E) \quad \text { (algebraically) } \tag{*}
\end{equation*}
$$

Indeed it is clear that every $f \in C_{b}(T, E)$ belongs to $C V_{0}(T, E)$. On the other hand, suppose that some $f \in C V(T, E)$ is not bounded. Hence there exists $p \in \operatorname{cs}(E)$ with $\sup _{t \in T} p(f(t))=\infty$. Let $\lambda \in \mathbf{K},|\lambda|>1$, and choose a sequence $\left(t_{n}\right)$ of distinct elements of T such that $p\left(f\left(t_{n}\right)\right)>|\lambda|^{2 n}$. Let $\varphi: T \rightarrow \mathbf{K}, \varphi\left(t_{n}\right)=\lambda^{-n}$ and $\varphi(t)=0$ if $t \neq t_{n}, n=1,2, \ldots$ As in the proof of 2.5 in [19], there exists $\omega \in C_{0}(T, \mathbf{K})$ with $|\varphi| \leq \mid \omega$. Since $\sup _{n}\left|\omega\left(t_{n}\right)\right| p\left(f\left(t_{n}\right)\right) \geq \sup _{n}|\lambda|^{n}=\infty$, we have a contradiction. This contradiction proves $(*)$. Also the topology of $C V(T, E)=C V_{0}(T, E)$ is the topology β introduced by Prolla in [26]. By [19, Proposition 2.5], β coincides with the strict topology β_{0} introduced by the first author in [19]. Thus both $C V(T, E)$ and $C V_{0}(T, E)$ coincide with the space $C_{b}(T, E)$ equipped with the strict topology.

We have the following result that can be easily established

Lemma 2.1. $\quad \alpha) C V_{0}(T, E)$ is a closed subspace of $C V(T, E)$. β) If E is Hausdorff, then $C V(T, E)$ is a Hausdorff space.

Lemma 2.2. If E is a polar space, then $C V(T, E)$ and $C V_{0}(T, E)$ are polar spaces.

Proof. Since $C V_{0}(T, E)$ is a subspace of $C V(T, E)$, we only need to prove our result for $C V(T, E)$. Let p a polar continuous seminorm on E and $v \in V$. Let $\lambda \in \mathbf{K}$, with $|\lambda|>1$, and choose, for each $t \in T$, $\lambda_{t} \in \mathbf{K}$ such that $\left|\lambda_{t}\right| \leq v(t) \leq\left|\lambda \lambda_{t}\right|$. Let $\varphi: T \rightarrow \mathbf{K}, \varphi(t)=\lambda_{t}$, and set $q=q_{|\varphi|, p}$. Then

$$
q \leq q_{\nu, p} \leq|\lambda| q
$$

We will finish the proof by showing that q is a polar seminorm on $C V(T, E)$. So let $x \in C V(T, E)$ with $q(x)>\theta>0$. There exists $t \in T$ with $|\varphi(t)| p(x(t))>\theta$. Since p is polar, there exists $\omega \in E^{\prime},|\omega| \leq p$, $|\omega(x(t))>\theta /|\varphi(t)|$. Now the mapping

$$
f: C V(T, E) \rightarrow \mathbf{K}, \quad f(y)=\varphi(t) \omega(y(t))
$$

is a linear form on $C V(T, E)$ with $|f| \leq p$ and $|f(x)|>\theta$.

Proposition 2.3. The mapping $\omega: C V(T) \otimes_{\pi} E \rightarrow C V(T, E)$

$$
\sum_{\kappa=1}^{n} x_{\kappa} \otimes u_{\kappa} \rightarrow \sum_{\kappa=1}^{n} x_{\kappa} u_{\kappa}
$$

is a well defined linear map which is one-to-one. Moreover ω is a topological isomorphism between $C V(T) \otimes_{\pi} E$ and $G=\omega\left(C V(T) \otimes_{\pi} E\right)$.

Proof. It is not hard to show that ω is a well defined linear map which is one-to-one. We will show that both ω and ω^{-1} are continuous. So let $v \in V$ and $p \in c s(E)$. If $z \in C V(T) \otimes_{\pi} E$, then for each representation $z=\sum_{\kappa=1}^{m} x_{\kappa} \otimes u_{\kappa}$ of z, we have

$$
\begin{aligned}
\sup _{t} \nu(t) p\left(\sum_{\kappa=1}^{m} x_{\kappa}(t) u_{\kappa}\right) & \leq \sup _{t} \max _{\kappa}(\nu(t))\left|x_{\kappa}(t)\right| p\left(u_{\kappa}\right)= \\
& =\max _{\kappa}\left(\sup _{t} \nu(t)\left|x_{\kappa}(t)\right|\right) p\left(u_{\kappa}\right)=\max _{\kappa}\left\|x_{\kappa}\right\|_{\nu} p\left(u_{\kappa}\right)
\end{aligned}
$$

This proves that $q_{\nu, p}(\omega(z)) \leq\left(q_{\nu} \otimes p\right)(z)$ and so ω is continuous. On the other hand, given $0<s<1$, there exists a representation $z=$ $\sum_{\kappa=1}^{n} y_{\kappa} \otimes w_{\kappa}$ of z such that w_{1}, \ldots, w_{n} are s-orthogonal with respect to p. Now, for each $t \in T$, we have

$$
p\left(\sum_{\kappa=1}^{n} y_{\kappa}(t) w_{\kappa}\right) \geq s \max _{\kappa}\left(\left|y_{\kappa}(t)\right| p\left(w_{\kappa}\right)\right)
$$

and so $q_{\nu, p}(\omega(z)) \geq s \max _{\kappa}\left\|y_{\kappa}\right\|_{\nu} p\left(w_{\kappa}\right) \geq s\left(q_{\nu} \otimes p\right)(z)$.
Since $0<s<1$ was arbitrary, we get that $q_{\nu, p}(\omega(z)) \geq\left(q_{\nu} \otimes p\right)(z)$ and so $q_{\nu, p}(\omega(z))=\left(q_{\nu} \otimes p\right)(z)$.

