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Covariant second variation for first order

Lagrangians on fibered manifolds II:

generalized curvature and Bianchi identities

O. AMICI – B. CASCIARO – M. FRANCAVIGLIA

Riassunto: Si esaminano approfonditamente le strutture di curvatura generaliz-
zata associate alla variazione seconda dei Lagrangiani del primo ordine. Si dimostra
che tali strutture verificano le appropriate identità di Bianchi. Le formule relative alle
curvature dei Lagrangiani sono sviluppate in dettaglio. Si ricavano alcuni esempi dalla
teoria dei Lagrangiani armonici generalizzati.

Abstract: The notion of generalized curvature structures ensuing from the second
variation of a (first–order) Lagrangian is extensively discussed. It is shown that general-
ized curvature structures satisfy appropriate (generalized) Bianchi identities. Formulae
applicable to curvature Lagrangians are developed in great detail. Examples are taken
from the theory of generalized harmonic Lagrangians.

– Introduction

This paper is a continuation of a previous paper [1], which shall be

hereafter called “Part I”. We refer to it for notation, terminology and a

more detailed bibliography. As is well known, the second variation of an

action functional governs the behaviour of the action itself near critical
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sections. In particular, the Hessian of the Lagrangian defines a quadratic

form appropriate to classify the critical sections. Moreover, (generalized)

Jacobi equations define along critical sections those infinitesimal defor-

mations which make the second variation to vanish identically.

In Part I we have revisited these problems for first–order Lagrangians,

both for Mechanics and Field Theory (i.e., for 1–dimensional or higher–

dimensional bases), in the language of calculus of variations in fibered

manifolds. In particular, we have shown how to express in several equiv-

alent but different ways the Jacobi equations for a Lagrangian variational

principle and we have considered in full detail a family of invariant varia-

tional principles on product bundles M ×N , which we called “generalized

harmonic Lagrangians” since they naturally include the standard varia-

tional principle for harmonic mappings as a particular case (see, e.g., [2]

and [3]). Roughly speaking, the idea consists in considering action func-

tionals of the form

(1) A ≡
∫

g(P, Q)dx

where g ∈ I2
2 (M ×N) is a tensorfield having two indices in M and two in

N , while P ∈ I1
1 (M ×N) and Q ∈ I1

1 (M ×N) are two tensorfields having

one index in M and one in N . (For rigorous definitions see Part I.) The

“standard” harmonic case corresponds to taking P = Q = Tf , being

f : M → N a mapping, and setting g = h∗ ⊗ k, where h and k are metric

tensors defined respectively in M and N . In order to consider this case

we start by studying the function:

(2) Ã = g(P, Q) = gαβ
γδ P γ

αQδ
β

where g ∈ I2
2 (M), P ∈ I1

1 (M) and Q ∈ I1
1 (M) are tensors of an arbitrary

manifold M (not necessarily a product M ×N). We have thus been led in

Part I to defining the notion of “curvature” of such a variational principle

as ensuing from the appropriate form of the Jacobi equation and the

Hessian. This turns out to be a suitable generalization of what happens in

the cases of geodesics in a Riemannian manifold and of standard harmonic

mappings, whereby Jacobi equations generate, respectively, the curvature

of the metric of the given manifold or the curvature of the metric of the

target space (see Part I, Sections 2 and 4).

In Part I we just reached the general definition of “generalized curva-

ture” and we announced this continuation, where the notion is explicitly
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addressed in the case of generalized harmonic mappings, where it takes

a more meaningful and significant form. In this paper we shall thence

consider the (generalized) “curvature tensors” which are generated by the

second variation of a generalized harmonic Lagrangian and we shall inves-

tigate in detail their main features, including symmetries and generalized

Bianchi identities. The treatament will be largely based on adapting

to the present case the classical arguments of Nomizu [4] on so–called

“curvature structures”(see also [5] and [6]).

More precisely, this paper is organized as follows. Section 1 is de-

voted to constructing a number of suitable commutation relations for a

useful bracket [ , ]∇ which is induced on the tensor algebra of a manifold

M whenever a linear connection ∇ is prescribed (some tedious results are

relegated to the Appendix A). In this Section, in particular, we consider

also a tensorfield g ∈ I2
2 (M), together with a number of R–quadrilinear

operators induced by g and ∇ together. Section 2 contains the main alge-

braic lemmae about “generalized curvature structures” on vector spaces,

which are suitably defined as R-quadrilinear mappings. In Section 3

we apply these algebraic lemmae about generalized curvature structures,

together with the general formulae derived in Section 1 and in the Ap-

pendix, to define the curvature tensorfield of g ∈ I2
2 (M) with respect

to the given linear connection ∇. This curvature tensor corresponds to

the “generalized curvature” (in the sense of Part I) of the invariant vari-

ational principle defined by (2). It satisfies suitable generalized Bianchi

identities. The results so obtained are thence specialized in Section 4,

to the “generalized harmonic” case of (1), where the “regular Hessian”

and the “regular Jacobi maps” (in the sense of Part I) are considered

in detail. Section 5 is devoted (in the simpler case of torsionless ∇ to

avoid complicated expressions) to show that the “generalized curvature”

of these generalized harmonic Lagrangians satisfies an interesting iden-

tity which suitably extends the second Bianchi identity of a Riemannian

metric. Since (as we said above and in Section 4 of Part I) generalized

harmonic variational principles may be appropriately reduced to standard

variational principles for harmonic mappings and to variational principles

for geodesics, these curvature tensors and their Bianchi identities reduce

correspondingly to the “standard” curvature tensors and Bianchi identi-

ties, as the reader may easily verify as an exercise. Notation follows [7],

[8] and [9].
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1 – Some commutation formulae

Let M be a C∞-differentiable m-dimensional manifold and let us

denote by I(M) =
⊕
r,s

Ir
s (M) its tensor algebra, I1

0 (M) = X (M) and

I0
0 (M) = F(M) being the Lie algebra of vectorfields and the ring of

C∞-differentiable functions from M into R, respectively. Given any lin-

ear connection ∇ on M, we shall derive in this Section some permutation

formulae needed in the sequel. First we define a natural extension of the

Lie bracket depending on ∇, by setting:

[P, X]∇f = P (X(f)) − ∇X(P (f)) ,(1.1)

[P, Q]∇f = ∇P (Qf) − σ
(∇Q(Pf)

)
,(1.2)

and

(1.3) [W, X]∇f = W (Xf) − ∇X(Wf) ,

for any f ∈ F(M), X ∈ X (M), P, Q ∈ I1
1 (M) and W ∈ I1

2 (M),

where σ is the permutation F(M)-linear isomorphism on I(M) defined

by interchanging the last two covariant indices of t ∈ Ir
s (M) if s ≥ 2 and

leaving t unchanged if s < 2. We denote also by σ∗ the standard adjoint

of σ which operates on the contravariant indices in the same way as σ

does. The local expression of the brackets above are the following:

[P, X]∇ =
(
P ρ

γ ∂ρX
α − Xρ∂ρP

α
γ + Γε

γρX
ρP α

ε

) ∂

∂xα
⊗ dxγ ,(1.4)

[P, Q]∇ =
(
P ρ

τ ∂ρQ
α
γ − Qρ

γ∂ρP
α
τ − Γε

γρP
ρ
τ Qα

ε +(1.5)

+ Γε
τρQ

ρ
γP

α
ε

) ∂

∂xα
⊗ dxγ ⊗ dxτ

and

(1.6)
[W, X]∇ =

(
W α

βγ∂αXλ − Xα∂αW λ
βγ + Γµ

βαXαW λ
µγ+

+ Γµ
γαXαW λ

βµ

) ∂

∂xλ
⊗ dxβ ⊗ dxγ ,

where P α
β , Qα

β , Xα and W α
βγ are the local components of P, Q ∈ I1

1 (M),

X ∈ X (M) and W ∈ I1
2 (M), respectively, while Γα

βγ are the local com-

ponents of ∇. The following relations hold:

