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Riemann-Stieltjes integration in Riesz spaces

D. CANDELORO

Riassunto: Dopo aver introdotto un integrale per funzioni d’intervallo a valori in
spazi di Riesz, si applica tale concetto per rappresentare la variazione di funzioni conti-
nue, per definire integrali curvilinei e integrali alla Riemann-Stieltjes, che permettono
di ricavare, come casi particolari, alcuni tipi d’integrale stocastico.

Abstract: After introducing an integral for Riesz-space valued integral functions,
this concept is used to represent the variation of a continuous function, to define in-
tegrals along a curve and Riemann-Stieltjes integrals, and to deduce from them, as
particular cases, some kinds of stochastic integral.

– Introduction

Abstract Integration is a widely investigated field in Mathematics:

there are contributions in many problems, either with the aim to unify

and generalize theories, or with the purpose of finding applications, for

example in Probability. A basic role in this area is played by set functions,

as L. Cesari in [2] and [3] fully clarified, and many Authors subsequently

confirmed.

At present, an increasing number of Authors investigate the prob-

lem of integrating Riesz-space valued functions, motivated both by the

manifold applications of Riesz structures to functional spaces, and by
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the possibility of working with nice tools, such as “positive”quantities.

One typical paper in this setting is [1], where a rich bibliography is also

available.

The purpose of this work is not to look for extremely general defini-

tions and results, but rather to investigate a topic, which is sometimes

underestimated, i.e. Riemann-Stieltjes integration: while this tool is less

powerful than the Lebesgue integral, it can be applied also in some cases,

when the functions fail to be B.V. One of the motivations for choosing

the Riesz space setting is that every stochastic process can be viewed as

a map X : [0, T ] → M , where M is the space of all measurable functions

in some probability space, i.e. a complete Riesz space. Some results are

similar to analogous theorems obtained in [10], [11], [12], where a more

general setting has been chosen: so we don’t dwell upon them; however,

we have tried to obtain new conditions for the existence of the integral,

and examples explaining the differences with the real-valued case (one of

them shows that the Riemann-Stieltjes integral, in our setting, can exist

even if the two functions are both discontinuous at every point). Some

applications can be found in problems of Stochastic Integration, mainly

in the sense of Stratonovich and Ito, though the “naive” definition of

Riemann-Stieltjes integral has to be replaced with a refined concept of

“integral along a curve”; other applications concern more concretely the

possibility to evaluate the integral by means of classical formulas, al-

though we have chosen to give results just for polynomials, as they can

be easily used to find similar formulas for more general functions.

In the first section, an integral is defined, for Riesz space-valued in-

terval functions ((0)-integral); in the second section, we introduce the

concept of bounded variation for a Riesz space-valued point function,

and prove that it can be obtained as a (0)-integral, if the function is

continuous. In the third section, assuming that the Riesz space is en-

dowed with a “product”, we define the integral along a curve, from which

some kinds of stochastic integral can be deduced “pathwise”. Finally, in

the fourth section, we deal with the Riemann-Stieltjes integral, pointing

out some necessary and sufficient conditions of “classical” type, as well

as differences with the real-valued case, and find some usual formulas of

Calculus.
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1 – The (0)-integral

Let [a, b] be any compact interval in the line, and {I} denote the

family of all closed subintervals of [a, b]. We shall also denote by D the

family of all finite decompositions D of [a, b] into closed non-overlapping

intervals: we usually write

D = [I1, . . . , In] ,

whenever D ∈ D. For any D ∈ D, we set: |D| = max{|I| : I ∈ D}, where

| | denotes usual length.

In D we shall also consider the order relation <, defined by:

D1 < D2

if and only if every interval of D2 is contained in some interval of D1. If

this the case, we say that D2 refines D1.

Given a sequence (Dn) in D, we say that (Dn) is null if the sequence

(|Dn|) is decreasing to 0.

Now, let R be any Archimedean Dedekind complete Riesz space: this

will be shortened in “ACR”. If (pn) is any decreasing sequence in R+, such

that inf pn = 0, we shall say that (pn) is a 0-decreasing sequence (0-d.s).

Definition 1.1. Assume that a function q : {I} → R is defined.

We say that q is (0)-integrable if there exists an element Y ∈ R, and a

0-d.s. (pn) in R, such that

sup{|Y −
∑

I∈D

q(I)| : |D| ≤ 1/n} ≤ pn ,

for all n ∈ IN. It is obvious that Y is unique, if it exists: in this case, we

write

Y = (0)-

∫

[a,b]

q ,

and say that Y is the (0)-integral of q.
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It is also clear that Y is linear in q, and monotonic.

