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Two classes of ideals determined by

integer-valued polynomials

P-J. CAHEN – S. T. CHAPMAN – K. ROEGNER

W. W. SMITH

Riassunto: Sia dato un dominio D con campo dei quozienti K, e sia Int(D) =

{f(X) ∈ K[X] | f(d) ∈ D∀d ∈ D} l’anello dei polinomi a valori interi su D. È

noto che i polinomi binomiali
(

X
n

)
= X(X−1)...(X−n+1)

n!
formano una base di Int(ZZ) e

che per ogni numero primo p, il polinomio di Fermat fp(X) = 1
p
(Xp − X) appartiene

ad Int(ZZ). Se il dominio D contiene ZZ, poniamo, per ogni intero non negativo n,

C(n) = {α ∈ K | α ·
(

X
n

)
∈ Int(D)}, e per ogni numero primo p, E(p) = {α ∈

K | α · fp(X) ∈ Int(D)} . C(n) e E(p) sono ideali di D, essi vengono determinati
esplicitamente nel caso in cui D sia un dominio di Dedekind.

Abstract: If D is a domain with quotient field K, let Int(D) = {f(X) ∈ K[X] |
f(d) ∈ D for every d ∈ D} be the ring of integer-valued polynomials over D. It

is well known that the binomial polynomials
(

X
n

)
= X(X−1)...(X−n+1)

n!
form a basis of

Int(ZZ) as a free ZZ-module and that for every prime integer p, the Fermat polynomials
fp(X) = 1

p
(Xp − X) are in Int(ZZ). If the domain D contains ZZ, for each nonnegative

integer n, set C(n) = {α ∈ K | α ·
(

X
n

)
∈ Int(D)}, and for every prime integer p, set

E(p) = {α ∈ K | α · fp(X) ∈ Int(D)} . Each C(n) and E(p) is an ideal of D which we
explicitly determine when D is a Dedekind domain.
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– Introduction

Let D be a domain with quotient field K and set

Int(D) = {f(X) ∈ K[X]|f(d) ∈ D for every d ∈ D}

to be the ring of integer-valued polynomials over D. In [8], Pólya showed

that the binomial polynomials, defined by

(
X

0

)
= 1, and

(
X

n

)
=

X(X − 1) . . . (X − (n − 1))

n!
, for n ≥ 1

form a basis of Int(ZZ) as a free ZZ-module. In a later paper, Pólya asked

which rings of algebraic integers D possess similar bases for Int(D) as a

D-module (i.e. a free basis {gi(X)}∞
i=0 where each gi(X) is a degree i

polynomial) and solved this question for a quadratic number ring [9]. His

argument centered on the fractional ideals of D of the form

A(n) = {0}
⋃

{α ∈ K|∃f ∈ Int(D), deg(f) = n, f = αXn + . . . }

where n is a nonnegative integer. Such a free basis exists if and only

if these ideals are principal. Ostrowski [7] generalized Pólya’s result

to other rings of integers and Cahen [1] offered a complete description

of the ideals A(n) in the Dedekind case. Zantema [10] described a

cohomological solution to Pólya’s original problem.

Some recent papers have explored a topic related to the discussion

above. If D is a domain of characteristic 0 (and thus containing ZZ)

they asked whether the binomial polynomials
(X

n

)
serve themselves as

a free basis of Int(D). By [3, Proposition 1] Int(D) is contained in the

D-module generated by the binomial polynomials
(X

n

)
. Hence, these poly-

nomials form a basis of Int(D) if and only if they are contained in Int(D).

Chabert and Gerboud [2] have given various other characterizations

in the case of a ring of algebraic integers D and Halter-Koch and

Narkiewicz [5] considered the case of an arbitrary domain of char-

acteristic 0. One characterization is that the polynomials of the form

fp(X) = 1
p
(Xp − X), where p is a prime integer (known as the Fermat

polynomials), are contained in Int(D). Another is that, for any nonneg-

ative integer n, n!A(n) = D.
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In this paper, we let

C(n) =
{
α ∈ K|α ·

(
X

n

)
∈ Int(D)

}
,

and
E(p) = {α ∈ K | α · fp(X) ∈ Int(D)} .

We completely determine these ideals for a Dedekind domain D (of char-

acterisitic 0). We note that C(n) is contained in n!A(n). By definition,

C(n) = D if and only if
(X

n

)
belongs to Int(D) (and E(p) = D if and

only if fp(X) belongs to Int(D)), hence C(n) = D for all n if and only

if n!A(n) = D for all n (and also if and only if E(p) = D for all p).