(1.7) [P, Q]∇ =−σ([Q, P ]∇) [P, X]∇ =−[X, P ]∇[W, X]∇ =−[X, W ]∇.
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The brackets we have introduced do not satisfy Jacobi identities, as

we shall see in the sequel. By using the differential operators defined in

Subsection 1.2 of Part I, we can consider the following commutators for

the connection ∇:

(1.8) T (X, P ) = ∇XP − ∇P X − [X, P ]∇

and

(1.9) T (P, Q) = σ(∇P Q) − ∇QP − σ([P, Q]∇) ,

for X ∈ X (M) and P, Q ∈ I1
1 (M). Locally we have:

(1.10)
T (X, P ) = T α

βγX
βP γ

σ

∂

∂xα
⊗ dxσ ,

T (P, Q) = T α
βγP

β
σ Qγ

τ

∂

∂xα
⊗ dxσ ⊗ dxτ ,

where T α
βγ = Γα

γβ −Γα
βγ are the local components of the torsion of ∇. Also

the curvature of ∇ admits an analogous extension, since we can set:

(1.11) R(X, P )Z = ∇X∇P Z − ∇P ∇XZ − ∇[X,P ]∇Z

and

(1.12) R(P, Q)Z = σ(∇P ∇QZ) − ∇Q∇P Z − σ(∇[P,Q]∇Z) ,

for any P, Q ∈ I1
1 (M) and X, Z ∈ X (M), where ∇[P,Q]∇Z is defined

according to the definition of ∇P Z given in [1]. Locally we have:

(1.13) R(X, P )Z = Rα
βγλXγP λ

µ Zβ ∂

∂xα
⊗ dxµ

and

(1.14) R(P, Q)Z = Rα
βγλP γ

σ Qλ
µZβ ∂

∂xα
⊗ dxσ ⊗ dxµ ,

where Rα
βγλ are the local components of the curvature of ∇. The following

symmetries hold:

(1.15) R(X, P )Z = −R(P, X)Z, R(P, Q)Z = −σ(R(Q, P )Z) .
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In the following we will extend R as a trivial differential operator on

the whole algebra I(M) by the obvious rules:

(1.16)

R∗(X, Y )t = ∇X∇Y t − ∇Y ∇Xt − ∇[X,Y ]t ,

R∗(X, P )t = ∇X∇P t − ∇P ∇Xt − ∇[X,P ]∇t ,

R∗(P, Q)t = σ(∇P ∇Qt) − ∇Q∇P t − σ(∇[P,Q]∇t) ,

for any X, Y ∈ X (M), P, Q ∈ I1
1 (M) and t ∈ Ir

s (M), where the covariant

indices of P and Q take the last positions into the local components of

the previous expressions. Moreover, the linear mapping obtained from

R(X, Y ) by contracting the contravariant index of R(X, Y ) with the first

covariant index of any tensorfield t ∈ Ir
s (M), with s > 0, will be denoted

by tR(X, Y ); while R(X, Y )t will instead denote the tensorfield obtained

by contracting the covariant index of R(X, Y ) with the first contravariant

index of t (provided r > 0). The previous notation allows us to write the

Jacobi rules for (1.1), (1.2) and (1.3). In fact, we have:

(1.17)
[
X, [Y, P ]∇

]
∇+

[
Y, [P, X]∇

]
∇+

[
P, [X, Y ]∇

]
∇= PR(Y, X) ,

where [X, Y ]∇ = [X, Y ], while

(1.18)

[
X, [P, Q]∇

]
∇+

[
P, [Q, X]∇

]
∇+σ

([
Q, [X, P ]∇

]
∇

)
=

= σ
(
PR(X, Q)

)−QR(X, P )

and

(1.19)

[
X, [Y,W ]∇

]
∇+

[
Y, [W, X]∇

]
∇+

[
W, [X, Y ]∇

]
∇=

= R∗(X, Y )W − R(X, Y )W .

These generalized Jacobi identities allow us to extend the first Bianchi

identity to the commutators (1.11), (1.12) and to the commutator ob-

tained by setting t = W in the first identity of (1.16). Setting in fact:

(1.20) R(X, Y )Z + R(Y,Z)X + R(Z, X)Y = T̃ (X, Y, Z) ,

where

(1.21)
T̃ (X, Y, Z) =

(∇XT
)
(Y,Z)+

(∇Y T
)
(Z, X)+

(∇ZT
)
(X, Y )+

+ T
(
T (X, Y ), Z

)
+T

(
T (Y, Z), X

)
+T

(
T (Z, X), Y

)
,
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we obtain:

(1.22) R∗(P, X)Y +R∗(X, Y )P +R∗(Y, P )X = T̃ (P,X, Y )−PR(X, Y ) ,

(1.23)
R∗(P, X)Q + σ

(
R∗(X, Q)P

)
+R∗(Q, P )X =

= σ
(
T̃ (P,X,Q)

)
+QR(X, P ) − σ

(
PR(X, Q)

)

and

(1.24)
R∗(W, X)Y + R∗(X, Y )W + R∗(Y,W )X =

= T̃ (X, Y, W ) + R∗(X, Y )W − R(X, Y )W .

Let us now fix a tensorfield g ∈ I2
2 (M), locally expressed by:

(1.25) g = gαβ
γρ

∂

∂xα
⊗ ∂

∂xβ
⊗ dxγ ⊗ dxρ

and let us suppose that it satisfies the following symmetry:

(1.26) gαβ
γρ = gβα

ργ .

Then g defines a bilinear mapping from I1
1 (M) into F(M) by putting:

(1.27) g(P, Q) = gαβ
γρ P γ

αQρ
β

for each P, Q ∈ I1
1 (M). We also split g into its symmetric and skew–

symmetric parts ǧ and ĝ with respect to the contravariant indices, re-

spectively, by putting:

(1.28) 2ĝαβ
γρ = gβα

γρ + gαβ
γρ 2ǧαβ

γρ = gαβ
γρ − gβα

γρ ,

so that g = ĝ + ǧ. For any tensorfield t ∈ Ir
s (M) we define t∇ ∈ Ir

s+1(M)

by setting:

(1.29) t∇(X1, . . . , Xs+1) = (∇X1
t)(X2, . . . , Xs+1) .

In particular we define the following:

(1.30) H = g∇ , Ĥ = ĝ∇ , Ȟ = ǧ∇ ,



644 O. AMICI – B. CASCIARO – M. FRANCAVIGLIA [8]

i.e.:

(1.31)

H(X, Y, Z) =
(∇Xg

)
(Y, Z) ,

Ĥ(X, Y, Z) =
(∇X ĝ

)
(Y, Z) ,

Ȟ(X, Y, Z) =
(∇X ǧ

)
(Y, Z) ,

for X, Y, Z ∈ X (M). We set also:

(1.32)

2∆(g)(P, Y, Q) = H(P, Y, Q) + (σ∗H)(Q, P, Y )+

− H(Y, P,Q) + (σ∗g)(T (Q, P ), Y )+

− g(T (Y, P ), Q) − g(P, T (Y,Q)),

(1.33)
I1(g)(P, Y, Q) = g([Y, P ]∇, Q) + g(P, [Y,Q]∇)+

− g([Q, P ]∇, Y )

and

(1.34) ẽ(∇, g)(P, Y, Q) = −∆(g)(P, Y, Q) − ĝ(Y,∇P Q) .

In particular, if g is skew–symmetric (i.e., g = ǧ), then equation (1.34)

simplifies to:

(1.34′) ẽ(∇, ǧ)(P, Y, Q) = −∆(ǧ)(P, Y, Q) ≡ −∆̌(P, Y, Q) .

Then we have:

(1.35)
Y (g(P, Q)) − ∇P g(Y,Q) − ∇Qg(P, Y ) =

= 2ẽ(∇, g)(P, Y, Q) + I1(g)(P, Y, Q) ,

for any Y ∈ X (M) and P, Q ∈ I1
1 (M).