As R is complete, the above definition can also be formulated as

follows: q is (0)-integrable if there exists a 0-d.s. (pn) in R+ such that

sup
{∣∣∣

∑

I∈D

q(I) −
∑

J∈D′
q(J)

∣∣∣ : |D| ≤ 1/n, |D′| ≤ 1/n
}

≤ pn ,

for all n (Cauchy condition).

A slightly different formulation is the following.

Theorem 1.2. q is (0)-integrable if and only if

(1.2.1) there exists a 0-d.s. (pn) in R+ such that

sup
{∣∣ ∑

I∈D

q(I) −
∑

J∈D′
q(J)

∣∣ : |D| ≤ 1/n, D′ > D
}

≤ pn ,

for all n.

Proof. Of course, the condition is necessary. As to sufficiency, as-

sume (1.2.1), and fix n ∈ IN. Then choose any two decompositions D, D′,

|D| ≤ 1/n, |D′| ≤ 1/n, and denote by D̃ any decomposition of [a, b] finer

than D and D′. Of course, we get

∣∣ ∑

J∈D′
q(J) −

∑

I∈D

q(I)
∣∣ ≤

∣∣ ∑

J∈D′
q(J) −

∑

H∈D̃

q(H)
∣∣+

+
∣∣ ∑

H∈D̃

q(H) −
∑

I∈D

q(I)
∣∣ ≤ 2pn .

By arbitrariness of D and D′, and as (2pn) is still a 0-d.s., this implies

that q is (0)-integrable.

This theorem entails a number of useful results: a further definition

is needed.

Definition 1.3. If q : {I} → R is any interval function, and if I

is any fixed element of {I}, we set

ob(q, I) = sup
{∣∣ ∑

J∈D

q(J) −
∑

H∈D′
q(H)

∣∣ : D, D′ ∈ DI

}
,
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where DI is the same as D, where [a, b] is replaced by I.

Theorem 1.4. The function q is (0)-integrable if and only if:

(1.4.1) there exists a 0-d.s. (pn) such that

sup
{ ∑

I∈D

ob(q, I) : |D| ≤ 1/n
}

≤ pn ,

for all n ∈ IN.

Proof. Sufficiency: if (pn) is the sequence in (1.4.1), choose n, and

let D, D′ be two elements of D, satisfying |D| ≤ 1/n, D < D′. Then

∣∣ ∑

J∈D′
q(J) −

∑

I∈D

q(I)
∣∣ =

∣∣ ∑

I∈D

( ∑

J∈D′
J⊂I

q(J) − q(I)
)∣∣ ≤

≤
∑

I∈D

ob(q, I) ≤ pn .

Thus, integrability of q follows from 1.2.

Necessity: assume that q is integrable, and let (pn) be the 0-d.s.

deduced from the Cauchy condition. Fix n ∈ IN, and D ∈ D, |D| ≤ 1/n.

For each I ∈ D, let D′
I , D′′

I be any two decompositions of I. Then,

denote by D′ and D′′ respectively the decompositions of [a, b], obtained

by “putting together” all the elements of D′
I and of D′′

I , as I runs in D.

By the Cauchy condition, we find

(1.4.2)
∑

I∈D

( ∑

J∈D′
I

q(J) −
∑

H∈D′′
I

q(H)
)

=
∑

J∈D′
q(J) −

∑

H∈D′′
q(H) ≤ pn .

Now, write D = [I1, . . . , Im], and keep fixed the decompositions D′
I

and D′′
I , with I = I2, . . . , Im, letting the other decompositions vary.

Then, from (4.1.2) we get

(1.4.3)
∑

2≤i≤m

( ∑

J∈D′
Ii

q(J) −
∑

H∈D′′
Ii

q(H)
)

+ ob(q, I1) ≤ pn .

From (1.4.3) we can deduce, in a similar way:

∑

3≤i≤m

( ∑

J∈D′
Ii

q(J) −
∑

H∈D′′
Ii

q(H)
)

+ ob(q, I1) + ob(q, I2) ≤ pn .



568 D. CANDELORO [6]

It’s now clear how to deduce that
∑

I∈D ob(q, I) ≤ pn.

The following results are easy consequences of 1.4.

Corollary 1.5. If q is (0)-integrable in [a, b], then it is (0)-

integrable over any subinterval I ⊂ [a, b].

Corollary 1.6. Assume that q is (0)-integrable. Then there exists

a 0-d.s. (pn) in R+, such that

sup
|D|≤1/n

{ ∑

I∈D

|(0)-

∫

I

q − q(I)|
}

≤ pn ,

for all n ∈ IN.

Theorem 1.7. A necessary and sufficient condition for integrability

of q is:

(1.7.1) there exists a 0-d.s (pn) in R, such that

(1.7.2) sup
|D|≤1/n

{ ∑

I∈D

|q(I) −
∑

J∈D′
q(J)1I(J)| : D′ ∈ D, D < D′

}
≤ pn

holds true, for every n ∈ IN, and every D ∈ D, |D| ≤ 1/n, (here the

symbol 1I(J) means 1, if J ⊂ I, and 0, if J '⊂ I).