In view of the preceding proposition, we may identify $C V(T) \otimes_{\pi} E$ with the topological subspace $\left\{\sum_{\kappa=1}^{m} x_{\kappa} u_{\kappa}, x_{\kappa} \in C V(T), u_{\kappa} \in E, m \in\right.$ $\mathbb{N}\}$ of $C V(T, E)$. Analogously, $C V_{0}(T) \otimes_{\pi} E$ may be identified with the subspace $\left\{\sum_{\kappa=1}^{m} x_{\kappa} u_{\kappa}, x_{\kappa} \in C V(T), u_{\kappa} \in E, m \in \mathbb{N}\right\}$ of $C V_{0}(T, E)$.

Proposition 2.4. If, for every $t \in T$, there exists $x_{t} \in C V_{0}(T)$ with $x_{t}(t) \neq 0$, then $C V_{0}(T) \otimes_{\pi} E$ is a dense subspace of $C V_{0}(T, E)$.

Proof. We may assume that $x_{t}(t)=1$ for every $t \in T$. Let $h \in$ $C V_{0}(T, E), v \in V$ and $p \in c s(E)$. Given $\varepsilon>0$, there exists a compact subset S of T such that $v(t) p(h(t))<\varepsilon$ if $t \notin S$. Since v is uppersemicontinuous and S compact, there exists $d>0$ such that $v(t)<d$ for each $t \in S$. The set $\Omega=\{t \in T, \nu(t)<d\}$, is open and contains S. Since T is zero-dimensional, there exists a clopen (i.e. closed and open) subset D of T such that $S \subseteq D \subseteq \Omega$. For each $t \in S$, set

$$
D_{t}=D \cap\{s, p(h(t)-h(s))<\varepsilon / d\} \cap\left\{s,\left|x_{t}(s)-1\right|<\varepsilon_{t}\right\}
$$

where ε_{t} is such that $\varepsilon_{t} p(h(t))<\varepsilon / d$. Using the compactness of S, it is clear that there are t_{1}, \ldots, t_{m} is S and pairwise disjoint clopen subsets W_{1}, \ldots, W_{m} of T covering S and such that $t_{\kappa} \in W_{\kappa} \subseteq D_{t_{\kappa}}$. Let $\chi_{W_{\kappa}}$ denote the K-characteristic function of $W_{\kappa}, y_{\kappa}=x_{t_{\kappa}} \cdot \chi_{W_{\kappa}}$ and $f=$ $\sum_{\kappa=1}^{m} y_{\kappa} h\left(t_{\kappa}\right)$. Clearly $f \in C V(T)_{0} \otimes E$. We will finish the proof by showing that $q_{\nu, p}(f-h) \leq \varepsilon$. So let $t \in T$. If $t \notin \bigcup_{\kappa=1}^{m} W_{\kappa}$, then $t \notin S$ and so $\nu(t) p(f(t)-h(t))=\nu(t) p(h(t))<\varepsilon$. Let $t \in W_{\kappa}$. Then

$$
f(t)=y_{\kappa}(t) h\left(t_{\kappa}\right)=x_{t_{\kappa}}(t) h\left(t_{\kappa}\right)
$$

and so $f(t)-h(t)=h\left(t_{\kappa}\right)\left(x_{t_{\kappa}}(t)-1\right)+h\left(t_{\kappa}\right)-h(t)$ which implies that $\nu(t) p(f(t)-h(t)) \leq \nu(t) \cdot \max _{\kappa}\left\{\left|1-x_{t_{\kappa}}(t)\right| p\left(h\left(t_{\kappa}\right)\right), p\left(h\left(t_{\kappa}\right)-h(t)\right)\right\} \leq \varepsilon$.

Hence the result follows.
REmark. Our hypothesis about $C V_{0}(T)$ in the preceding proposition is rather weak and it is satisfied for instance for every Nachbin family V if T is locally compact.

Proposition 2.5. If $E^{\prime} \neq\{0\}$, then $C V(T)$ (resp. $\left.C V_{0}(T)\right)$ is topologically isomorphic to a complemented subspace of $C V(T, E)$ (resp. of $\left.C V_{0}(T, E)\right)$.