Finally, we define:

I2(g)(X,P, Y,Q) ≡ ∇X

(
I1(g)(P, Y, Q)

)
,(1.36)

h1(g)(X,P, Y,Q) ≡ 2ĝ(Y,∇X∇P Q) ,(1.37)

h2(g)(X,P, Y,Q) ≡ 2ĝ(∇XY,∇P Q) ,(1.38)



[9] Covariant second variation for first order etc. 645

(1.39)
h3(g)(X,P, Y,Q) ≡ 2∆(g)(∇XP, Y, Q) + 2∆(g)(P,∇XY, Q)+

+ 2∆(g)(P, Y,∇XQ) + 2Ĥ(X, Y,∇P Q)

and

(1.40)
h4(g)(X,P, Y,Q) ≡ ∇X∇Y g(P, Q) − ∇X∇P g(Y,Q)+

− ∇X∇Qg(P, Y ) .

We have then:

(1.41)
h4(g)(X,P, Y,Q) = −

3∑

i=1

hi(g)(X,P, Y,Q)+

− 2∆(g)∇(X,P, Y,Q) + I2(g)(X,P, Y,Q) .

The mapping ∆(g) given by (1.32) will be called the Christoffel sym-

bols of g, while ẽ(∇, g) given by (1.34) will be called the incomplete Euler-

Lagrange mapping of g and h4(g) the basic mapping for the second vari-

ation of g.

For the skew–symmetric part ǧ of g the previous equations sim-

plify to:

h1(ǧ)(X,P, Y,Q) = 0 ,(1.42)

h2(ǧ)(X,P, Y,Q) = 0 ,(1.43)

(1.44)
h3(ǧ)(X,P, Y,Q) = 2∆̌(∇XP, Y, Q)+

+ 2∆̌(P,∇XY,Q) + 2∆̌(P, Y,∇XQ) .

There is a number of useful commutation rules satisfied by the above

mappings which shall be of later use. They are reported in an Appendix.

Finally, suppose that M is orientable and fix a volume form Ω on M,

locally given by Ω = λdx1 ∧ · · · ∧ dxn. Then, there exists a 1-form ω =

ω(Ω, ∇) on M, locally defined by ω = ωγdxγ , being ωγ = Γα
αγ +∂γ(log λ),

which will be called the contraction of ∇ with respect to Ω.
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2 – Some algebraic lemmae

Let V and W be two real locally convex topological vector spaces.

In the following we do not make any assumption on the dimension of V

and W ; if V or W is infinite dimensional we require it to be reflexive.

We will denote by L1
4(V, W ) = HomR(V ×V ×V ×V, W ) the real vector

space of R–quadrilinear (continuous) mappings from V 4 into W (endowed

with the compact–open topology) and by H1
4 (V, W ) the (closed) linear

sub–space of mappings f ∈ L1
4(V, W ) such that:

(2.1) f(X1, X2, X3, X4) = −f(X1, X2, X4, X3) ∀ X1, X2, X3, X4 ∈ V.

K1
4 (V, W ) will denote the (closed) linear sub–space of L1

4(V, W ) contain-

ing all mappings f ∈ H1
4 (V,W ) which satisfy the following property:

(2.2) f(X1, X2, X3, X4) = f(X3, X4, X1, X2) ∀ X1, X2, X3, X4 ∈ V .

Notice that the elements f ∈ K1
4 (V,W ) satisfy the further property:

(2.3) f(X1, X2, X3, X4) = −f(X2, X1, X3, X4) ∀ X1, X2, X3, X4 ∈ V.

Finally, we will denote by R(V,W ) the (closed) linear sub–space of

L1
4(V, W ) of all mappings f ∈ K1

4 (V, W ) satisfying the following iden-

tity:

(2.4)
f(X1, X2, X3, X4)+f(X1, X3, X4, X2) + f(X1, X4, X2, X3) = 0 ,

∀ X1, X2, X3, X4 ∈ V ,

which we shall call (generalized) Bianchi identity . Notice that the con-

dition (2.4) imposed on an element f ∈ H1
4 (V, W ) is equivalent to the

condition that both the skew–symmetric and the symmetric parts of f

with respect to the last three variables are zero. A standard argument

(see, e.g., [7]), shows that (2.1), (2.3) and (2.4) imply (2.2). These ob-

servations will force us to consider separately the skew–symmetric and

the symmetric parts of the tensor g introduced in the previous Section.

If V is finite dimensional and W = R, R(V,R) is called the space of

curvature structures. Hence, we call R(V, W ) the space of generalized

curvature structures.
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Before proceeding further we need to construct a (continuous) pro-

jection mapping C : L1
4(V, W ) → R(V, W ) which suitably splits L1

4(V, W )

into a direct sum. To this purpose, let Λ : L1
4(V, W ) → L1

4(V, W ) be the

map defined by:

(2.5)

3(Λf)(X1, X2, X3, X4) = 2f(X1, X2, X3, X4)+

+ f(X1, X4, X3, X2) − f(X1, X3, X4, X2) ,

∀ f ∈ L1
4(V,W ) , ∀ X1, X2, X3, X4 ∈ V .

We state now a number of lemmae, whose proofs are straightforward.

Lemma 2.1. Λ is a (continuous) linear mapping. Moreover, if

f ∈ H1
4 (V, W ), the image Λf satisfies the Bianchi identity (2.4) and

Λ2f = Λf holds. Finally Λ(K1
4 (V, W )) = R(V,W ).

Let then A : L1
4(V, W ) → L1

4(V, W ) be the skew–symmetrization with

respect to the last two arguments, i.e.:

(2.6) 2(Af)(X1, X2, X3, X4) =f(X1, X2, X3, X4)−f(X1, X2, X4, X3),

∀ X1, X2, X3, X4 ∈ V ,

for any f ∈ L1
4(V, W ). The following holds:

Lemma 2.2. Being ΛA = AΛA, the mapping Λ̃ = ΛA : L1
4(V, W ) →

L1
4(V, W ) is a (continuous) projection mapping, i.e. Λ̃Λ̃ = Λ̃.

Define then three (continuous) projection mappings S, Š :L1
4(V, W )→

L1
4(V, W ) and A1 : L1

4(V, W ) → L1
4(V, W ) by setting respectively

(2.7) 2(Sf)(X1, X2, X3, X4) = f(X1, X2, X3, X4) + f(X3, X4, X2, X1) ,

(2.8) 2(Šf)(X1, X2, X3, X4) = f(X1, X2, X3, X4) − f(X3, X4, X2, X1)

and

(2.9) 2(A1f)(X1, X2, X3, X4) = f(X1, X2, X3, X4)−f(X2, X1, X3, X4) ,

for each f ∈ L1
4(V, W ) and X1, X2, X3, X4 ∈ V . Then we have:
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Lemma 2.3. The following commutation rules hold:

(2.10) AA1 = A1A ,

(2.11)
4(SAf)(X1, X2,X3, X4) = 4(ASf)(X1, X2, X3, X4)+

+ f(X4, X3, X1, X2) − f(X3, X4, X2, X1) ,

(2.12)
4(SA1f)(X1, X2,X3, X4) = 4(A1Sf)(X1, X2, X3, X4)+

+ f(X3, X4, X2, X1) − f(X4, X3, X1, X2) ,

(2.13)
6(ΛSf)(X1, X2, X3, X4) = 6(SΛf)(X1, X2, X3, X4)+

+ f(X3, X1, X2, X4) − f(X4, X2, X1, X3) .

Lemma 2.4. Let us consider the maps B = SA1A : L1
4(V, W ) →

L1
4(V, W ) and B̌ = ŠA1A : L1

4(V, W ) → L1
4(V, W ). Then B and B̌ are

(continuous) projection maps and B = BSA1.

Lemma 2.4 follows by noticing that AA1B = B, because of Lemma

2.3, and that SB = B, being S a projection mapping.

