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Wellposedness by perturbation in

optimization problems and metric characterization

M. L. BENNATI

Riassunto: Si esamina un adattamento della nozione di problema ben posto alla
Tikhonov-Hadamard per un problema astratto di minimizzazione in presenza di una
perturbazione parametrica. Si stabiliscono alcuni criteri che estendono i risultati pre-
cedenti di Furi-Vignoli e di Zolezzi.

Abstract: An abstract minimization problem over a convergence metric space
X is called wellposed iff it is Tikhonov wellposed and its unique minimizer depends
continuosly on a parameter belonging to a given space P . Whenever X and P are
metric spaces, necessary and sufficient wellposedness criteria are proved, generalizing
known results of [1] and [2].

1 – Introduction

We consider the global optimization problem (X, J) to minimize the

extended real-value function

J : X → (−∞,+∞]

over the given metric space X.

In order to deal with a suitable notion of wellposedness of (X, J), we

shall embed the given problem in a parametrized family of minimization
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problems. Let p be a parameter belonging to a given metric space P , and

let p/ be the parameter value to which the given unperturbed problem

corresponds.

Thus we consider small perturbations of (X, J) corresponding to the

parameters p ∈ L a fixed ball in P around p/. The small perturbations

of the problem (X, J) are represented by the family [X, I(·, p)] of mini-

mization problems, where I is a proper real-extended function

I : X × L → (−∞,+∞]

such that I(x, p/) = J(x) , x ∈ X.

For simple notation we shall denote by problem (p) the minimization

problem [X, I(·, p)], for every p ∈ L; problem (p/) corresponds to the

unperturbed problem (X, J).

The (optimal global) value function is defined by

V (p) = inf{I(x, p) : x ∈ X}, p ∈ L .

We shall write argmin (p) instead of argmin [X, I(·, p)] (possibly empty),

where

argmin [X, I(·, p)] = {x ∈ X : I(x, p) = V (p)}, p ∈ L .

A natural wellposedness concept arises when we require the following two

conditions.

First, we impose existence and uniqueness of the global minimun

point

x/ = argmin (p/) .

Second, we require, for any sequence pn → p/, convergence to x/ of

every asymptotically minimizing sequence xn corresponding to pn.

More precisely, problem (p/) is called here wellposed (with respect to

the embedding defined by I) iff




V (p) > −∞ for every p ∈ L and

there exists a unique minimizer

x/ = argmin (p/) ;

(1)





for every sequence pn → p/, every sequence xn ∈ X

such that I(xn, pn) − V (pn) → 0 as n → +∞ ,

obeys xn → x/ in X .

(2)
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Sequences xn as in (2) will be referred to as asymptotically mini-

mizing, corresponding to the sequence pn. Two classical definitions of

wellposedness for the unperturbed problem (X, J) are wellknown.

The first is Tikhonov wellposedness. The problem (X, J) is called

Tikhonov wellposed iff J has a unique global minimun point x0 on X

towards which every minimizing sequence converges, i.e. there exists

exactly one x0 ∈ X such that J(x0) ≤ J(x) for all x ∈ X, and J(xn) →
J(x0) implies xn → x0. (see [3]).

The second definition is Hadamard wellposedness which, roughly

speaking, requires continuous dependence of the optimal solution x0 upon

problem’s data.

The above definition of wellposedness, introduced in [4], is more re-

strictive than the classical notions of Tikhonov and Hadamard wellposed-

ness, since we impose the stable behavior of the unique minimizer x/

under small perturbations of p/. In a sense, x/ is a continuous function

of p at p/. For the above classical definitions of wellposedness and for a

survey of wellposedness in scalar optimization see [1].

Some fundamental characterizations of Tikhonov wellposedness of the

problem (X, J) on a metric space X are due to Furi-Vignoli (see [2])

and to Zolezzi (see [1]).

The main purpose of this paper is to extend some of the wellknown

necessary and sufficient wellposedness criteria to the above definition of

wellposedness for problem (p/). After the assumptions and definitions of

section 2 in section 3 we present some metric results and in section 4 we

present some topological characterizations.

2 – Assumption and definitions

We shall consider X and P as two metric spaces with metric d1 and

d2 respectively, both equipped by the (natural) convergence structure

induced by the metric. As before let p/ ∈ P be fixed and let L be a ball

around p/.