Proof. Let $\varphi \in E^{\prime}$ and $u \in E$, with $\varphi(u)=1$, and let $q \in \operatorname{cs}(E)$, $|\varphi| \leq q$. For $f \in C V(T, E)$ we have that $\varphi \circ f \in C V(T)$. Define

$$
Q: C V(T, E) \rightarrow C V(T, E), \quad Q(f)=(\varphi \circ f) u
$$

For every $v \in V$ and $p \in c s(E)$, we have that $\|(\varphi \circ f) u\|_{\nu, p} \leq p(u)\|f\|_{\nu, p}$ and so Q is continuous. Since $Q^{2}=Q$, it follows that Q is a continuous projection. We will show that $G=Q(C V(T, E))$ is topologically isomorphic to $C V(T)$. Indeed, we consider the mapping

$$
H: C V(T) \rightarrow G, \quad H(x)=Q(x u)
$$

Clearly H is linear and one-to-one. Also H is onto since for $h=(\varphi \circ f) u$, we have $H(\varphi \circ f)=h$. Finally, H is a homeomorphism. In fact, it is clear that H is continuous. Also H^{-1} is continuous. Indeed, the map $p(w)=|\varphi(w)|$ is a continuous seminorm on E and $p(u)=1$. Now, for $x \in$ $C V(T)$ and $v \in V$, we have $H(x)=x u$ and $\nu(t)|x(t)|=\nu(t) p(x(t) u) \leq$ $\|H(x)\|_{\nu, p}$ and so $\|x\|_{\nu} \leq\|H(x)\|_{\nu, p}$. This proves that H is a topological isomorphism. The proof for $C V_{0}(T)$ is analogous.

Proposition 2.6. If $C V(T)$ (resp. $C V_{0}(T)$) has a non-zero element, then E is topologically isomorphic to a complemented subspace of $C V(T, E)$ (resp. of $\left.C V_{0}(T, E)\right)$. In particular this happens if T is locally compact.

Proof. Let h be a non-zero element of $C V(T)$. We may assume that $h\left(t_{0}\right)=1$ for some $t_{0} \in T$. Let

$$
P: C V(T, E) \rightarrow C V(T, E), \quad P(f)=h f\left(t_{0}\right) .
$$

Then P is a continuous linear projection. Let $G=P(C V(T, E))$ and consider the mapping

$$
S: E \rightarrow G, \quad u \rightarrow h u .
$$

For $p \in c s(E)$ and $v \in V$, we have

$$
\|h u\|_{\nu, p}=\|h\|_{\nu} p(u)
$$

and so S is continuous. Also S^{-1} is continuous since we can choose $v \in V$ with $v\left(t_{0}\right)>0$ and so $\|h\|_{\nu} \neq 0$. This proves that G is topologically isomorphic to E. The proof for the case of $C V_{0}(T, E)$ is analogous.

3 - Completeness

As in the classical case (see [28]), for a topological space Y, we will say that T is a V_{Y}-space, with respect to a Nachbin family V on T, if any function j from T to Y, whose restriction to each of the sets $\{t \in T, \quad v(t) \geq 1\}, v \in V$, is continuous, is also continuous on T.

Proposition 3.1. α) If T is a V_{R}-space, then T is also a V_{K}-space. β) Every V_{K}-space is also a V_{F}-space, for every zero-dimensional topological space F.

Proof. α) Let $f: T \rightarrow \mathbf{K}$ be such that its restriction to each of the sets $G_{\nu}=\{t \in T, \quad \nu(t) \geq 1\}, \nu \in V$, is continuous and let $\left(t_{\alpha}\right)$ be α net in T which converges to some $t \in T$. let D be a clopen neighbourhood of $f(t)$ in \mathbf{K}. If φ is the \mathbf{R}-characteristic function of D, then φ is continuous and so $h=\varphi \circ f$ is continuous on each $G_{v}, v \in V$, which implies that h is continuous on T. Hence, there exists α_{0} such that $\left|h(t)-h\left(t_{\alpha}\right)\right|<1$ if $\alpha \succeq \alpha_{0}$. Since $h(t)=1$, it follows that $\left|h\left(t_{\alpha}\right)\right|=\left|h\left(t_{0}\right)\right|=1$, for $\alpha \succeq \alpha_{0}$, and so $f\left(t_{\alpha}\right) \in D$. This proves that f is continuous at t.
β) The proof is analogous to that of α).

Theorem 3.2. If E is complete and T is a V_{K}-space then $C V(T, E)$ and $C V_{0}(T, E)$ are complete.

Proof. Since $C V_{0}(T, E)$ is a closed subspace of $C V(T, E)$, it suffices to prove the result for $C V(T, E)$. So let $\left(f_{\alpha}\right)$ be a Cauchy net in $C V(T, E)$. Since for each $t \in T$ there exists v in V with $v(t)>0$, it follows that the map $\omega_{t}: C V(T, E) \rightarrow E, f \rightarrow f(t)$ is continuous and so $\left(f_{\alpha}(t)\right)$ is a Cauchy net in E.

Define $f: T \rightarrow E, f(t)=\lim f_{\alpha}(t)$.
Claim 1. The restriction of f to each $G_{\nu}=\{t: v(t) \geq 1\}, v \in V$, is continuous. Indeed, let $\left(t_{\delta}\right)$ be net in G_{ν} converging to some $t_{0} \in G_{\nu}$. Given $\varepsilon>0$, there exists α_{0} such that

$$
q_{\nu, p}\left(f_{\alpha}-f_{\beta}\right) \leq \varepsilon \quad \text { if } \quad \alpha, \beta \succeq \alpha_{0}
$$