Lemma 2.5. Let C = ΛB : L1
4(V, W ) → L1

4(V, W ). Then C is a

(continuous) projection map and the following holds:

(2.14) C = BΛ = BΛ̃ = Λ̃B .

Moreover, C(f)∈R(V ,W ) for any f ∈L1
4(V ,W ). Finally, the map C(f)

is completely determined by (Bf)(X1, X2, X1, X2)=(Cf)(X1, X2, X1, X2),

for any X1, X2 ∈ V .
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(The first and second claims follow from the previous Lemmae, while

the last one follows from suitably adapting [7], Proposition 1.2 at page

198.)

Let now L(V ) = HomR(V, V ) be the real vector space of (con-

tinuous) linear mappings of V into itself (endowed with the compact–

open topology). For any f ∈ L1
4(V, W ) we define a linear mapping

f• ∈ H1
4(V, W ) ≡ HomR(V × L(V ) × V × L(V ), W ⊗ V ∗ ⊗ V ∗) by the

following:

f•(X1, X2, X3, X4)(u, v) = f(X1, X2(u), X3, X4(v)) ,(2.15)

∀ X1, X3, u, v ∈ V , ∀ X2, X4 ∈ L(V ) ,

where V ∗ is the (topological) dual of V . For any linear mapping F :

L1
4(V, W ) → L1

4(V, W ) we define a linear mapping F• : H1
4(V, W ) →

H1
4(V, W ) by setting:

[F•(f•)(X1, X2, X3, X4)
]
(u, v)≡(Ff)(X1, X2(u), X3, X4(v)),(2.16)

∀ f ∈ L1
4(V, W ) .

For simplicity we shall write F•f• in place of F•(f•). In the sequel, this

extension F @→ F• will be applied to the linear operators A, A1, B, B̌, C

and Λ defined above.

3 – The definition of curvature tensorfield and the Bianchi iden-

tities

In this Section we will apply to the basic mapping h4(g) for the

second variation the algebraic lemmae of Section 2 together with the

commutation formulae contained in Section 1 and in the Appendix. This

will allow us to define the curvature tensorfield of g ∈ I2
2 (M) with respect

to the linear connection ∇. Furthermore, we will show that this satisfies

a generalized “second Bianchi identity” as a consequence of a suitable

new identity satisfied by C•h4(g), while the identities (2.1), (2.2) and

(2.3), as well as the first Bianchi identity (2.4), follow directly from our

construction. Let us set:

(3.1)
h0(g)(X,P, Y,Q) =2∇X∇Y g(P, Q) ,

∀ X, Y ∈ X (M) , ∀ P, Q ∈ I1
1 (M) .
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We will call h0(g) the fundamental mapping for the second variation. It

is easily proved that:

(3.2) C•h4(g) = C•ĥ0 = B•ĥ0 ,

where C• and B• are the extensions defined at the end of Section 2 and

ĥ0 ≡ h0(ĝ). As a consequence, we have:

(3.3)

4(B•ĥ0)(X,P, Y,Q) = ∇X∇Y ĝ(P, Q) + ∇Y ∇X ĝ(P, Q)+

− ∇P ∇Y ĝ(X, Q) − ∇Y ∇P ĝ(X, Q) − ∇X∇Qĝ(P, Y )+

− ∇Q∇X ĝ(P, Y ) + ∇P ∇Qĝ(X, Y ) + ∇Q∇P ĝ(X, Y ) ,

∀ X, Y ∈ X (M) , ∀ P, Q ∈ I1
1 (M) .

We remark that C•h4(g) involves only the symmetric part ĝ. This is

related to the fact that (2.1), (2.3) and (2.4) hold together, since these

identities impose the symmetry with respect to the pairs of variables

(X, P ) and (Y, Q), which, in turn, imposes the symmetrization of g with

respect to the covariant indices. Moreover, we are in principle interested

in a more general curvature structure in which the whole tensor g plays

a role and not only its symmetric part ĝ. In order to do this, one should

work out an equation similar to (3.3) for the skew–symmetric part ǧ.

Hence, we put ȟ0 = h0(ǧ) and we obtain:

(3.4)

4(B̌•ȟ0)(X,P, Y,Q) = ∇X∇Y ǧ(P, Q) + ∇Y ∇X ǧ(P, Q)+

− ∇P ∇Y ǧ(X, Q) − ∇Y ∇P ǧ(X, Q) − ∇X∇Qǧ(P, Y )+

− ∇Q∇X ǧ(P, Y ) + ∇P ∇Qǧ(X, Y ) + ∇Q∇P ǧ(X, Y ) ,

∀ X, Y ∈ X (M) , ∀ P, Q ∈ I1
1 (M) .

For the sake of simplicity, in this Section and in Section 5 we make the

convention that the covariant index of the tensorfield denoted by P is

always contracted with the first contravariant index of ǧ, Ȟ and Ȟ∇, while

the covariant index of the tensorfield denoted by Q is always contracted

with the second contravariant index of the previous three tensorfields.

The same convention will be preserved for the tensorfields obtained from

P and Q by derivation.

Let us remark that, if a volume form Ω can be fixed on M, all the

maps obtained from (3.3) by varying ∇ among the connections satisfying
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ω(Ω,∇) = 0 are equivalent modulo boundary terms. Finally, the map

defined by (3.3) is a generalized curvature structure which will be called

the basic curvature structure of g (with respect to ∇). In sequel we shall

need the value assumed by (3.3) for X = Y and P = Q, which determines

completely C•h4(g) because of lemma 2.4. We have:

(3.5)

2(B•ĥ0)(X,P,X, P ) =∇X∇X ĝ(P, P ) − ∇X∇P ĝ(X, P )+

− ∇P ∇X ĝ(X, P ) + ∇P ∇P ĝ(X, X) ,

∀ X ∈ X (M) , ∀ P ∈ I1
1 (M) .

An analogous identity holds for the skew–symmetric part. Taking the

image under C• of both sides of (1.39), the basic curvature structure of g

with respect to ∇ decomposes into the sum of four generalized curvature

structures, which are not yet suitable for our later purposes. To recast

them in a more convenient form we set first:

(3.6)

2F̄0(X,P, Y,Q) =2Ĥ∇(X,Y, P,Q) + ĝ(R∗(Q, Y )P, X)+

+ 2ĝ(T∇(Q, P, Y ), X) + ĝ(T∇(P, Q, Y ), X)+

+ ĝ(T (T (Y,Q), P ), X) ,

(3.7)

F̄1(X,P, Y,Q) =Ĥ(∇XY, P,Q)+

+ 2Ĥ(Y,∇XP, Q) + 2Ĥ(Y, P,∇XQ)+

+ ĝ(T (∇P Q, Y ), X) + ĝ(T (∇QP, Y ), X) ,

(3.8) F̄2(X,P, Y,Q) = ĝ(∇XP,∇Y Q) + ĝ(∇Y P,∇XQ) ,

(3.9)
2F̄3(X,P, Y,Q) =ĝ(T ([Y, Q]∇, P ), X) − ĝ(∇[Y,Q]∇P, X)+

+ 2ĝ(∇P [X, Y ]∇, Q) + ĝ(∇P [Q, Y ]∇, X) .

Then, a simple calculation shows that:

(3.10)
C•F̄0 = B•F̄0 + F̃0, C•F̄1 = B•F̄1

C•F̄2 = B•F̄2, C•F̄3 = B•F̄3 − F̃0 ,
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being:

(3.11)

24F̃0(X,P, Y,Q) =ĝ
(
PR(Q, Y ), X

) − ĝ
(
PR(Q, X), Y

)
+

− ĝ
(
QR(P, Y ), X

)
+ ĝ

(
QR(P, X), Y

)
+

+ ĝ
(
QR(X, Y ), P

) − ĝ
(
PR(X, Y ), Q

)
,

so that the following holds:

(3.12)

(B•ĥ0)(X,P, Y,Q) = 2
3∑

r=0

(C•F̄r)(X,P, Y,Q) =

= 2
3∑

r=0

(B•F̄r)(X,P, Y,Q) .