We shall close this section, mentioning a weaker type of integral,

corresponding to a weaker form of convergence. Indeed, the (0)-integral

of a function q : {I} → R is simply the limit, according with the so-called

(0)-convergence (see [9]), of the sums
∑

I∈D q(I), as |D| tends to 0.

However, a weaker form of convergence can be found in R, i.e. the

∗-convergence [14]: accordingly, we give the following definition.

Definition 1.8. We say that q is ∗-integrable if there exists an

element Y ∈ R such that, for every null sequence (Dn), it’s possible to

find a sub-sequence (Dnj
), and a 0-d.s. (pj), satisfying

|Y −
∑

I∈Dnj

q(I)| ≤ pj

for all j ∈ IN.
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It’s clear that (0)-integrability implies ∗-integrability; however, there

is at least one important case, in which they are different, i.e. when R is

the space of measurable functions on a finite measure space: in such case,

(0)-convergence is a.e. convergence, while ∗-convergence is convergence in

measure. This situation arises in a natural way, in problems of Stochastic

Integration.

2 – Bounded Variation

In this section, we shall deal with functions g : [a, b] → R, introduce

for them the concept of variation, and represent it (when bounded) as a

(0)-integral.

Definition 2.1. Given a function g, defined on the interval [a, b],

and taking values in an ACR R, we say that g has bounded variation

(B.V.) if the set { ∑

I∈D

|qg(I)| : D ∈ D
}

is bounded in R, where qg : {I} → R is defined as:

qg([u, v]) = g(v) − g(u) .

In case g is B.V., we set

V (g, [a, b]) = sup
{ ∑

I∈D

|qg(I)| : D ∈ D
}

.

Definition 2.2. We say that g : [a, b] → R is continuous at some

point t ∈ [a, b], if there exists a 0-d.s. (pn) in R, such that

sup{|qg([u, v]| : u ≤ t ≤ v, |v − u| ≤ 1/n} ≤ pn ,

for all n ∈ IN. We say that g is continuous in [a, b] if it is continuous at

every point t ∈ [a, b].
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Let’s remark here that, in general, the 0-d.s. depends on t, hence we

can’t expect a result like Heine’s theorem on uniform continuity.

For instance, take R = L0([a, b]), and define g : [a, b] → R as

g(t) = 1[t−r,t+r]∩[a,b] ,

where r > 0 is less than (b − a)/4. If t is fixed, one can choose pn = 1An

where An = [a, b] ∩ ([t + r − 1/n, t + r + 1/n] ∪ [t − r − 1/n, t − r + 1/n]),

but there is no way to find a 0-d.s (pn) that works for every t.

Remarks 2.3. Of course, if g is B.V., then it is bounded, i.e. there

exists an element M ∈ R+, such that |g(x)| ≤ M , for all x ∈ [a, b].

Furthermore, just like in the real case, it is easy to see that g is the

difference of two non-decreasing functions. However, there is no hope to

have regularity, in general. For instance, we can choose R as the space

IR[a,b], and define g as: g(t) = 1{t}, for every t ∈ [a, b]. Of course, g is

B.V., and V (g) ≤ 2 (the constant function), but g is discontinuous at

every point: indeed, |g(t + h) − g(t)| ≥ 1{t} for every h different from 0.

Theorem 2.4. Assume that g : [a, b] → R is B.V. and continuous

in [a, b]. Then the function |qg| is (0)-integrable, and

∫

[a,b]

|qg| = V (g; [a, b]) .

Proof. Fix any decomposition D0 ∈ D, D0 = [I1, . . . , In] and write

Ij = [tj−1, tj], where a = t0 < . . . < tN = b. For each j = 1, . . . , N − 1,

let (pj
n) be the 0-d.s. concerned with the continuity of g at tj. Set also

pn =
∑

1≤j<N

pj
n ,

for all n ∈ IN: clearly, (pn) is still a 0-d.s.

Fix now n ∈ IN, and a decomposition D of [a, b], with |D| ≤ 1/n. We

have ∑

J∈D

|qg(J)| =
∑

I∈D0

∑

J∈D

|qg(J)|1I(J) +
∑ ∗|qg(J)|
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where
∑∗ runs over those J ∈ D, that are not contained in any element

I ∈ D0. We easily find

∑

J∈D

|qg(J)| ≥
∑

I∈D0

|qg(I)| − pn .

This proves that for every D0 there exists a 0-d.s. (pn) in R, such

that ∑

J∈D

|qg(J)| ≥
∑

I∈D0

|qg(I)| − pn

holds, whenever D ∈ D, |D| ≤ 1/n. Hence

inf
|D|≤1/n

∑

J∈D

|qg(J)| ≥
∑

I∈D0

|qg(I)| − pn .