Thus for $\alpha, \beta \succeq \alpha_{0}$, we have $p\left(f_{\alpha}(t)-f_{\beta}(t)\right) \leq \varepsilon$ for each $t \in G_{\nu}$. Since $f_{\alpha_{0}}$ is continuous at t_{0}, there exists δ_{0} such that

$$
p\left(f_{\alpha_{0}}\left(t_{\delta}\right)-f_{\alpha_{0}}\left(t_{0}\right)\right)<\varepsilon \quad \text { if } \quad \delta \succeq \delta_{0}
$$

Also, for $t \in G_{\nu}$, we have $p\left(f_{\alpha_{0}}(t)-f(t)\right) \leq \varepsilon$. Now for $\delta \succeq \delta_{0}$, we have

$$
\begin{gathered}
p\left(f\left(t_{\delta}\right)-f\left(t_{0}\right)\right) \leq \\
\leq \max \left\{p\left(f\left(t_{\delta}\right)-f_{\alpha_{0}}\left(t_{\delta}\right)\right), p\left(f_{\alpha_{0}}\left(t_{\delta}\right)-f_{\alpha_{0}}\left(t_{0}\right)\right), p\left(f_{\alpha_{0}}\left(t_{0}\right)-f\left(t_{0}\right)\right)\right\} \leq \varepsilon
\end{gathered}
$$

Claim 2. $f \in C V(T, E)$. Indeed, in view of Claim 1, f is continuous since T is a V_{K}-space and hence a V_{E}-space (by Proposition 3.1). Let $v \in V, p \in c s(E)$, and $\varepsilon>0$. There exists α_{0} such that $q_{\nu, p}\left(f_{\alpha}-f_{\beta}\right) \leq \varepsilon$ if $\alpha, \beta \succeq \alpha_{0}$. Thus, for $\alpha, \beta \succeq \alpha_{0}$, we have $\nu(t) p\left(f_{\alpha}(t)-f_{\beta}(t)\right) \leq \varepsilon$ and so $\nu(t) p\left(f_{\alpha_{0}}(t)-f(t)\right) \leq \varepsilon$ for each $t \in T$. Now

$$
\sup _{t \in T} \nu(t) p(f(t)) \leq \max \left\{\varepsilon, q_{\nu, p}\left(f_{\alpha_{0}}\right)\right\}
$$

and thus $f \in C V(T, E)$.
Claim 3. $f_{\alpha} \rightarrow f$ in $C V(T, E)$. the proof of this is analogous to that of Claim 2.

Combining Proposition 2.4 with the preceding theorem, we get the following:

Proposition 3.3. Let E be complete and Hausdorff and T a $V_{K^{-}}$ space. If for every $t \in T$ there exists $x_{t} \in C V_{0}(T)$ with $x_{t}(t) \neq 0$, then $C V_{0}(T, E)$ coincides with the completion $C V_{0}(T) \widehat{\otimes}_{\pi} E$ of $C V_{0}(T) \otimes_{\pi} E$.

4-Compactoid subsets of $\mathrm{CV}_{0}(\mathrm{~T}, \mathrm{E})$

Given $v \in V$ and $\lambda \in \mathbf{K}$, with $|\lambda|>1$, there exists $\varphi: T \rightarrow E$ such that $|\varphi| \leq v \leq|\lambda \varphi|$. If $|\mu|>1$ and if $\varphi^{\prime}: T \rightarrow E$ is another function with $\left|\varphi^{\prime}\right| \leq v \leq\left|\mu \varphi^{\prime}\right|$ then $|\varphi| \leq\left|\mu \varphi^{\prime}\right|$ and $\left|\varphi^{\prime}\right| \leq|\lambda \varphi|$.

Let now $C V_{c o}(T, E)$ be the space of all $f \in C V(T, E)$ such that, for all $v \in V$, there exists $\varphi \in \mathbf{K}^{T}$, with $|\varphi| \leq v \leq|\lambda \varphi|$, such that $(\varphi f)(T)$ is a compactoid subset of E. If φ is such a function and if $\varphi^{\prime} \in \mathbf{K}^{T}$, with $\left|\varphi^{\prime}\right| \leq v \leq\left|\lambda \varphi^{\prime}\right|$, then $\left(\varphi^{\prime} f\right)(T)$ is compactoid. It follows now easily that $C V_{c o}(T, E)$ is a vector subspace of $C V(T, E)$. We will consider on $C V_{c o}(T, E)$ the topology induced by the topology of $C V(T, E)$.

Proposition 4.1. $C V_{0}(T, E)$ is a subspace of $C V_{c o}(T, E)$.
Proof. Let $f \in C V_{0}(T, E)$ and $v \in V$. Let $|\lambda|>1$ and $\varphi \in \mathbf{K}^{T}$ with $|\varphi| \leq v \leq|\lambda \varphi|$. For $p \in c s(E)$ and $\varepsilon>0$, there exists a compact subset S of T such that $v(t) p(f(t))<\varepsilon$ if $t \notin S$. Let $d>0$ be such that $v(t)<d$ for all $t \in S$. For each $t \in S$, set

$$
W_{t}=\{s \in T, p(f(s)-f(t))<\varepsilon / d\} .
$$

Each W_{t} is clopen and $W_{t}=W_{s}$ whenever $W_{t} \cap W_{s} \neq \varnothing$. By the compactness of S, there are t_{1}, \ldots, t_{n} in S such that the sets $W_{t_{1}}, \ldots, W_{t_{n}}$ are pairwise disjoint and cover S. If $|\mu|>d$, then

$$
(\varphi f)(T) \subseteq c o\left(\mu f\left(t_{1}\right), \ldots, \mu f\left(t_{n}\right)\right)+\{u \in E, p(u)<\varepsilon\}=M .
$$

Indeed, the set $D=\{t, \nu(t)<d\}$ is open and contains S. Let now $t \in T$. If $t \in W_{t_{i}} \cap D$, then

$$
\varphi(t) f(t)=\varphi(t)\left(f(t)-f\left(t_{i}\right)\right)+\varphi(t) f\left(t_{i}\right)
$$

with $|\varphi(t)| p\left(f(t)-f\left(t_{i}\right)\right)<\varepsilon$ and $|\varphi(t)|<|\mu|$, which implies that $\varphi(t) f(t) \in M$.