However, we show that when this fails then eventually the inclusion of

C(n) in n!A(n) is proper for some n.

Since any ideal of a Dedekind domain can uniquely be written as a

product of maximal ideals, we determine the ideal C(n) by computing

the exponent of each maximal ideal P of D in such a decomposition. We

show this exponent to be trivial unless P contains a prime integer p of

ZZ. We then proceed similarly for the ideals E(p). Lastly, we conclude by

an application to quadratic number rings giving some explicit examples.

Throughout, ZZ represents the integers, IN the nonnegative integers,

and Q the rationals. If D is a Dedekind domain of characteristic 0 and

P a maximal ideal of D, let vP be the normalized valuation (i.e., its

value group is ZZ) associated to P . If P contains a prime integer p,

the valuation vP extends the p-adic valuation of Q and we say that P

is above p. Throughout, we let eP be the ramification index of this

extension (thus eP = vP (p)), and fP be its residual degree. Hence fP =

[D/P : ZZ/pZZ]. We observe that eP is always finite, but that fP may be

infinite (whenever the residue field D/P is infinite). We say that vP is

an immediate extension of the p-adic valuation if eP = fP = 1. If a
b

is in

Q we let
[

a
b

]
represent the greatest integer less than or equal to a

b
. We

use the symbol “⊆” to represent set containment, and “⊂” to represent

proper set containment. For any other notation, the interested reader is

referred to [6].

1 – Computation of the ideals C(n)

We open with some elementary observations concerning the ideals

C(n) and A(n) for any domain D of characteristic 0.
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Proposition 1.1. Let D be a domain of characteristic 0.

1. For each n ∈ IN, C(n) ⊆ n!A(n) ⊆ D.

2. For each n ∈ IN, C(n) ⊆ C(n − 1).

3. C(0) = C(1) = D.

Proof. 1. From the definition of C(n), if α ∈ C(n) then α
n!

is the

leading coefficient of the degree n polynomial α
(X

n

)
, hence C(n) ⊆ n!A(n).

The inclusion of n!A(n) in D follows from [3, Proposition 1].

2. Recall the well known binomial recursion(
X

n

)
=

(
X − 1

n − 1

)
+

(
X − 1

n

)
.

If α ∈ C(n), then both α
(X

n

)
and α

(X−1
n

)
are in Int(D). Thus,

so is α
(X−1

n−1

)
. Therefore α ∈ C(n − 1).

3. This is obvious, since
(X

0

)
= 1 and

(X
1

)
= X.

From here on we let D be a Dedekind domain of characteristic 0.

The computation of the ideal C(n) will center around the polynomial

fn(X) = X(X − 1) . . . (X − n + 1) = n!

(
X

n

)
.

We denote by fn(D) the ideal generated by the elements fn(d) for every

d ∈ D. By definition, the ideal C(n) is the conductor in D of the ideal(
1
n!

)
fn(D). With these hypotheses and notations, we immediately have

the following.

Lemma 1.2. 1. C(n) = (n!)(fn(D))−1.

2. If P is a prime ideal of D, then the exponent cP (n) of P in the

decomposition of C(n) is equal to

cP (n) = vP (n!) − Infx∈D{vP (fn(x))} .

To compute cP (n), we then first determine the integers

iP (n) = Infx∈D{vP (fn(x))} .

We restrict ourselves to a prime ideal P above a prime integer p (other-

wise, we shall see below that cP (n) = 0). The valuation vP associated
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to P is thus an extension of the p-adic valuation. Let eP = vP (p) and

fP = [D/P : ZZ/pZZ] be respectively the ramification index and the resid-

ual degree of this extension.

Lemma 1.3. Let P be a prime ideal of D above a prime integer p.

1. If fP > 1, then iP (n) = 0.

2. If fP = 1 and eP > 1, then iP (n) =
[

n
p

]
.

3. If fP = 1 and eP = 1, then iP (n) = vP (n!).

Proof. 1. Clearly iP (n) ≥ 0, since the coefficients of fn are in D

(in fact in ZZ). On the other hand, by definition of the residual degree,

if fP > 1, then D/P strictly contains ZZ/pZZ. Hence there exists x0 ∈ D

such that, ∀i ∈ ZZ, (x0 − i) /∈ P . Therefore

iP (n) ≤ vP (fn(x0)) =
n−1∑

i=0

vP (x0 − i) = 0 .