Taking the supremum as n ∈ IN, we get

lim
n→∞

inf
|D|≤1/n

∑

J∈D

|qg(J)| ≥
∑

I∈D

|qg(I)| .

As D0 is arbitrary, it follows

lim
n→∞

inf
|D|≤1/n

∑

J∈D

|qg(J)| ≥ V (g; [a, b]) .

Of course, we already have

lim
n−>∞

sup
|D|≤1/n

∑

J∈D

|qg(J)| ≤ V (g; [a, b]) ,

so the theorem is proved.

Theorem 2.5. Under the same hypothesis as in 2.4, the function

g is the difference of two increasing continuous functions.
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Proof. Set v(x) = V (g; [a, x]), for all x ∈]a, b], and v(a) = 0. It is

clear that v is monotone increasing. Furthermore, v − g is increasing too,

because h > 0 implies v(x + h) ≤ v(x) + g(x + h) − g(x). So, we only

need to show that v is continuous. It’s plain that

(2.5.1) v(x + h) − v(x) ≤ V (g; [x, x + h])

whenever x ∈ [a, b] and h > 0 is such that x+h ≤ b. (Actually, continuity

of g also implies that in (2.5.1) equality holds true).

Now, from 1.6 and 2.4 it follows at once that v is continuous.

3 – Integrals along a curve

In this section we shall define integrals for functions of interval, with

respect to point functions. We need a further general result, about the

(0)-integral.

Definition 3.1. Given a function q : {I} → R, we say that q is

continuous at some point t ∈ [a, b], if there exists a 0-d.s. (pn) in R, such

that

sup{|q([u, v])| : u ≤ t ≤ v, v − u ≤ 1/n} ≤ pn ,

for all n.

Clearly, for any point function g : [a, b] → R, and every point t ∈
[a, b], continuity of g at t is equivalent to continuity of qg at t.

Theorem 3.2. Let q : {I} → R be continuous at some point

t ∈ [a, b], and assume that q is (0)-integrable in [a, t] and in [t, b]. Then

q is integrable in [a, b], and

(0) −
∫

[a,b]

q = (0) −
∫

[a,t]

q + (0) −
∫

[t,b]

q .
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Proof. By assumption, there exists a 0-d.s. (pn) in R, such that:

sup{|q([u, v])| : u ≤ t ≤ v, v − u ≤ 1/n} ≤ pn

sup

{
|
∫

[a,t]

q −
∑

I∈D

q(I)| : D ∈ D[a,t]|D| ≤ 1/n

}
≤ pn

sup

{
|
∫

[t,b]

q −
∑

J∈D′
q(J)| : D′ ∈ D[t,b], |D′| ≤ 1/n

}
≤ pn

for all n.

Now, if D′′ ∈ D satisfies |D′′| ≤ 1/n, we get

∑

H∈D′′
q(H) =

∑

H∈D′′
q(H)1[a,t](H) +

∑

H∈D′′
q(H)1[t,b](H) + q([u, v])

where [u, v] is a suitable interval containing t.

As |q([u, v]) − (q([u, t]) + q([t, v])|) ≤ 3pn , we find

3pn ≥
∣∣∣

∑

H∈D′′
q(H) −

{ ∑

H∈D′′
q(H)1[a,t](H) + q([u, t])

}
+

−
{ ∑

H∈D′′
q(H)1[t,b](H) + q([t, b])

}∣∣∣ ,

whence ∣∣∣
∑

H∈D′′
q(H) −

( ∫

[a,t]

q +

∫

[t,b]

q

)∣∣∣ ≤ 5pn .

This is sufficient to get the result.

In order to proceed, we shall add structure to R: namely, we’ll as-

sume that R is an algebra; many ACR’s can be endowed with a product

[5] by means of the Maeda-Ogasawara-Vulikh Representation Theorem.

However, we don’t mind how a product is defined, we only assume that

there is one in R. More precisely, we require that:

“ A product: R × R → R is defined, satisfying

3.a) 0 · r = r · 0 = 0 for all r ∈ R.

3.b) (r + s) · t = r · t + s · t, for all r, s, t ∈ R.

3.c) r · s = s · r, for all r, s ∈ R.

3.d) r ≤ s, t ≥ 0 =⇒ r · t ≤ s · t, r, s, t ∈ R.
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3.e) If (pn) is a 0-d.s. in R, and t ∈ R+, then (t · pn) is a 0-d.s. too”.

Definition 3.3. Let F : {I} → R and g : [a, b] → R be fixed.

We say that F is (0)-integrable with respect to g, if the interval function

Q : {I} → R is (0)-integrable, where

Q(I) = F (I) · qg(I) .

if this is the case, we shall write

∫
Fdg = (0)-

∫

Q

.