Obviously, each C•F̄r (for r = 0, 1, 2, 3) is a generalized curvature struc-

ture and, moreover, C•F̄0 is a tensorfield. Since C•F̄1 involves only one

derivative and C•F̄2 involves two derivatives, they will be called the gen-

eralized curvature structure of g (with respect to ∇) of rank 1 and 2 ,

respectively, while C•F̄3 will be called trivial generalized curvature struc-

ture of g (with respect to ∇). Finally, we set:

(3.13) R̄(∇, ĝ)(X,P, Y,Q) = 2(C•F̄0)(X,P, Y,Q) ,

and we call it the curvature tensorfield of g (with respect to ∇). Notice

that the commutation rules given in the Appendix allow us to reduce

(3.13) to contain only one term in R; moreover, by using (1.32) one can

replace the derivatives of H with the derivatives of ∆(ĝ) in all the previous

formulae. In sequel, we shall also need the following formulae, which can

be obtained by simple calculations and in virtue of lemma 2.5 determine

completely the map considered:

(3.14)

4(B•F̄1)(X, P,X, P ) = −2∆̂(P,∇XX, P ) − Ĥ(∇P X, X, P )+

− Ĥ(∇XP,X, P ) + Ĥ(∇P P,X,X) − 2Ĥ(X, X, ∇P P )+

+ 4Ĥ(X,P, ∇XP ) − 2Ĥ(X,P, ∇P X) − 2Ĥ(P,X, ∇XP )+

− 4Ĥ(P,X, ∇P X) + 2ĝ(T (∇P P, X), X) − ĝ(T (∇XP, P ), X)+

− ĝ(T (∇P X, P ), X) − ĝ(T (∇XP, X), P ) − ĝ(T (∇P X, X), P )
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and

(3.15)

2(B•F̄2)(X,P,X, P ) = ĝ(∇P X, ∇P X)+

− ĝ(∇XX, ∇P P ) + ĝ(T (X, P ),∇P X)+

+ ĝ([X, P ]∇,∇P X) + ĝ(T (X, P ), T (X, P ))+

+ 2ĝ(T (X, P ), [X, P ]∇) + ĝ([X, P ]∇, [X, P ]∇) .

Moreover, for the skew–symmetric part ǧ of g we set:

(3.16)

4¯̄F 0(X,P, Y,Q) = 4Ȟ∇(X,Y, P,Q)+

+ 4Ȟ(Y, T (X, P ), Q) + 2ǧ(R∗(X, P )Y,Q)+

+ 2ǧ(T∇(Y,X, P ), Q) + 4ǧ(T∇(X, Y, P ), Q)+

+ 2ǧ(T (Y, T (X, P )), Q) + ǧ(T (X, P ), T (Y, Q)) ,

(3.17)
¯̄F 1(X,P, Y,Q) =Ȟ(∇XY, P, Q) + 2Ȟ(Y, P,∇XQ)+

+ ǧ(T (∇XY, P ), Q) + ǧ(T (∇Y X, P ), Q) ,

(3.18) ¯̄F 2(X,P, Y,Q) = ǧ(T (Y, P ),∇XQ) + ǧ([Y, P ]∇,∇XQ) ,

(3.19)

4¯̄F 3(X,P, Y,Q) = 4Ȟ(Y, [X, P ]∇, Q) + 4ǧ(∇X [Y, P ]∇, Q)+

+ 2ǧ(∇Y [X, P ]∇, Q) + 2ǧ(∇[X,P ]∇Y,Q)+

+ 2ǧ(T (Y, [X, P ]∇), Q) + 2ǧ(T (X, P ), [Y, Q]∇)+

+ ǧ([X, P ]∇, [Y,Q]∇) .

Then a simple computation gives the equation corresponding to (3.12),

i.e. :

(3.20) (B̌•ȟ0)(X,P, Y,Q) = 2
3∑

r=0

(B̌• ¯̄F r)(X,P, Y,Q) .

As a consequence the equation corresponding to (3.13) is:

(3.21) R̄(∇, ǧ)(X,P, Y,Q) = 2(B̌• ¯̄F 0)(X,P, Y,Q)
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and we call it the skew–curvature tensorfield of g (with respect to ∇).

From the previous generalized curvature structures two useful quadratic

forms can be obtained by setting:

(3.22)
4S̄1(X,P, Y,Q) = 4(B•F̄1)(X,P, Y,Q) + ∆̂(P,∇XY,Q)+

+ ∆̂(Q,∇Y X, P )

and

(3.23)
4S̄2(X,P, Y,Q) = 4(B•F̄2)(X,P, Y,Q)+

+ ĝ(∇Y X, ∇QP ) + ĝ(∇XY,∇P Q) .

A simple calculation shows in fact that S̄1 and S̄2 are biquadratic forms

on the ordered triplet (X, [X, P ]∇,∇P X), with X ∈ X (M), depending

on (P,∇P P ) provided one puts P = Q ∈ I1
1 (M). Moreover, from (3.12)

it follows:

(3.24)
2(B•ĥ0)(X,P, Y,Q) = 4S̄(X,P, Y,Q) + ẽ(∇, ĝ)(P, ∇XY,Q)+

+ ẽ(∇, ĝ)(Q,∇Y X, P ) + 4(B•F̄3)(X,P, Y,Q) ,

being

(3.25)
2S̄(X,P, Y,Q) = 2S̄2(X,P, Y,Q)+

+ 2S̄1(X,P, Y,Q) + R̄(∇, g)(X,P, Y,Q) .

The new function S̄ will be called the incomplete regular Hessian

mapping of g and it is a biquadratic form on the same variables of S̄1 and

S̄2. For the skew–symmetric part ǧ of g the corresponding of (3.22) and

(3.23) are respectively:

(3.26)

8¯̄S1(X,P, Y,Q) = 8(B̌• ¯̄F 1)(X,P, Y,Q) − 2ẽ(∇, ǧ)(P,∇XY,Q)+

+ 2ẽ(∇, ǧ)(Q,∇Y X, P ) + ǧ(T (P, Q),∇XY )+

+ ǧ(T (P, Q),∇Y X) ,

(3.27)

8¯̄S2(X,P, Y,Q) = 8(B̌• ¯̄F 2)(X,P, Y,Q) − ǧ(T (P, Q),∇XY )+

− ǧ(T (P, Q),∇Y X) − ǧ([P, Q]∇,∇XY )+

− ǧ([P, Q]∇,∇Y X) − ǧ([X, Y ]∇,∇P Q)+

− ǧ([X, Y ]∇,∇QP ) ,
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while the corresponding of (3.24) is

(3.28)

4(B̌•ȟ0)(X,P, Y,Q) = 8¯̄S(X,P, Y,Q) + 2ẽ(∇, ǧ)(P,∇XY,Q)+

− 2ẽ(∇, ǧ)(Q,∇Y X, P ) + 8(B̌• ¯̄F 3)(X,P, Y,Q)+

+ ǧ([P, Q]∇,∇XY ) + ǧ([P, Q]∇,∇Y X)+

+ ǧ([X, Y ]∇,∇P Q) + ǧ([X, Y ]∇,∇QP ) .

Finally, the corresponding of (3.25) is:

(3.29)
2¯̄S(X,P, Y,Q) =2¯̄S2(X,P, Y,Q)+

+ 2¯̄S1(X,P, Y,Q) + R̄(∇, ǧ)(X,P, Y,Q) .