2. If fP = 1, then D/P < ZZ/pZZ and, for each x ∈ D, there exists d ∈ ZZ

such that (x − d) ∈ P . Hence, for 0 ≤ i ≤ n − 1, x − i ≡ d − i (mod P ).

Since d, d − 1, . . . , d − n + 1 are n consecutive integers, exactly
[

n
p

]
are

divisible by p (or equivalently are in P ). Therefore

vP (fn(x)) =
n−1∑

i=0

vP (x − i) ≥
[n

p

]
.

On the other hand, if eP > 1 and if i ∈ ZZ, either vP (i) = 0 or vP (i) > 1

(equivalently i /∈ P or i ∈ P 2). Choosing x0 in P such that vP (x0) = 1,

then vP (x0 − i) = 0, if i is not divisible by p, and vP (x0 − i) = 1, if i is

divisible by p. Hence

vP (fn(x0)) =
n−1∑

i=0

vP (x0 − i) =
[n

p

]
.

3. If eP = fP = 1, then P = pD and the cardinality of D/P is p. We

could quote [2, Theorem 2.5] to conclude that the binomial polynomial(X
n

)
is in Int(DP ), and hence that the exponent cP (n) of the decomposition

of C(n) is trivial (and thus that iP (n) = vP (n!)). But we give a direct

proof. Since n ∈ D and fn(n) = n!, it is first clear that

iP (n) ≤ vP (n!) .
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On the other hand, if x is a root of fn(X), then vP (fn(x)) = ∞ > vP (n!).

So suppose that x is not a root of fn(X) and let r = vP (fn(x)) + 1. The

map
ϕr : ZZ −→ DP /prDP

is surjective, because its kernel is ZZ/prZZ and there are pr elements in both

ZZ/prZZ and DP /prDP . Hence there is d ∈ ZZ such that vP (x − d) = r.

Since we have

vP (fn(x)) =
n−1∑

i=0

vP (x − i) ,

it is clear that, for 0 ≤ i ≤ n−1, vP (x−i) < r. Hence vP (x−i) = vP (d−i)

and therefore

vP (fn(x)) =
n−1∑

i=0

vP (d − i) = vP (fn(d)) .

Now the binomial polynomial
(X

n

)
= 1

n!
fn(X) is integer-valued on ZZ, thus

fn(d) is divisible by n! in ZZ and a fortiori in D. Therefore

iP (n) ≥ vP (fn(x)) = vP (fn(d)) ≥ vP (n!) .

We are now ready for the main result of the section.

Proposition 1.4. Let D be a Dedekind domain of characteristic 0

and n be a nonnegative integer. The ideal C(n) is a product of maximal

ideals of D, with any such maximal ideal P being above a prime integer

p ≤ n. Moreover, the exponent cP (n) of P is given by the following

formulae:

1. If fP > 1, then cP (n) = vP (n!).

2. If fP = 1 and eP > 1, then cP (n) = vP (n!) − [
n
p

]
.

3. If fP = 1 and eP = 1, then cP (n) = 0.

Proof. Since C(n) is an ideal of D, then clearly cP (n) ≥ 0. Hence,

if vP (n!) = 0, it results from Lemma 1.2 that cP (n) = 0. This is the case

if P ∩ ZZ = (0), since the valuation vP is then trivial on any integer, and

also if P is above a prime integer p > n. Lastly the formulae are a direct

consequence of Lemma 1.2 and Lemma 1.3.
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Remark 1.5. It is obvious that cP (n) > 0 in the first case (fP > 1).

In fact, the same holds in the second case (fP = 1 and eP > 1). Indeed,

from Legendre’s well known formula, denoting by vp the p-adic valuation,

then

vp(n!) =
∞∑

k=1

[ n

pk

]

and thus

cP (n) = (eP − 1)
[n

p

]
+ eP

∞∑

k=1

[ n

pk

]
> 0 .

On the other hand it is clear from the definition that the ideals C(n) are

trivial if and only if the binomial polynomials
(X

n

)
belong to Int(D). We

thus recover one of the characterizations given by Chabert and Gerboud

of the Dedekind domains D such that the binomial polynomials
(X

n

)
form

a basis of Int(D) [2, Theorem 2.5]: each maximal ideal P of D above a

prime integer p is such that the valuation vP is an immediate extension

of the p-adic valuation (see also Remark 2.2 below).