One of the common sufficient conditions, to get integrability of F

with respect to g, is to require bounded variation on g, and uniform

continuity on F . More precisely:

Theorem 3.4. Assume that g is B.V., and that there exists a 0-d.s.

(pn) in R, such that

sup{|F (I)| : |I| ≤ 1/n} ≤ pn .

Then F is integrable with respect to g.

Proof. Let V denote the variation of g. Thanks to 1.7, it will be

enough to show that

sup
{ ∑

I∈D

|Q(I)−
∑

J∈D′
Q(J)1I(J)| : D′ ∈ D, D < D′, |D| ≤ 1/n

}
≤ 2V ·pn

for all n, where (pn) is the 0-d.s. in the assumptions. Now, if |D| ≤ 1/n,

and D′ > D, for each I ∈ D we have

Q(I) −
∑

J∈D′
q(J)1I(J) =

∑

J∈D′
1I(J)(F (I) − F (J))qg(J)

so ∑

I∈D

|Q(I) −
∑

J∈D′
Q(J)1I(J)| ≤ 2pn · V .

The theorem is therefore proved.



[13] Riemann-Stieltjes integration in Riesz spaces 575

However, there are important situations, in which g fails to be B.V.,

while the integral
∫

Fdg does exist: of course, this may happen just in

particular cases, and we will try to give an idea of them. We give first an

existence theorem.

Theorem 3.5. Assume that F is continuous at every point t ∈
[a, b] and that g is bounded. A necessary and sufficient condition for the

existence of
∫

Fdg is that there exists a function H : [a, b] → R such that

the function qH − Q is (0)-integrable, and its integral is null.

Proof. Necessity: In the hypothesis above, Q is continuous at every

point t ∈ [a, b]. Hence, if Q is (0)-integrable, thanks to 3.2 the integral is

additive. Put H(x) = (0)−∫
[a,x] Q. Then, for each I ∈ {I}, qH(I) =

∫
I Q.

Now, the conclusion about qH − Q follows from 1.6.

Sufficiency: The function qH is trivially integrable. Hence, if qH − Q

has null integral, it’s clear that Q is integrable, and

(0)-

∫

[a,b]

Q =

∫

[a,b]

Fdg = H(b) − H(a) .

The problem we shall investigate is the following: assume that g is

any continuous function on [a, b], and f : R → R is some suitable map.

Assume now that we are given a rule to associate a suitable element

U(g, I) ∈ R, for each I ∈ {I}: for instance, U(g, I) = U(g, [u, v]) = g(u),

or U(g, [u, v]) = g(v), and so on.

Under which conditions will the function F be integrable with respect

to g, where F (I) = f(U(g, I))?

We shall give an answer just in particular cases, mainly those related

to Stochastic Integration.

Definition 3.6. Given a positive real number r, we say that g is

Hölder of degree greater than r, and write g ∈ Hr, if there exist K ∈ R+

and ε > 0, such that

|g(v) − g(u)| ≤ K|u − v|r+ε, u, v ∈ [a, b] .

Lemma 3.7. If g : [a, b] → R is in H1/j, then |qg|j has null integral.



576 D. CANDELORO [14]

Proof. First of all, we observe that |qg|j is well-defined as a power

in the algebra R. By assumption, |qg(I)|j ≤ K|I|1+jε. It is easy to check

that the real interval function |I|1+s has null integral when s is positive.

Hence, the result follows.

Theorem 3.8. If g is in H1/3, and if f is any polynomial, then the

function f(U(g, I)) is integrable w.r.t. g, where

U(g, I) = U(g, [u, v]) = g(u)/2 + g(v)/2 .

Moreover,

∫

[a,b]

f(U(g, I))dg = F (g(b)) − F (g(a)) ,

where F is any formal primitive of f , i.e. any polynomial whose formal

derivative coincides with f . (Stratonovich Integral, [14]).

Proof. Of course, we can always define a formal primitive of f : if

f(x) =
∑

ri · xi, then F (x) =
∑

ri · xi+1/(i + 1). For any element x0 in

R, we have

F (x) =
∑

F (j)(x0) · (x − x0)
j/j!

exactly like in the real case.

Therefore, for each interval I = [u, v] ∈ {I}, we write:

F (g(v)) − F (g(u)) = F (g(v)) − F (U(g, I)) − (F (g(u)) − F (U(g, I))) =

= f(U(g, I)) · (g(v) − g(u))/2 − f(U(g, I)) · (g(u) − g(v))/2+

+ f ′(U(g, I)) · (g(v) − g(u))2/4 − f ′(U(g, I)) · (g(u) − g(v))2/4+

+ B(I) · (g(u) − g(v))3 ,

where B is some suitable bounded function of intervals.