Proposition 4.2. Let F be a Hausdorff polar space and let G denote the dual space of F equipped with the topology of uniform convergence on the compactoid subsets of F. If F is quasi-complete, then $G^{\prime}=F$.

Proof. For $B \subseteq F$, let B^{00} be the bipolar of B with respect to the pair $\left\langle F, F^{\prime}\right\rangle$. Let $\mathcal{B}=\left\{B^{00}, \quad B \subseteq F, \quad B\right.$ compactoid $\}$. Each element B^{00} of \mathcal{B} is compactoid (by [29, Theorem 5.13]). Also B^{00} is closed and bounded and hence complete. Since $\left(B^{00}\right)^{0}=B^{0}$, it follows that the topology of G coincides with the topology $\tau_{\mathcal{B}}$ of uniform convergence on the members of \mathcal{B}. Since on compactoid subsets of F, the topology of F coincides with the weak topology $\sigma\left(F, F^{\prime}\right)$ (by [29, Theorem 5.12]), each B^{00} is weakly complete. Thus, each member of \mathcal{B} is edged, weakly bounded, and weakly complete. Taking the space $M=\left(F^{\prime}, \sigma\left(F^{\prime}, F\right)\right)$, we have that $M^{\prime}=F$. It is easy to see that \mathcal{B} is a special covering of $M^{\prime}=F($ see $[29$, Definition 7.3$])$, and thus (by [29, Proposition 7.4])

$$
G^{\prime}=\left(M, \tau_{\mathcal{B}}\right)^{\prime}=M^{\prime}=F
$$

Lemma 4.3. Let T be a $V_{\mathbf{K}}$-space, $F=C V(T)$ and G the dual space of F equipped with the topology of uniform convergence on the compactoid subsets of F. Then the mapping $\Delta: T \rightarrow G, t \rightarrow \delta_{t}, \delta_{t}(x)=x(t)$, is continuous.

Proof. In view of Theorem $3.2, F$ is complete and $G^{\prime}=F$ by the preceding proposition. We first observe that Δ is continuous as a map from T to the weak dual F_{σ}^{\prime} of F. To prove our result, it suffices (in view of Proposition 3.1) to show that, for each $v \in V$, the restriction of Δ to $Y_{\nu}=\{t \in T, \nu(t) \geq 1\}$ is continuous. Since

$$
\Delta\left(Y_{\nu}\right) \subseteq\left\{x \in F,\|x\|_{\nu} \leq 1\right\}^{0}
$$

$\Delta\left(Y_{\nu}\right)$ is an equicontinuous subset of F^{\prime}. Since F is a polar space (by Lemma 2.2), its topology coincides with the topology of uniform convergence on the equicontinuous subsets of F^{\prime}. By [21, Proposition 3.12], each
equicontinuous subset of F^{\prime} is a compactoid subset of G. Since $G^{\prime}=F$, on $\Delta\left(Y_{\nu}\right)$ the topology of G coincides with the weak topology $\sigma\left(G, G^{\prime}\right)$. Now $\Delta: Y_{\nu} \rightarrow \Delta\left(Y_{\nu}\right)$ is continuous since it is continuous if we consider on $\Delta\left(Y_{\nu}\right)$ the weak topology.

Lemma 4.4. If T is a V_{K}-space, then every compactoid subset D of $C V(T)$ is equicontinuous.

Proof. Let $F=C V(T)$ and let G, Δ be as in the preceding Lemma. Since D^{0} is a neighbourhood of zero in G, given $t \in T$ and $\mu \neq 0$ in \mathbf{K}, there exists an open subset A of T containing t such that

$$
\Delta(A) \subseteq \mu D^{0}+\delta_{t}
$$

If now $x \in D$ and $s \in A$, then $\delta_{s}-\delta_{t} \in \mu D^{0}$ and so $|x(s)-x(t)| \leq|\mu|$, which proves that D is equicontinuous at t.

Proposition 4.5. Let T be a V_{K}-space and E a polar space. Then, every compactoid subset D of $C V_{c o}(T, E)$ is equicontinuous.