From Proposition 1.1, if C(n) = D, then C(n) = n!A(n). However,

if some ideal C(n) is not trivial, i.e. there is a maximal ideal P in D

above a prime integer p such that the valuation vP is not an immediate

extension of the p-adic valuation, it results from next proposition that

eventually C(n) ⊂ n!A(n). This is in particular always the case for the

ring of integers of an algebraic number field.

Proposition 1.6. Let D be a Dedekind domain containing ZZ, n

be a nonnegative integer and B(n) be the ideal such that C(n) = B(n) ·
n!A(n). Then B(n) is a product of maximal ideals of D, with any such

maximal ideal P being above a prime integer p ≤ n. Moreover, the expo-

nent bP (n) of P is given by the following formulae:

1. If fP > 1, then bP (n) =
∑∞

k=1

[
n

pkfP

]
.

2. If fP = 1 and eP > 1, then bP (n) =
∑∞

k=2

[
n
pk

]
.

3. If fP = 1 and eP = 1, then bP (n) = 0.

Proof. Clearly, bP (n) = cP (n)−aP (n), where aP (n) is the exponent

of P in the decomposition of n!A(n). Now, the results of [1, Section 2]

yield that

A(n) =
∏

P
−

∑∞
k=1

[
n

N(P )k

]
,
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where N(P ) = pfP is the norm of P (i.e. the cardinality of D/P ), hence

aP (n) = vP (n!) −
∞∑

k=1

[ n

pkfP

]
.

From the previous proposition we thus get the following.

1. If fP > 1, then cP (n) = vP (n!), hence

bP (n) = cP (n) − aP (n) =
∞∑

k=1

[ n

pkfP

]
.

2. If fP = 1 and eP > 1, then

cP (n) = vP (n!) −
[n

p

]

and

aP (n) = vP (n!) −
∞∑

k=1

[ n

pk

]
,

hence

bP (n) = cP (n) − aP (n) =
∞∑

k=2

[ n

pk

]
.

3. If fP = 1 and eP = 1, then both C(n) and n!A(n) are trivial.

Hence, so is B(n).

2 – Computation of the ideals E(p)

We present now a computation of the ideals E(p), perfectly similar

in spirit to that of the last section. We state the main result.

Proposition 2.1. Let D be a Dedekind domain of characteristic 0

and p be a prime number. The ideal E(p) is a product of maximal ideals

of D above p and the exponent hP (p) of such a maximal ideal P is given

by the following formulae:

1. If fP > 1, then hP (p) = eP .

2. If fP = 1, then hP (p) = eP − 1.

Proof. By definition, the ideal E(p) is the conductor in D of the

ideal generated by the values of the Fermat polynomial fp(X) = 1
p
(Xp −
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X). In a manner similar to Lemma 1.2, we thus have

hP (p) = vP (p) − Infx∈D{vP (xp − x)} .

Since E(p) is an ideal, then 0 ≤ hP (p) ≤ vP (p). Hence, if vP (p) = 0, then

hP (p) = 0. This is clearly the case if P is not above p. Since vP (p) = eP ,

the formulae will result from the computation of Infx∈D{vP (xp − x)}:

1. If fP > 1, the cardinality of the field D/P is greater than p and there

exists some element x0 ∈ D such that (xp
0 − x0) /∈ P . Therefore

Infx∈D{vP (xp − x)} = vP (xp
0 − x0) = 0 .

2. If fP = 1, then D/P < ZZ/pZZ and ∀x ∈ D, vP (xp − x) ≥ 1. On the

other hand, if x0 ∈ D is such that vP (x0) = 1, then vP (xp
0) = p. Thus

vP (xp
0 − x0) = 1 and

Infx∈D{vP (xp − x)} = vP (xp
0 − x0) = 1 .

Remark 2.2. It clearly results from this proposition that the ide-

als E(p) are trivial if and only if, for any maximal ideal P of D above a

nonzero prime p, the valuation vP is an immediate extension of the p-adic

valuation. We thus recover another characterization given by Chabert

and Gerboud of the Dedekind domains D such that the binomial poly-

nomials
(X

n

)
form a basis of Int(D) [2, Theorem 2.5].

3 – Application to quadratic fields

We now interpret Proposition 1.4 in the case of the ring of integers

of a quadratic number field.