In the sequel we shall use the following conditions:

(3)

{
I is sequentially lower semicontinuos at X × {p/}
and bounded from below ;
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X is complete ;(4)

{
V (p) > −∞ for every p ∈ L and

V is upper semicontinuous at p/ .
(5)

Given ε > 0, p ∈ L, we denote by ε−argmin (p) the set {x ∈ X : I(x, p) ≤
V (p) + ε} and by T (ε) the set ∪[ε − argmin (p) : d2(p, p/) < ε]. Given a

subset D ⊂ IR2, a function

c : D → [0,+∞)

will be called here a forcing function iff (0, 0) ∈ D ⊂ [0, +∞) × [0,+∞),

c(0, 0) = 0 and (tn, sn) ∈ D, sn → 0, c(tn, sn) → 0 imply tn → 0.

An (obvious) example of forcing function is

c(t, s) = tα + sβ, t ≥ 0, s ≥ 0, α > 0, β > 0 .

The above definition generalizes the definition of forcing function

given in [1] p. 5 in order to obtain quantitative results about Tikhonov

wellposedness.

3 – Metric results

The basic idea behind the next theorem can be roughly explained

as follows. If problem (p/) is wellposed then T (ε) shrinks to its unique

optimal solution as ε → 0.

Conversely, if diam T [(ε)] → 0 as ε → 0 then every minimizing

sequence is Cauchy, therefore it will converge to the unique solution of

problem (p/), provided that (3), (4), (5) hold.

Theorem 3.1. If problem (p/) is wellposed then

(6) diam [T (ε)] → 0, as ε → 0 .

Conversely, (6) implies wellposedness under (3), (4) and (5).
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Proof. Suppose that problem (p/) is wellposed. If (6) fails, there

exist a > 0, εk → 0 such that

diam [T (εk)] ≥ a for every k .

Then one can find points uk, vk ∈ T (εk) such that

(7) d1(uk, vk) ≥ a

2
for every k

and points pk , qk such that

uk ∈ εk − argmin (pk), vk ∈ εk − argmin (qk)

and

d2(pk, p
/) < εk, d2(qk, p

/) < εk

But (uk, vk) are both asymptotically minimizing sequences corre-

sponding to pk and qk respectively, therefore (by assumption) converging

to the same point x/, against (7). Conversely assume (6). Given a > 0

there exists δ > 0 such that

(8) diam [T (ε)] < a if 0 < ε < δ .

Let pn be a sequence converging to p/ and xn be any asymptotically

minimizing sequence corresponding to pn. Given ε as in (8) there exists

n1 ∈ IN such that, if n ≥ n1, we get d2(pn, p/) < ε and I(xn, pn)−V (pn) ≤
ε, therefore xn ∈ T (ε) for all large n, then again by (8) xn is Cauchy, hence

xn → x0 by (4) for some x0 ∈ X.

From (3) and (5) we have

V (p/) ≥ lim supV (pn) ≥ lim inf V (pn) = lim inf I(xn, pn) ≥ I(x0, p
/) ,

therefore x0 ∈ argmin (p/). Every asympotically minimizing sequence

converges, therefore argmin (p/) is a singleton and problem (p/) is well-

posed.
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Remark 3.1. According to a known definition (see [1], Chapter IV,

p. 120), for any pn → p/, I(·, pn) converges variationally to I(·, p/) and

we write

var − lim I(·, pn) = I(·, p/)

iff the following two conditions hold:

xn → x implies lim inf I(xn, pn) ≥ I(x, p/)

and for every x ∈ X there exists xn ∈ X such that

lim sup I(xn, pn) ≤ I(x, p/) .

Variational convergence implies condition (5) (see [1], Theorem 5, p. 122).

Moreover condition (5) is verified if the function I is upper semicon-

tinuous at X × {p/} (see [1], Proposition 2, p. 335).

Remark 3.2. Theorem 3.1 generalizes the fundamental result due

to Furi-Vignoli (see [2]) and reduces to it when problem (p/) is un-

perturbed, i.e. I(x, p) = J(x) for every x and p. Since wellposedness

of problem (p/) amounts to the existence of some x/ ∈ argmin (p/) such

that, if pn → p/, I(xn, pn) − V (pn) → 0 implies d1(xn, x/) → 0, then it is

reasonable to try to find some estimate from below for I(x, p) − V (p) in

terms of d1(x, x/) and d2(p, p/), which characterize wellposedness.