As a consequence of the definitions and of the identities above it follows

that the maps ¯̄S1,
¯̄S2 and ¯̄S are biquadratic forms in the ordered triplet

(X, [X, P ]∇,∇P X), with X ∈ X (M), depending on (P,∇P P ) provided

one puts P = Q ∈ I1
1 (M). The corresponding first Bianchi identity reads

in this case as follows:

(3.30)

2G̃(
(B̌•ȟ0)(X,P, Y,Q)

)
= 4(B̌•ȟ0)(X,P, Y,Q)+

+ ∇P ∇Y ǧ(X, Q) + ∇Y ∇P ǧ(X, Q) − ∇P ∇Qǧ(X, Y )+

− ∇Q∇P ǧ(X, Y ) − ∇X∇P ǧ(Y,Q) − ∇P ∇X ǧ(Y,Q) ,

where G̃ denotes the cyclic permutation on the ordered triplet (P, Y, Q).

We are now in position to conclude this Section by showing that the

curvature tensorfield of g with respect to ∇, as defined by (3.13), satisfies

a fundamental identity which shall be used in Section 5 to show that a

“second Bianchi identity” holds. In fact, let us consider X, Y, Z ∈ X (M)

and P, Q ∈ I1
1 (M) and let us set:

(3.31) Q̂1(X, P, Y, Q, Z) = R∗(P, Z)∇Y ĝ(X, Q) + ∇[P,Z]∇∇Y ĝ(X, Q) ,

(3.32)
Q̂2(X, P, Y, Q, Z) =

(∇XR∗(Q, Z)
)
ĝ(P, Y )+

+ R∗(X, [Q, Z]∇)ĝ(P, Y ) + ∇[X,[Q,Z]∇]∇ ĝ(P, Y )

and

(3.33) Q̂3(X, P, Y, Q, Z) = ∇PR(Q,Y )ĝ(X, Z) .
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For notational simplicity we shall still denote by A•
1 and B• the obvious

extensions to 5-linear mappings of the corresponding operators (defined in

Section 2) acting on (X, P, Y, Q, Z) by taking Z fixed. Let us also denote

by G the cyclic permutation on the ordered triplet (Z, Y, Q). With this

notation the following identity can be easily proved:

(3.34)
4G{∇Z

[
(B•ĥ0)(X,P, Y,Q)

]}
= G{

8(B•Q̂1)(X, P, Y, Q, Z)+

+ 2(A•
1Q̂2)(X, P, Y, Q, Z) + Q̂3(X, P, Y, Q, Z)

}
.

The equation corresponding to (3.34) for ǧ is obtained by putting:

(3.35)

2Q̌1(X, P, Y, Q, Z) = 2∇[P,Z]∇∇Y ǧ(X, Q)+

− 2∇[P,Y ]∇∇Z ǧ(X, Q) + 2∇P ∇[Y,Z]∇ ǧ(X, Q)+

+ ∇Z∇[P,Y ]∇ ǧ(X, Q) − ∇Y ∇[P,Z]∇ ǧ(X, Q)

and

(3.36)

2Q̌2(X, P, Y, Q, Z) = 2∇P

(
R∗(Y,Z)ǧ(X, Q)

)
+

− ∇Z

(
R∗(Y, P )ǧ(X, Q)

)
+∇Y

(
R∗(Z, P )ǧ(X, Q)

)
+

+ 2R∗(Y, P )∇Z ǧ(X, Q) − 2R∗(Z, P )∇Y ǧ(X, Q) ;

then:

(3.37)
G{∇Z

[
(B̌•ȟ0)(X,P, Y,Q)

]}
=

= G{
(A•

1Q̌1)(X, P, Y, Q, Z) + (A•
1Q̌2)(X, P, Y, Q, Z)

}
.

We also have:

(3.38)

G
{[[

X, [Z, Y ]∇
]
∇, Q

]
∇

+
[
[X, Q]∇, [Y, Z]∇

]
∇

}
=

= [X, QR(Z, Y )
]
∇ + QR(X, [Z, Y ]∇) + [Y,Q]∇R(Z, X)+

+ [Q, Z]∇R(Y,X)

and

(3.39)

G
{[[

P, [Y, Z]∇
]
∇, Q

]
∇

+
[
[P, Q]∇, [Z, Y ]∇

]
∇

}
=

=
[
P, QR(Y,Z)

]
∇ − QR(P, [Z, Y ]∇) + [Q, Y ]∇R(Z, P )+

− [Q, Z]∇R(Y, P ) + σ
(
G{

PR([Y,Z]∇, Q)
})

.
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4 – The regular Hessian and the regular Jacobi maps for gener-

alized harmonic applications

Let M , N be two further manifolds, (xα) and (yi) be local coordinate

systems on M and N , respectively. In this section we replace M by the

product M ×N and following [1] we assume that g ∈ I2
2 (M ×N) has local

components satisfying the symmetry: gαβ
ij = gβα

ji . We fix also a family of

differentiable mappings fε : M → N depending smoothly on ε ∈] − a, a[,

a > 0. Furthermore, we assume that M is orientable and fix a volume

form Ω on M . Under these assumptions the generalized harmonic energy

ED :] − a, a[→ R is defined by:

(4.1) ED(ε) =

∫

D

g
(∂fε

∂x
,
∂fε

∂x

)
Ω

for any compact domain D in M having a regular enough boundary ∂D,

where:

(4.2) g
(∂fε

∂x
,
∂fε

∂x

)
= gαβ

ij

∂f i
ε

∂xα

∂f j
ε

∂xβ
.

We set (as in [1]):

P 1
fε

= δα
β

∂

∂xα
⊗ dxβ +

∂f i
ε

∂xβ

∂

∂yi
⊗ dxβ, P 2

fε
=

d

dε
+

∂f i
ε

∂ε

∂

∂yi

and recall that P 1
fε

and P 2
fε

are respectively a tensorfield and a vectorfield

defined on the graph Gf of the mapping f : M×] − a, a[→ N .

The aim of this section is to investigate, modulo boundary terms,

the second derivative of E with respect to ε, by using the generalized

curvature structures associated on the manifold M × N to g and to the

connections introduced in [1]. In this way we can obtain the regular

Hessian mapping, the curvature tensorfield and the relevant geometric

objects introduced in the previous Sections, related to the variational

problem (4.1) defined by E. To this purpose we fix two connections ∇̆
and ∇̄ on M and N , respectively, and denote by ∇ = ∇̆× ∇̄ the product

connection on M × N . Notice that a simple calculation based on (3.4)
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shows that:

(4.3)

2(B•ĥ0)(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) =
∂2

∂ε2
ĝ
(∂fε

∂x
,
∂fε

∂x

)
+

− 2
∂

∂ε
div ∗ĝ

(∂fε

∂ε
,
∂fε

∂x

)
+ div ∗

[
∇P1

fε
ĝ
(∂fε

∂ε
,
∂fε

∂ε

)]
+

− 2ω̆ĝ
(
∇P2

fε

∂fε

∂ε
,
∂fε

∂x

)
− 2ω̆

(
∆̂(P 2

fε
, P 1

fε
, P 2

fε
)
)

;

analogously one finds

(4.4)

2(B̌•ȟ0)(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) =
∂2

∂ε2
ǧ
(∂fε

∂x
,
∂fε

∂x

)
+

− 2
∂

∂ε
div ∗ǧ

(∂fε

∂ε
,
∂fε

∂x

)
− 2ω̆ǧ

(
∇P2

fε

∂fε

∂ε
,
∂fε

∂x

)
+

+ 2ω̆ǧ
(
∇P1

fε

∂fε

∂ε
,
∂fε

∂ε

)
− 2ω̆ǧ

(∂fε

∂ε
, T̄ (

∂fε

∂ε
,
∂fε

∂x
)
)

,

where T̄ is the torsion tensorfield of ∇̄ and ω̆ = ω(Ω, ∇̆) is the contraction

of ∇̆ with respect to Ω. Here and in the following the contraction of ω̆ with

a tensorfield is always made with the first contravariant index. Moreover,

from (1.32) we have:

(4.5)
2∆̂(P 1

fε
, P 2

fε
, P 1

fε
) ≡ 2∆(ĝ)(P 1

fε
, P 2

fε
, P 1

fε
) =

= 2Ĥ(P 1
fε

, P 2
fε

, P 1
fε

) − Ĥ(P 2
fε

, P 1
fε

, P 1
fε

) + 2ĝ(T̄ (P 1
fε

, P 2
fε

), P 1
fε

) ,

(4.6)

2∆̌(P 1
fε

, P 2
fε

, P 1
fε

) ≡ 2∆(ǧ)(P 1
fε

, P 2
fε

, P 1
fε

) =

= 2Ȟ(P 1
fε

, P 2
fε

, P 1
fε

) − Ȟ(P 2
fε

, P 1
fε

, P 1
fε

)+

+ 2ǧ(T̄ (P 1
fε

, P 2
fε

), P 1
fε

) − ǧ(T̄ (P 1
fε

, P 1
fε

), P 2
fε

) .