So, in view of 3.7, it’s clear that

∑

I∈D

f(U(g, I))qg(I) = F (g(b)) − F (g(a)) −
∑

I∈D

Z(I)

for any D ∈ D, where Z has null integral. The theorem is thus proved.
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The situation outlined in Theorem 3.8 is common is Stochastic Inte-

gration: in case R is the space of random variables on some Probability

Space, (modulo equality a.e), then (0)-convergence means a.e. conver-

gence; now, assuming that a standard Brownian Motion {Xt} is defined

for t ∈ [0, T ], we can set g(t) = Xt, for any t in [0, T ]: then, by the Law of

Iterated Logarithm, we know that g is in Hr, for any r < 1/2, therefore,

g satisfies the hypothesis of 3.8, and the Stochastic Integral

∫

[0,T ]

f(X)dX

exists in the sense of Stratonovich, (with respect to a.e. convergence),

whenever f is a polynomial, and satisfies the usual Torricelli-Barrow for-

mula.

In order to recover Ito’s integral, we must make use of the 3-integral,

however there are no sensitive differences with the previous result.

Theorem 3.9. Assume that g is in H1/3, and that the following

integral exists, for any polynomial p:

3-

∫

[a,b]

p(U(g, I)) · d2g,

(
resp. (0)-

∫

[a,b]

p(U(g, I)) · d2g

)

where

U(g, I) = U(g, [u, v]) = g(u) and d2g(I) = (qg(I))2 .

Then, for each polynomial f , the function f(U(g, I)) is 3-integrable

w.r.t. g and

3-

∫

[a,b]

f(U(g, I))dg = F (g(b)) − F (g(a)) − 3-

∫

[a,b]

f(U(g, I)) · d2g ,

(
resp. (0)-

∫

[a,b]

f(U(g, I))dg = F (g(b)) − F (g(a)) − (0)-

∫

[a,b]

f(U(g, I) · d2g

)

where F is any formal primitive of f , as above. (Ito Integral)
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The proof is similar to the one of Theorem 3.8, but here we can’t

disregard the term f(U(g, I)) · d2g(I).

4 – Riemann-Stieltjes integral

In [10–12], a general definition of Kurzweil-Stieltjes integral has been

given, for functions f and g, taking values in Riesz spaces. Our approach

is in the same vein, however we’ll restrict our attention to the Riemann-

Stieltjes case, because of its particular properties, and its relationship

with the (0)-integral, already defined.

We shall also assume for simplicity that R is an algebra, as in section

3, though a more general situation could be considered, i.e. one might

assume that three ACR’s are involved, R1, R2 and R, together with a

binary operation ·:R1×R2 → R, satisfying similar conditions as 3.a)-3.e).

We prefer to assume that the three spaces coincide, both for simplicity,

and for further applications.

Definition 4.1. Assuming that the ACR R is an algebra, let two

functions f , g : [a, b] → R be assigned. We say that f is Riemann-

Stieltjes integrable with respect to g, if there exists a 0-d.s. (pn) in R,

and an element Y ∈ R, satisfying

sup
{∣∣ ∑

I∈D

f(tI) · qg(I) − Y
∣∣ : tI ∈ I, I ∈ D, |D| ≤ 1/n

}
≤ pn ,

for all n ∈ IN. When this happens, we write Y = (R − S)
∫
[a,b] f dg, and

call it the Riemann-Stieltjes Integral of f , w.r.t. g.

By applying (with easy modifications) the results in section 1, we get

the following theorems.

Theorem 4.2. The following are equivalent:

a) f is Riemann-Stieltjes integrable w.r.t. g;

b) there exists a 0-d.s. (pn) in R+, such that

(4.2.1)
∑

I∈D

|f(tI) · qg(I) −
∑

J∈D′
f(t′

J)1I(J) · qg(J)| ≤ pn
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holds, for every D ∈ D, |D| ≤ 1/n, D′ ∈ D, D < D′, for every choice of

tI ∈ I, I ∈ D, and of tJ ∈ J , J ∈ D′, and for every n ∈ IN.

Theorem 4.3. If there exists (R − S)
∫

f dg in [a, b], then the

integral exists in every sub-interval T ∈ {I}. Moreover, there exists a

0-d.s. (pn) in R, such that

sup
{ ∑

I∈D

∣∣
∫

I

f dg − f(tI) · qg(I)
∣∣ : tI ∈ I, I ∈ D, |D| ≤ 1/n

}
≤ pn

holds, for every n ∈ IN.

Definition 4.4. If f : [a, b] → R is bounded in some interval

I ∈ {I} we set:

0(f, I) = sup{|f(x) − f(y)| : x, y ∈ I} .

0(f, I) will be called the oscillation of f in I.