Proof. Let $f \in C V_{c o}(T, E)$. For each $x^{\prime} \in E^{\prime}$, the function $x^{\prime} \circ f$ is in $C V(T)$. Let

$$
\tilde{f}: E^{\prime} \rightarrow C V(T), \quad x^{\prime} \rightarrow x^{\prime} \circ f
$$

If we consider on E^{\prime} the topology $\tau_{c o}$ of uniform convergence on the compactoid subsets of E, then \tilde{f} is continuous. In fact, let $v \in V$ and choose $\varphi \in \mathbf{K}^{T}$ with $|\varphi| \leq v \leq|\lambda \varphi|,|\lambda|>1$. Since $M=(\varphi f)(T)$ is compactoid in E, its polar M^{0} is a neighborhood of zero for $\tau_{c o}$. Moreover

$$
\tilde{f}\left(\lambda^{-1} M^{0}\right) \subseteq\left\{x \in C V(T),\|x\|_{\nu} \leq 1\right\}
$$

which proves the continuity of \tilde{f}. Let now $p \in c s(E)$ be a polar seminorm and set

$$
B_{p}=\{u \in E, p(u) \leq 1\}
$$

We will show that the set

$$
H=\bigcup\left\{\tilde{f}\left(B_{p}^{0}\right), f \in D\right\}
$$

is a compactoid subset of $C V(T)$. Indeed, let $v \in V$. Since D is a compactoid, there are f_{1}, \ldots, f_{n} in $C V_{c o}(T, E)$ such that

$$
D \subseteq c o\left(f_{1}, \ldots, f_{n}\right)+W, \quad W=\left\{f \in C V_{c o}(T, E), q_{\nu, p}(f) \leq 1\right\}
$$

Let $f=\sum_{i=1}^{n} \lambda_{i} f_{i}+h$ in $D, h \in W,\left|\lambda_{i}\right| \leq 1$. Then

$$
\tilde{f}\left(B_{p}^{0}\right) \subseteq \sum_{i=1}^{n} \lambda_{i} \tilde{f}_{i}\left(B_{p}^{0}\right)+\tilde{h}\left(B_{p}^{0}\right)
$$

Each B_{p}^{0} is a $\tau_{c o}$-compactoid and so $\tilde{f}_{i}\left(B_{p}^{0}\right)$ is a compactoid subset of $C V(T)$. Thus, the absolutely convex hull M of $\bigcup_{\kappa=1}^{n} \tilde{f}_{i}\left(B_{p}^{0}\right)$ is compactoid in $C V(T)$ and so there exists x_{1}, \ldots, x_{m} in $C V(T)$ such that

$$
M \subseteq c o\left(x_{1}, \ldots, x_{m}\right)+W_{1}, \quad W_{1}=\left\{x \in C V(T),\|x\|_{\nu} \leq 1\right\}
$$

Since $\tilde{h}\left(B_{p}^{0}\right) \subseteq W_{1}$, for $h \in W$, if follows that

$$
H \subseteq c o\left(x_{1}, \ldots x_{m}\right)+W_{1}
$$

which proves that H is compactoid in $C V(T)$. In view of Lemma 4.4, H is equicontiunuous. Thus, given $t_{0} \in T$ and $\mu \neq 0$ in \mathbf{K}, there exist a neighbourhood A of t_{0} in T such that

$$
\left|\tilde{f}\left(x^{\prime}\right)(t)-\tilde{f}\left(x^{\prime}\right)\left(t_{0}\right)\right| \leq|\mu| \quad \text { for all } \quad f \in D, x^{\prime} \in B_{p}^{0}, t \in A
$$

and so

$$
\mu^{-1}\left(f(t)-f\left(t_{0}\right)\right) \in B_{p}^{00}=B_{p}
$$

if $t \in A$. Hence, for all $t \in A, f \in D$, we have $p\left(f(t)-f\left(t_{0}\right)\right) \leq|\mu|$, and so the result follows.

The following is an Arzelá-Ascoli type theorem for $C V_{0}(T, E)$.
Theorem 4.6. Let E be a polar space, T a V_{K}-space and D a subset of $C V_{0}(T, E)$. Then, D is compactoid iff:
a) D is equicontiunuous.
b) For each $t \in T$, the set $D(t)=\{f(t), f \in D\}$ is a compactoid subset of E.
c) For any $p \in \operatorname{cs}(E), v \in V$ and $\varepsilon>0$, there exists a compact subset S of T such that $v(t) p(f(t))<\varepsilon$ for all $f \in D$ and all $t \notin S$.

Proof. Necessity: Assume that D is compactoid. Part a) follows from the preceding proposition in view of Proposition 4.1. As regards part b), since for each $t \in D$ there exists $v \in V$ with $v(t)>0$, it follows that the mapping

$$
\varphi_{t}: C V_{0}(T, E) \rightarrow E, \quad \varphi_{t}(f)=f(t),
$$

is continuous and so $D(T)=\varphi_{t}(D)$ is compactoid. Finally, to show part c), let f_{1}, \ldots, f_{n} in $C V_{0}(T, E)$ be such that

$$
D \subseteq c o\left(f_{1}, \ldots, f_{n}\right)+\left\{f, q_{\nu, p}(f)<\varepsilon\right\} .
$$

Let S be a compact subset of T such that $v(t) p\left(f_{i}(t)\right)<\varepsilon$ for all $t \in S$, $i=1, \ldots, n$. Let now $f \in D, f=\sum_{i=1}^{n} \lambda_{i}+h,\left|\lambda_{i}\right| \leq 1, q_{\nu, p}(h)<\varepsilon$. Then, fro $t \notin S$, we have $v(t) p(f(t))<\varepsilon$.