Proposition 3.1. Let D be the ring of integers of the quadratic

field Q(
√

d) where d is a square free integer. Let n be a positive integer

and write

n! = pb1
1 . . . p

bj
j qc1

1 . . . q
ck
k ra1

1 . . . rai
i

where pt is a prime in ZZ which is inert in D, for 1 ≤ t ≤ j, qt is a prime

which splits, for 1 ≤ t ≤ k and rt is a prime in ZZ which ramifies in D,
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for 1 ≤ t ≤ i. Then, letting rtD = R2
t ,

C(n) = pb1
1 . . . p

bj
j R

2a1−[ n
r1

]
1 . . . R

2ai−
[

n
ri

]

i

Proof. This is a direct application of the formulae given by Propo-

sition 1.4.

1. If p is inert, then P = pD is a maximal ideal of D such that eP = 1

and fP = 2. In this case cP (n) = vP (n!) = vp(n) is the exponent of p in

the decomposition of n!.

2. If q splits in D, the maximal ideals above q in D do not appear in the

decomposition of C(n).

3. If r ramifies, that is if rD = R2, then R is a maximal ideal of D

such that eR = 2 and fR = 1. In this case cR(n) = vR(n!) −
[

n
r

]
, where

vR(n!) = 2vr(n!) is twice the exponent of r in the decomposition of n!

We illustrate the result 3.1 with two examples.

Example 3.2. In the following chart, we list the prime factorization

of the first 12 values of n!, followed by the prime factorizations of the

ideals C(n) and n!A(n) when D = ZZ[i]. Note that D is a principal ideal

domain, (2) = (1 + i)2 is the only ramified prime, and a prime p is inert

in D if and only if p ≡ 3 (mod 4) (see [6]).

n n! C(n) (n!)A(n)

0 1 ZZ[i] ZZ[i]

1 1 ZZ[i] ZZ[i]

2 2 (1 + i) (1 + i)

3 2 · 3 (1 + i)(3) (1 + i)(3)

4 23 · 3 (1 + i)4(3) (1 + i)3(3)

5 23 · 3 · 5 (1 + i)4(3) (1 + i)3(3)

6 24 · 32 · 5 (1 + i)5(3)2 (1 + i)4(3)2

7 24 · 32 · 5 · 7 (1 + i)5(3)2(7) (1 + i)4(3)2(7)

8 27 · 32 · 5 · 7 (1 + i)10(3)2(7) (1 + i)7(3)2(7)

9 27 · 34 · 5 · 7 (1 + i)10(3)4(7) (1 + i)7(3)3(7)

10 28 · 34 · 52 · 7 (1 + i)11(3)4(7) (1 + i)8(3)3(7)

11 28 · 34 · 52 · 7 · 11 (1 + i)11(3)4(7)(11) (1 + i)8(3)3(7)(11)
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Example 3.3. We repeat the chart of the previous example, this

time with D = ZZ[
√

−5]. Here D is not a principal ideal domain and

(2) = (2, 1 +
√

−5)2 and (5) = (
√

−5)2 are the only ramified primes. We

let P = (2, 1 +
√

−5).

n n! C(n) (n!)A(n)

0 1 ZZ[
√

−5] ZZ[
√

−5]

1 1 ZZ[
√

−5] ZZ[
√

−5]

2 2 P P

3 2 · 3 P P

4 23 · 3 P 4 P 3

5 23 · 3 · 5 P 4(
√

−5) P 3(
√

−5)

6 24 · 32 · 5 P 5(
√

−5) P 4(
√

−5)

7 24 · 32 · 5 · 7 P 5(
√

−5) P 4(
√

−5)

8 27 · 32 · 5 · 7 P 10(
√

−5) P 7(
√

−5)

9 27 · 34 · 5 · 7 P 10(
√

−5) P 7(
√

−5)

10 28 · 34 · 52 · 7 P 11(
√

−5)2 P 8(
√

−5)2

11 28 · 34 · 52 · 7 · 11 P 11(
√

−5)2(11) P 8(
√

−5)2(11).

In both examples we note that for some N, C(n) ⊂ n!A(n) for n ≥ N ,

as required by Proposition 1.6.

For the ideals E(p), we similarly derive immediately the following

from Proposition 2.1.

Proposition 3.4. Let D be the ring of integers of Q(
√

d) where d

is a square free integer, and p be a prime in ZZ.

1. If p splits in D, then E(p) = D.

2. If p ramifies and pD = R2, then E(p) = R.

3. If p is inert, then E(p) = pD.
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[8] G.Pólya: Über ganzwertige ganze Funktionen, Rendiconti Circ. Mat. Palermo,
40 (1915), 1-16.
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