Theorem 3.2. If problem (p/) is wellposed then there exists a

forcing function c and a point x/ such that

(9) I(x, p) ≥ V (p) + c[d1(x, x/), d2(p, p/)], for every x ∈ X, p ∈ L .

Conversely (9) implies wellposedness assuming (3) and (5).

Proof. Assume (9). Let xn be an asymptotically minimizing se-

quence corresponding to pn → p/. Then c[d1(xn, x/), d2(pn, p/)] → 0

implying xn → x/ since c is forcing. From (3) and (5)

V (p/) ≥ lim supV (pn) ≥ lim inf I(xn, pn) ≥ I(x/, p/) .

Therefore x/ ∈ argmin (p/) and problem (p/) is wellposed since ev-

ery asymptotically minimizing sequence converges to x/. Conversely, let
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problem (p/) be wellposed with solution x/. Let c be the “modulus of

wellposedness” defined by

c(t, s) = inf{I(x, p) − V (p) : d1(x, x/) = t, d2(p, p/) = s}, t ≥ 0, s ≥ 0 .

We show that c is forcing (of course (9) holds).

Clearly c(0, 0) = 0, c(t, s) ≥ 0 for each t ≥ 0, s ≥ 0.

If tn ≥ 0, sn = d2(pn, p/) → 0 are such that c(tn, sn) → 0, then

there exists a sequence xn ∈ X such that d1(xn, x/) = tn for every n,

I(xn, pn) − V (pn) → 0.

Then xn is asymptotically minimizing, corresponding to pn → p/,

therefore xn → x/, whence tn → 0.

Remark 3.3. Theorem 3.2 extends the result obtained by Zolezzi

about Tikhonov wellposedness of the unperturbed problem (X, J)

(see [1], Theorem 12, p. 6).

Remark 3.4. Assuming (3) and (5) a sufficient condition for well-

posedness of problem (p/), which is weaker than condition (9), is the

following one:

(10) I(x, p) ≥ V (p)+c1[d1(x, x/)]+c2[d2(p, p/)], for every x ∈ X, p ∈ L .

Here

c1 : [0,+∞) → [0,+∞), c1(0) = 0 and tn ≥ 0, c1(tn) → 0 imply tn → 0 ;

c2 : [0,+∞) → IR and lim c2(s) = 0 as s → 0 .

Infact, if xn is any asymptotically minimizing sequence corresponding to

pn → p/, by (10)

I(xn, pn) − V (pn) ≥ c1[d1(xn, x/)] + c2[d2(pn, p/)] .

Hence c1[d1(xn, x/)] → 0 and xn → x/. Problem (p/) is wellposed as in

the proof of Theorem 3.2.

In the following example of the calculus of variations condition (10)

is verified and problem (p/) is wellposed.
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Example 3.1. We want to minimize

J(x) =

T∫

0

f [ẋ(t)]dt

subject to

x ∈ W 1,2(0, T ), x(0) = p/, x(T ) = 0

for a fixed p/ ∈ IRm and T > 0 is given. Here

f = f(u) : IRm → IR ,

(11)

{
f ∈ C2(IRm) and fuu(u) is everywhere positive definite

uniformly with respect to u ∈ IRm

We shall perturb p/. Given p ∈ IRm, consider

r(p)(t) = [(t − T )/T ]p, 0 ≤ t ≤ T ;

I(x, p) =

T∫

0

f [ẋ(t) − ṙ(p)(t)]dt, x ∈ X ,

where

X = {x ∈ W 1,∞(0, T ) : x(0) = x(T ) = 0} equipped with the strong

convergence of W 1,2(0, T );

Y (p) = {y ∈ W 1,∞(0, T ) : y(0) = p, y(T ) = 0} equipped with the

same convergence as X. Routine calculations show the following proper-

ties. For every p,

inf{I(x, p) : x ∈ X} = inf{J(y) : y ∈ Y (p)} ,

[X, I(·, p/)] is wellposed iff (Y (p/), J) is .

Consider the value function

V (p) = inf{I(x, p) : x ∈ X}, p ∈ IRm

As is well known condition (11) implies that problem (p) has a solu-

tion for every p ∈ IRm and V is Lipschitz on every compact set K ⊂ IRm
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(see [4], proof of Theorem 3, p. 450). Let x/ be a solution of problem

(p/). Let y(t) = x(t) − r(p)(t) and y/(t) = x/(t) − r(p/)(t). Then

(12) I(x, p) − V (p) = I(x, p) − V (p/) + V (p/) − V (p) .