Proposition 4.5. If f is bounded, and R.S. integrable w.r.t. g,

then the function W : {I} → R is (0)-integrable and has null integral,

where

W (I) = 0(f, I) · |qg(I)|, I ∈ {I} .

Proof. It’s enough to apply 4.2, with D′ = D, but different

“choices” tI .

Another easy consequence of 4.2 is the following.

Proposition 4.6. Assume that g is B.V., and that f is bounded.

Let’s denote by Z : {I} → R the function defined as

Z(I) = 0(f, I) · V (g; I) ;

then, if Z is (0)-integrable, and has null integral, the function f is Riem-

ann-Stieltjes integrable w.r.t. g.
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Finally, we have:

Theorem 4.7. Assume that f is bounded, and that g is continuous

and B.V. The following are equivalent:

a) the function Z is (0)-integrable, and its integral is 0;

b) f is Riemann-Stieltjes integrable w.r.t. g;

c) the function W is (0)-integrable, and its integral is 0.

Proof. In view of the previous propositions, we only have to show

that (c) implies (a). As g is B.V. and continuous, from 2.4 and 1.6 it

follows that the interval function V (g; I) − |qg(I)| has null integral.

Now,

Z(I) = 0(f, I)·(V (g, I)−|qg(I)|)+W (I) ≤ 2M ·(V (g, I)−|qg(I)|)+W (I) ,

where M = sup{|f(x)| : x ∈ [a, b]}. Hence, if W has null integral, Z has

null integral too.

Remark 4.8. As to continuity properties, our integral presents some

slightly surprising features: unlike the classical (real) case, it’s possible

that (R−S)
∫

f dg exists, even when f and g have many common discon-

tinuities. To get an example, take R and g as in 2.3, with [a, b] = [0, 1/2],

and define f as follows:

f(x) =

{
1{x2} if x '= 0

0, if x = 0 .

Thus, if x is different from 0, f(x) is the function that takes the value

1 at x2, and 0 elsewhere.

It’s clear that f and g are both discontinuous at every positive

point x. However, if we fix I = [u, v] ⊂]0, 1/2], we have f(tI) · qg(I) = 0

for every choice of tI in I, unless v2 ≥ u (and t2I = u). Assume that

v − u < d, for some d > 0: then v2 < u2 + d2 + 2du, hence one can have

v2 ≥ u only when d2+2du ≥ u−u2, i.e. when u ≤ (1−2d−(1−4d)1/2)/2.

The last quantity is less than d, provided d is small enough. So, when

D satisfies |D| ≤ 1/n, for n large enough we find

∑

I∈D

|f(tI)| · |qg(I) ≤ 1]0,1/n] .
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As 1]0,1/n] is a 0-d.s., this shows that (R − S)
∫

f dg = 0.

We can give some existence results, also for the case that g is not

B.V., in the same fashion as in section 3.

Theorem 4.9. Assume that g is of class H1/2, and f is any poly-

nomial. Then f(g) is Riemann-Stieltjes integrable w.r.t. g, and

(R − S)

∫

[a,b]

f(g)dg = F (g(b)) − F (g(a))

where F is any formal primitive of f .

Proof. Let F be any formal primitive of f , and write

(4.9.1) F (v)−F (u) = f(u)·(v−u)+f ′(u)·(v−u)2/2+K(u, v)·(v−u)3 ,

where K is some bounded function, u, v ∈ R.

If we fix I = [x, y] ⊂ [a, b], and choose tI ∈ [x, y], we have

F (g(y)) − F (g(tI)) = f(g(tI)) · (g(y) − g(tI)) + f ′(g(tI)) · (g(y)+

− g(tI))
2/2 + (g(y) − g(tI))

3 · M(y, tI) ,

and

F (g(x)) − F (g(tI)) = f(g(tI)) · (g(x) − g(tI)) + f ′(g(tI)) · (g(x)+

− g(tI))
2/2 + (g(x) − g(tI))

3 · M(x, tI) ,

where M is some bounded function. Hence, we get

F (g(y)) − F (g(x)) = f(g(tI) · (g(y) − g(x))+

+ f ′(g(tI)) · {(g(y) − g(tI))
2 − (g(x) − g(tI))

2}/2+

+ {(g(y) − g(tI))
3 · M(y, tI) − (g(x) − g(tI))

3 · M(x, tI)} .

Now, as y − tI ≤ y − x, and similarly for tI − x, we easily find that

there exists a 0-d.s. (pn) such that

|F (g(b)) − F (g(a)) −
∑

I∈D

f(g(tI)) · qg(I)| ≤ pn

whenever |D| ≤ 1/n, and for every choice of tI ∈ I, I ∈ D.
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In case g ∈ H1/3, we can’t improve the result in 3.9.