Sufficiency: Assume that D satisfies properties a), b), c). Since $c o(D)$ also has properties a), b), c), when D does, we may assume that D is absolutely convex. Let

$$
d>\sup _{t \in S} \nu(t) \quad \text { and } \quad B=\{t \in T, \nu(t)<d\} .
$$

Then B is open and contains S. For each $t \in S$, there exists a clopen set W_{t} with $t \in W_{t} \subseteq B$, such that $p(f(t)-f(s))<\varepsilon_{1}=\frac{\varepsilon}{d|\lambda|}$ for all $f \in D$ and all $s \in W_{t}$. It is now clear, using the compactness of S, that there are t_{1}, \ldots, t_{m} in S and pairwise disjoint clopen sets A_{1}, \ldots, A_{m} covering $S, t_{\kappa} \in A$, such that $p\left(f(t)-f\left(t_{\kappa}\right)\right)<\varepsilon_{1}$ for all $t \in A_{\kappa}$ and all $f \in D$. Since $D\left(t_{\kappa}\right)$ is an absolutely convex compactoid, there are $f_{\kappa 1}, \ldots, f_{\kappa n_{\kappa}}$ in D such that

$$
D\left(t_{\kappa}\right) \subseteq \lambda \cdot \operatorname{co}\left(f_{\kappa 1}\left(t_{\kappa}\right), \ldots, f_{\kappa n_{\kappa}}\left(t_{\kappa}\right)\right)+B_{p, \varepsilon_{1}},
$$

where $|\lambda|>1$ and $B_{p, \varepsilon_{1}}=\left\{u \in E, p(u) \leq \varepsilon_{1}\right\}$. If $\chi_{A_{\kappa}}$ is the Kcharacteristic function of A_{κ}, we will show that

$$
\begin{equation*}
D \subseteq \lambda \cdot c o(H)+\left\{f, q_{\nu, p}(f) \leq \varepsilon\right\}, \tag{*}
\end{equation*}
$$

where $H=\left\{f_{\kappa j} \chi_{A_{\kappa}}, \kappa=1, \ldots, m, j=1, \ldots, n_{\kappa}\right\}$. In fact, let $f \in D$. Then

$$
f\left(t_{\kappa}\right)=\lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j}\left(t_{\kappa}\right)+w_{\kappa},\left|\lambda_{\kappa j}\right| \leq 1, p\left(w_{\kappa}\right) \leq \varepsilon_{1}
$$

Set

$$
h=f-\lambda \sum_{\kappa=1}^{m} \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j} \chi_{A_{\kappa}}
$$

and let $t \in B$. If $t \in A_{\kappa}$, then

$$
\begin{aligned}
& h(t)=f(t)-\lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j}(t)= \\
& =\left[f(t)-f\left(t_{\kappa}\right)\right]+\left[f\left(t_{\kappa}\right)-\lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j} f_{\kappa j}\left(t_{\kappa}\right)\right]+\lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j}\left(f_{\kappa j}(t)-f_{\kappa j}\left(t_{\kappa}\right)\right) \\
& =\left[f(t)-f\left(t_{\kappa}\right)\right]+w_{\kappa}+\lambda \sum_{j=1}^{n_{\kappa}} \lambda_{\kappa j}\left[f_{\kappa j}(t)-f_{\kappa j}\left(t_{\kappa}\right)\right] .
\end{aligned}
$$

Since

$$
\nu(t) p\left(f(t)-f\left(t_{\kappa}\right)\right)<d \varepsilon_{1}<\varepsilon, \nu(t) p\left(w_{\kappa}\right)<\varepsilon
$$

and

$$
|\lambda| \nu(t) p\left(f_{\kappa j}(t)-f_{\kappa j}\left(t_{\kappa}\right)\right)<|\lambda| \cdot d \cdot \frac{\varepsilon}{|\lambda| \cdot d}=\varepsilon,
$$

it follows that $v(t) p(h(t))<\varepsilon$. If $t \notin \bigcup_{\kappa=1}^{m} A_{\kappa}$, then $t \notin S$ and so $v(t) p(h(t))=v(t) p(f(t))<\varepsilon$. Thus $q_{\nu, p}(h) \leq \varepsilon$. which proves $(*)$.

Taking T the set \mathbb{N} of positive integers, with the discrete topology, and as V the family of al constant positive functions on \mathbb{N}, we get as a corollary the following

Proposition 4.7. If E is a polar space, then a subset D of $c_{0}(E)$ is compactoid iff:

1) For each $n \in \mathbb{N}$, the set $\left\{x_{n}, x \in D\right\}$ is compactoid in E.
2) For each $p \in \operatorname{cs}(E)$ and each $\varepsilon>0$, there exists n_{0} such that $p\left(x_{n}\right)<\varepsilon$ for all $x \in D$ and all $n \geq n_{0}$.

In case $E=\mathbf{K}$ in the preceding proposition, we get we known result that a subset D of c_{0} is compact iff there exists $y \in c_{0}$ such that

$$
D \subseteq \hat{y}=\left\{x \in c_{0},\left|x_{n}\right| \leq\left|y_{n}\right| \quad \text { for all } \quad n \in \mathbf{N}\right\}
$$

Finally, taking as V the family of all positive constant functions on T, we get the following.

Proposition 4.8. Let E be a polar space and let $C_{0}(T, E)$ have the topology of uniform convergence. Then a subset D of $C_{0}(T, E)$ is compactoid iff:

1) D is equicontinuous.
2) For each $t \in T$, the set $D(t)$ is compactoid in E.
3) D vanishes uniformly at infinity, i.e. for each $\varepsilon>0$ and each $p \in$ $c s(E)$ there exists a compact subset S of T such that $p(f(t))<\varepsilon$ for all $f \in D$ and all $t \notin S$.