Let us remark that if ∇̆ has ω̆ = 0, as it happens in the case of the Levi–

Civita connection of a pseudo–Riemannian metric on M , the previous

identity (4.3) splits into the sum of the second derivative of ĝ(∂fε

∂x
, ∂fε

∂x
)

with respect to ε and some boundary terms.
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Moreover, ω̆
(
∆̂(P 2

fε
, P 1

fε
, P 2

fε
)
)

is a quadratic form depending on P 1
fε

,

while ω̆ĝ
(
∇P1

fε

∂fε

∂ε
, ∂fε

∂x

)
is just linear. Analogous remarks hold for ǧ.

We also set h̃(g) = 2B•ĥ0+2B•ȟ0. Since, div ∗
[
∇P1

fε
ǧ
(

∂fε

∂ε
, ∂fε

∂ε

)]
= 0

and ∆̌(P 2
fε

, P 1
fε

, P 2
fε

) = 0, from (4.3) and (4.4) we also have:

(4.7)

h̃(g) =
∂2

∂ε2
g
(∂fε

∂x
,
∂fε

∂x

)
− 2

∂

∂ε
div ∗g

(∂fε

∂ε
,
∂fε

∂x

)
+

+ div ∗
[
∇P1

fε
g
(∂fε

∂ε
,
∂fε

∂ε

)]
− 2ω̆g

(
∇P2

fε

∂fε

∂ε
,
∂fε

∂x

)
+

− 2ω̆
(
∆(g)(P 2

fε
, P 1

fε
, P 2

fε
)
)
+2ω̆ǧ

(
∇P1

fε

∂fε

∂ε
,
∂fε

∂ε

)
+

− 2ω̆ǧ
(∂fε

∂ε
, T̄ (

∂fε

∂ε
,
∂fε

∂x
)
)

.

Equations (4.3), (4.4) and (4.7) show also that the variational problems

defined by ĝ, ǧ and g involve only elements of I11
10 (M × N) and X 1(N),

where X 1(N) is the F(M ×N)-module of vectorfields along the canonical

projection p2 : M × N → N , considered as a sub–module of X (M × N).

As a consequence, we denote respectively by F̂0, F̂1, F̂2, F̂3, R(∇, ĝ), Ŝ1,

Ŝ2 and Ŝ the restrictions of F̄0, F̄1, F̄2, F̄3, R̄(∇, g), S̄1, S̄2 and S̄ to

the previous modules. Obviously, all the properties obtained in Section

3 still hold and we will call R(∇, ĝ) the variational curvature tensorfield

of g (with respect to ∇), F̂r (r = 1, 2) the variational curvature structure

of rank r of g (with respect to ∇), F̂3 the trivial variational curvature

structure of g (with respect to ∇) and, finally, Ŝ the incomplete regular

Hessian mapping of g (with respect to ∇). Moreover we shall denote by

F̌0, F̌1, F̌2, F̌3, R(∇, ǧ), Š1, Š2 and Š the corresponding restrictions of
¯̄F 0,

¯̄F 1,
¯̄F 2,

¯̄F 3, R̄(∇, ǧ), ¯̄S1,
¯̄S2 and ¯̄S. Also these mappings verify the

properties of generalized curvature structures, with the only exception of

the first Bianchi identity, which must be replaced by the restriction of the

equation (3.30) to the previous sub–modules. Consequently R(∇, ǧ) will

be called the variational skew–curvature tensorfield of g (with respect to

∇), F̌r (r = 1, 2) the variational skew–curvature structure of rank r of g

(with respect to ∇), F̌3 the trivial variational skew–curvature structure of

g (with respect to ∇) and, finally, Š the incomplete regular skew–Hessian

mapping of g (with respect to ∇).
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Notice that from (1.35) it follows:

(4.8)

∂

∂ε
g
(∂fε

∂x
,
∂fε

∂x

)
− 2 div ∗g

(∂fε

∂ε
,
∂fε

∂x

)
=2ẽ(∇, g)(P 1

fε
, P 2

fε
, P 1

fε
)+

+ 2ω̆g
(∂fε

∂ε
,
∂fε

∂x

)
,

being I1(g)(P 2
fε

, P 1
fε

, P 1
fε

) = 0. Hence, the Euler–Lagrange equation of

(4.1) is:

(4.9)
e(∇, g)(P 1

fε
, P 2

fε
, P 1

fε
)
∣∣∣
ε=0

=
[
ẽ(∇, ĝ)(P 1

fε
, P 2

fε
, P 1

fε
)+

+ ω̆g
(∂fε

∂ε
,
∂fε

∂x

)
+ ẽ(∇, ǧ)(P 1

fε
, P 2

fε
, P 1

fε
)
]

ε=0
= 0 ,

where ẽ(∇, ĝ)(P 1
fε

, P 2
fε

, P 1
fε

) and ẽ(∇, ǧ)(P 1
fε

, P 2
fε

, P 1
fε

) are the incomplete

Euler–Lagrange mappings of ĝ and ǧ given by (1.34) and (1.34′), re-

spectively. Moreover, following the terminology of [1], equations satisfied

along the solutions of (4.9) will be said to be satisfied “on shell”.

We remark, also, that the trivial variational curvature structure F̂3

of g and the trivial variational skew–curvature structure F̌3 of g satisfy:

(4.10) F̂3(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) = 0 = F̌3(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

)

identically. Hence, we have:

(4.11)

h̃(g)(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) = 2R(∇, g)(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

)+

+ 4F̃1(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) + 4F̃2(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) =

= 4S(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) + 2ẽ(∇, g)(P 1
fε

,∇P2
fε

P 2
fε

, P 1
fε

) ,

where R(∇, g) = R(∇, ĝ) + R(∇, ǧ) is the total variational curvature

tensorfield of g (with respect to ∇), F̃r = B•F̂r + B̌•F̌r (r = 1, 2) is the

total variational curvature structure of rank r of g (with respect to ∇)

and, finally, S = Ŝ + Š is the incomplete regular Hessian mapping of g
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(with respect to ∇). Then, from (4.3) we find:

(4.12)

∂2

∂ε2
ĝ
(∂fε

∂x
,
∂fε

∂x

)
− 2

∂

∂ε
div ∗ĝ

(∂fε

∂ε
,
∂fε

∂x

)
+

+ div ∗
(
∇P1

fε
ĝ
(∂fε

∂ε
,
∂fε

∂ε

))
=

= 2ω̆
(
∆̂(P 2

fε
, P 1

fε
, P 2

fε
)
)
+4Ŝ(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
)+

+ 2e(∇, ĝ)(P 1
fε

,∇P2
fε

P 2
fε

, P 1
fε

) .