Theorem 4.10. Assume that g is in H1/3, and that the following

integral exists, for any polynomial p:

(R − S)

∫

[a,b]

p(g) · d2g ,

where d2g(I) = (qg(I))2.

Then, if the polynomial f satisfies (R − S)
∫
[a,b] f(g) · d2g '= 0, the

function f(g) is not integrable w.r.t g, in the Riemann-Stieltjes sense.

Proof. In the hypothesis above, we can apply 3.9, and say that

(0) − lim
|D|→0

∑

I∈D

f(g(xI))qg(I) = F (g(b)) − F (g(a)) −
∫

f(g)d2g ,

where xI is the left endpoint of I.

But we can see, by means of the usual technique, that

(0) − lim
|D|→0

∑

I∈D

f(g(yI))qg(I) = F (g(b)) − F (g(a)) +

∫
f(g)d2g ,

where yI is the right endpoint of I. Therefore, if
∫

f(g)d2g is different

from 0, the integral depends on the choice tI , and hence it doesn’t exist,

in the Riemann-Stieltjes sense.

Indeed, we can say that, at least when g ∈ H1/3, Riemann-Stieltjes

integration is subject to the usual formulas of Calculus.

First of all, we can observe that, exactly like in the real case, an

integration-by-parts formula holds, i.e.:

Proposition 4.11. Given two functions f and g, defined on [a, b]

and taking values in R, the following are equivalent:

i) there exists (R − S)
∫

f dg;

ii) there exists (R − S)
∫

g df .

Moreover, if this is the case, we have

(R − S)

∫
f dg = f(b) · g(b) − f(a) · g(a) − (R − S)

∫
g df .
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The proof is straightforward (see also [8]).

Theorem 4.12. Assume that g is in H1/3, and that
∫

P (g)dg exists,

in the Riemann-Stieltjes sense, for every polynomial P . Then we have

∫
P ′(g)dg = P (g(b)) − P (g(a))

for each polynomial P .

Proof. Assuming that
∫

g dg exists, and using integration by parts,

we get ∫

[a,b]

g dg = g2(b)/2 − g2(a)/2 .

Now, let P be any polynomial. We claim that

(4.12.1)

∫
P (g)dg2 = 2

∫
gP (g)dg .

Indeed, by 4.3, there exists a 0-d.s. (pn) such that

sup
{ ∑

I∈D

|2g(tI)qg(I) − 2

∫

I

g dg| : tI ∈ I, I ∈ D, |D| ≤ 1/n
}

≤ pn

for each n ∈ IN. So, if D ∈ D is fixed, |D| ≤ 1/n, for every choice of the

points tI in I, I ∈ D, we have

∑

I∈D

|2g(tI)qg(I) − qg2(I)| ≤ pn ,

and therefore

∑

I∈D

|2g(tI)P (g(tI))qg(I) − P (g(tI))qg2(I) ≤ M · pn ,

where M is some positive constant in R. But
∫

gP (g) dg exists, so we

can find another 0-d.s. (p′
n) such that

sup
|D|≤1/n

∣∣ ∑

I∈D

2P (g(tI))g(tI)qg(I) − 2

∫
gP (g)dg

∣∣ ≤ p′
n .
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hence, if |D| ≤ 1/n, we have

∑

I∈D

|P (g(tI))qg2(I) − 2

∫
gP (g)dg| ≤ M · pn + p′

n

for every choice of the points tI . This proves (4.12.1).

Now, fix x, t, y in [a, b], x < t < y, and choose any polynomial P ; we

find:

P (g(y)) − P (g(x)) = P ′(g(t)) · (g(y) − g(x))+

+ (1/2)P ′′(g(t))(g2(y) − g2(x)) − g(t)P ′′(g(t))(g(y) − g(x))+

+ {(g(y) − g(t))3 · Q1(x, y, t) + (g(x) − g(t))3 · Q2(x, y, t)} ,

where Q1 and Q2 are bounded functions.

So, if D ∈ D is any decomposition, and tI ∈ I is any choice for all

I ∈ D, we have

∑

I∈D

P ′(g(tI))qg(I) = P (g(b)) − P (g(a)) +
∑

I∈D

P ′′(g(tI))g(tI)qg(I)+

−
∑

I∈D

P ′′(g(tI))qg2(I) +
∑

I∈D

ϕ(I)

where ϕ has null integral, as g ∈ H1/3.

Taking the limits, as |D| tends to 0, and recalling (4.12.1), we get

the result.

We remark here that some of the previous results can be extended to

wider classes than polynomials, more or less as Taylor’s Formula applies

to n-times differentiable functions. We shall not deal with this in detail,

otherwise we would go beyond the purposes of this paper.
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[11] B. Riečan – M. Vrábelová: On the Kurzweil integral for functions with values
in ordered space, II , Math. Slovaca, 43 (1993), 471-475.
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