REFERENCES

[1] F. Bastin: On bornological $C \bar{V}(X)$ spaces, Arch. Math., 53 (1989), 394-398.
[2] F. Bastin - B. Ernst: A criterion for $C V(X)$ to be quasinormable, Results in Math., 14 (1988), 223-230.
[3] K. D. Bierstedt: The approximation property for weighted function spaces, Bonner Math. Schiften, 81 (1975), 3-25.
[4] K. D. Bierstedt: Tensor Products of weighted spaces, Bonner Math. Schriften, 81 (1975), 25-58.
[5] K. D. Bierstedt: Gewichtete Räme Stetigen Vectorwertigen Functionen und das injective tensorproductI, Reine Angew. Math., 259 (1973), 186-290.
[6] K. D. Bierstedt - J. Bonet: Completeness of the (LB)-space VC(X), Arch. Math., 56 (56), 281-285.
[7] K. D. Bierstedt - J. Bonet: Dual Density Contribution in (DF)-space I, Resultate Math., 14 (1988), 242-274.
[8] K. D. Bierstedt - J. Bonet: Some results on $V C(X)$, pp. 181-194 in: T. Terzioglou (Ed.), Advances in the Theory of Frechét Spaces, (Kluwer Academic publishers) 1989.
[9] K. D. Bierstedt - R. Meise: Distinguishd echelon space and the projective description for weighted inductive limits of type $V_{d} C(X)$, pp. 169-226 in: Aspects of Mathematics and its Applications, (Elservier Science Publ. B.V. North-Holland Math. Library) 1986.
[10] K. D. Bierstedt - R. Meise - W. H. Summers: A Projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160.
[11] K. D. Bierstedt - R. Meise - W. H. Summers: Köthe Sets and Köthe Sequence Spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory (North-Holland Math. Studies) 71, 1982.
[12] J. Bonet: A projective description of weighted inductive limits of spaces of vector valued functions, Collectanea Math., 34 (1983), 115-125.
[13] J. Bonet: On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20.
[14] J. P. Q. Carneiro: Non-Archimedean weighted approximation, (in Portuguese) An. Acad. Brasil. Ci., 50 (1) (1978), 1-34.
[15] J. P. Q. Carneiro: Non-Archimedean weighted approximation, in: Approximation Theory and Functional Analysis, (J.B. Prolla, editor) 121-131 (NorthHolland Publ. Co. Amsterdam) 1979.
[16] N. De Grande-De Kimpe: The Non-Archimedean space $C^{\infty}(X)$, Comp. Math., 48 (1983), 297-309.
[17] B. Ernst: On the uniqueness of weighted (DF)-topologie, Bull. Roy. Sci. de Liege, 5-6 (1987), 451-461.
[18] B. Ernst - P. Scnettler: On Weighted Spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559.
[19] A. K. Katsaras: The Strict Topology in non-Archimedean vector-valued Function Spaces, Proc. Kon. Ned. Akad. Wet. A, 87 (2) (1984), 189-201.
[20] A. K. Katsaras: The Strict Topology in non-Archimedean Function Spaces, Inter. J. Math. \& Math. Sci., 7 (1) (1984), 23-33.
[21] A. K. Katsaras - C. Petalas - T. Vidalis: Non-Archimedean Sequential Spaces and the Finest Locally Convex with the same Compactoid Sets, Acta Math. Univ. Comenianae, LXIII (1) (1994), 55-75.
[22] J. martinez-maurica - S. navarro: p-adic Ascoli theorems, Revista Math. Univ. Computence de Madrid, 3 (1) (1990), 19-27.
[23] L. nachbin: Elements of Approximation Theory, Van Nostrand Math. Studies, 14 (1967).
[24] C. Perez-Garcia: P-adic Ascoli theorems and Compactoid Polynomials, Indag Math. N.S., 3 (2) (1992), 203-210.
[25] J. B. Prolla: Weighted Spaces of vector-valued continuous functions, Ann. Mat. Pura. Appl., (4) 89 (1971), 145-158.
[26] J. B. Prolla: Approximation of vector-valued functions, (North Holland Publ. Co., Amsterdam, New York, Oxford) 1977.
[27] A. van Rooij: Non-Archimedean Functional Analysis, (Marcel Dekker, New York) 1978.
[28] W. M. Ruess - W. H. Summers: Compactness in Space of vector-valued continuous functions and Asymptotic Almost Periodicity, Math. Nachr., 135 (1988), 7-33.
[29] W. H. Schikhof: Locally Convex Spaces over Non-spherically Complete Fields I, II, Bull. Soc. Math. Belg. Ser. B, 38 (1986), 187-224.

Lavoro pervenuto alla redazione il 14 novembre 1995
modificato il 7 maggio 1996
ed accettato per la pubblicazione il 11 luglio 1996.
Bozze licenziate il 10 settembre 1996

Indirizzo DEGLI Autori:

A. K. Katsaras - A. Beloyiannis - Department of Mathematics University of Ioannina - 451 10 Ioannina, Greece
E-mail: katsara@cc.oui.gr

[^0]: Key Words and Phrases: Non-Archimedean seminorm - Nachbin family - Compactoid set - Polar space
 A.M.S. Classification: 46S10