Condition (11) yields the existence of a number M > 0 such that for

a.e.t

f(ẏ) ≥ f(ẏ/) + fu(ẏ/)′(ẏ − ẏ/) + M | ẏ − ẏ/ |2 .

Therefore

(13)





I(x, p) − V (p/) =
T∫
0

{f [ẏ(t)] − f [ẏ/(t)]}dt ≥

≥
T∫
0

fu[ẏ/(t)]′[ẏ(t) − ẏ/(t)]dt + M
T∫
0

| ẏ(t) − ẏ/(t) |2 dt .

From the Euler-Lagrange equation we get

(14)

T∫

0

fu[ẏ/(t)]′[ẏ(t) − ẏ/(t)]dt = −fu[ẏ/(0)]′(p − p/) .

Since V is locally Lipschitz, for a suitable constant D > 0, if p ∈ L,

we have

(15) V (p) − V (p/) ≥ −D | p − p/ | .

As a consequence of (12), (13), (14) and (15) we obtain

I(x, p) − V (p) ≥ −fu[ẏ/(0)]′(p − p/) + M

T∫

0

| ẏ(t) − ẏ/(t) |2 dt − D

| p − p/ |= M ‖ x − x/ ‖2 −H | p − p/ |, H > 0,

for every x ∈ X, p ∈ L

Condition (10) is verified and problem (p/) is wellposed.
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4 – Topological results

Among the above metric characterizations, Theorem 3.1 uses the

sets of (ε, p)-optimal solutions, while Theorem 3.2 requires the exact op-

timal solution x/.

A different approach to wellposedness of problem (p/) can be ex-

pressed making use of the sublevel set multifunction. X will denote a

Hausdorff topological space, equipped with the convergence structure in-

herited by the topology. Therefore the sequence xn → x0 in X iff for

every neighborhood A of x0 there exists N such that xn ∈ A when n ≥ N .

Consider the condition

(16) I(·, p/) is lower semincontinuous .

We have the following topological characterization:

Proposition 4.1. If problem (p/) is wellposed then there exists

x/ ∈ X such that

(17)

{
for every neighborhood A of x/ there exists δ > 0

such that d2(p, p/) < δ, I(x, p) − V (p) < δ =⇒ x ∈ A .

Conversely (17) implies wellposedness under condition (16).

Proof. Assume wellposedness with solution x/. Arguing by contra-

diction, suppose that there exists some neighborhood A of x/, a sequence

pn and a sequence xn such that xn /∈ A, d2(pn, p/) < 1
n
, I(xn, pn)−V (pn) <

1
n

for every n. Then xn would be an asymptotically minimizing sequence

corresponding to pn → p/, hence xn → x/ which is a contradiction.

Conversely assume (17). Now let xn be asymptotically minimizing corre-

sponding to pn → p/.

Fix any neighborhood A of x/. With δ > 0 as in (17) we get

d2(pn, p/) < δ and I(xn, pn) − V (pn) < δ for sufficiently large n, hence

xn ∈ A by (17), so that xn → x/. Moreover, if xn is an asymptotically

minimizing sequence corresponding to pn = p/ for every n, then xn → x/.

By (16) V (p/) = lim inf I(xn, p/) ≥ I(x0, p
/), therefore x/ ∈ argmin (p/).

If there exists some u ∈ X, u '= x/, such that I(u, p/) = V (p/) then by

(17) u belongs to every neighborhood of x0, a contradiction since x is

Hausdorff. Therefore x/ = argmin (p/). Every asymptotically minimiz-

ing converges to x/, hence problem (p/) is wellposed.
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As a consequence of Proposition 4.1 we have proved the following:

Theorem 4.1. Problem (p/) is wellposed iff argmin (p/) is a sin-

gleton and the sublevel set multifunction

(ε, p) → ε − argmin (p)

is upper semicontinuous at (0, p/).

Proof. The proof follows immediately from the definition of upper

semicontinuity of the multifunction ε − argmin (p) at (0, p/).

Remark 4.1. Proposition 4.1 and Theorem 4.1 extend results of

[1] (Propositions 2.1 and 2.2, p. 12) and are equivalent properties when

problem (p/) is unperturbed.
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