From (4.4) and (4.7) we also have:

(4.13)

∂2

∂ε2
ǧ
(∂fε

∂x
,
∂fε

∂x

)
− 2

∂

∂ε
div ∗ǧ

(∂fε

∂ε
,
∂fε

∂x

)
=

= 2ω̆ǧ
(∂fε

∂ε
, T̄

(∂fε

∂ε
,
∂fε

∂x

))
− 2ω̆ǧ

(
∇P1

fε

∂fε

∂ε
,
∂fε

∂ε

)
+

+ 4Š(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) + 2e(∇, ǧ)(P 1
fε

,∇P2
fε

P 2
fε

, P 1
fε

)

and

(4.14)

∂2

∂ε2
g
(∂fε

∂x
,
∂fε

∂x

)
− 2

∂

∂ε
div ∗g

(∂fε

∂ε
,
∂fε

∂x

)
+

+ div ∗
(
∇P1

fε
g
(∂fε

∂ε
,
∂fε

∂ε

))
=

= 2ω̆
(
∆(g)(P 2

fε
, P 1

fε
, P 2

fε
)
)
+2ω̆ǧ

(∂fε

∂ε
, T̄ (

∂fε

∂ε
,
∂fε

∂x
)
)
+

− 2ω̆ǧ
(
∇P1

fε

∂fε

∂ε
,
∂fε

∂ε

)
+ 4S(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
)+

+ 2e(∇, g)(P 1
fε

,∇P2
fε

P 2
fε

, P 1
fε

) .

The value Ŝ(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) (analogously for Š(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) and

S(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) ) is the value assumed by a quadratic form on the

ordered pair
(
P 2

fε
,∇P1

fε
P 2

fε

)
considered as a field along the mapping de-

fined by the pair
(
P 1

fε
,∇P1

fε
P 1

fε

)
. The same observation is still true if

one replaces the family (fε) with a family depending smoothly on two

parameters.
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Moreover, the quantity

(4.15) 2Ŝ(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) + e(∇, ĝ)(P 1
fε

,∇P2
fε

P 2
fε

, P 1
fε

)

is the value assumed by a generalized curvature structure, which splits

into the three curvature structures R(∇, ĝ), B•F̂1 and B•F̂2. Hence, the

value assumed by the incomplete regular Hessian map of E coincides with

the value assumed by a generalized curvature structure if and only if the

following holds:

(4.16) e(∇, ĝ)(P 1
fε

,∇P2
fε

P 2
fε

, P 1
fε

) = 0 ,

i.e., iff P 1
fε

is a solution of the Euler–Lagrange equation. Furthermore,

for the solutions of (4.16) we have:

(4.17)

[ ∂2

∂ε2
ĝ
(∂fε

∂x
,
∂fε

∂x

)]
shell

=

= 2
[
2Ŝ(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
) + ω̆

(
∆̂(P 2

fε
, P 1

fε
, P 2

fε
)
)]

shell

modulo boundary terms, where the right hand side is a quadratic form.

If ω̆ = 0, this simplifies to:

(4.18)
[ ∂2

∂ε2
ĝ
(∂fε

∂x
,
∂fε

∂x

)]
shell

= 4
[
Ŝ(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
)
]
shell

.

Finally, if Ĥ = 0, T̄ = 0 and ω̆ = 0, an easy calculation involving the

identities given in the Appendix A shows that:

(4.19)
2
[
Ŝ(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
)
]
shell

=
[
R(∇, ĝ)(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
)+

+ ĝ(∇P1
fε

P 2
fε

,∇P1
fε

P 2
fε

)
]
shell

.

Moreover, according to (1.30) and (1.32) we have ∆̂ = 0 and:

(4.20) R(∇, ĝ)(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) = ĝ
(
R̄

(∂fε

∂ε
,
∂fε

∂x

)∂fε

∂x
,
∂fε

∂ε

)
,

where R̄ is the curvature tensorfield of ∇̄. Analogous observations hold

for ǧ and g. The three conditions Ĥ = 0, T̄ = 0 and ω̆ = 0 hold in
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the case of standard harmonic maps, where g = ĝ = h∗ ⊗ k, h∗ being

the dual tensorfield of a pseudo–Riemannian metric h on M and k a

pseudo–Riemannian metric on N . In this case, ∇̆ = ∇h and ∇̄ = ∇k

are the Levi–Civita connections of h and k, respectively (cfr. [1], [2] and

[3]). The reader may easily verify in this case that the curvature of the

variational principle (defined as above) reduces to the curvature of the

target metric k and that Bianchi identities reduce to the standard ones.

The geodesic case also follows by taking M ≡ R. Using (4.12) one can

obtain Jacobi mappings in many different ways as explained in Part I.

The highest degree of symmetry is preserved if we replace in (4.12) one

of the following identities:

(4.21)

div ∗(∇P1
fε

ĝ(P 2
fε

, P 2
fε

)
)
= div ∗(Ĥ(P 1

fε
, P 2

fε
, P 2

fε
)
)
+

+ 2Ĥ(P 1
fε

,∇P1
fε

P 2
fε

, P 2
fε

) − 2ω̆ĝ(∇P1
fε

P 2
fε

, P 2
fε

)+

+ 2ĝ(∇P1
fε

P 2
fε

,∇P1
fε

P 2
fε

) + 2ĝ(∇P1
fε

∇P1
fε

P 2
fε

, P 2
fε

) ,

(4.22)

div ∗(∇P1
fε

ĝ(P 2
fε

, P 2
fε

)
)
= Ĥ∇(P 1

fε
, P 1

fε
, P 2

fε
, P 2

fε
)+

+ Ĥ(∇P1
fε

P 1
fε

, P 2
fε

, P 2
fε

) + 4Ĥ(P 1
fε

,∇P1
fε

P 2
fε

, P 2
fε

)+

+ 2ĝ(∇P1
fε

P 2
fε

,∇P1
fε

P 2
fε

) + 2ĝ(∇P1
fε

∇P1
fε

P 2
fε

, P 2
fε

)+

− 2ω̆ĝ(∇P1
fε

P 2
fε

, P 2
fε

) − ω̆Ĥ(P 1
fε

, P 2
fε

, P 2
fε

) .

As an example, from the first identity, by using (3.15), (3.23) and (3.25)

one obtains the first Jacobi 1–form, which is given by:

(4.23)

JR(∇, ĝ)(P 2
fε

,∇P1
fε

P 2
fε

,∇P1
fε

∇P1
fε

P 2
fε

)
(∂fε

∂ε

)
=

= ω̆
(
∆̂(P 2

fε
, P 1

fε
, P 2

fε
)
)
+R(∇, ĝ)(P 2

fε
, P 1

fε
, P 2

fε
, P 1

fε
)+

+ ĝ
(
T̄ (P 2

fε
, P 1

fε
), T̄ (P 2

fε
, P 1

fε
)
)
+ĝ

(
T̄ (P 2

fε
, P 1

fε
),∇P1

fε
P 2

fε
)
)
+

+ 2Ŝ1(P
2
fε

, P 1
fε

, P 2
fε

, P 1
fε

) − Ĥ(P 1
fε

,∇P1
fε

P 2
fε

, P 2
fε

)+

+ ω̆ĝ(∇P1
fε

P 2
fε

, P 2
fε

) − ĝ(∇P1
fε

∇P1
fε

P 2
fε

, P 2
fε

) .
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Notice that in all the terms involved in the right hand side of (4.23),

the only significant part of P 2
fε

is the first variation ∂fε

∂ε
. Moreover,

R(∇, ĝ)(P 2
fε

, P 1
fε

, P 2
fε

, P 1
fε

), ∆̂(P 2
fε

, P 1
fε

, P 2
fε

) and ĝ
(
T̄ (P 2

fε
, P 1

fε
), T̄ (P 2

fε
, P 1

fε
)
)

are symmetric with respect to the variables in which P 2
fε

appears. As a

consequence, one obtains the same results by arbitrarily choosing as first

variation ∂fε

∂ε
any one of the two terms P 2

fε
which appear therein. For

the remaining terms there exists only one possible choice. Therefore,

(4.23) defines a unique 1-form. An analogous result can be obtained by

replacing (4.22) into (4.12). In this case, the 1-form obtained will be

denoted by J̃R(∇, ĝ)(P 2
fε

,∇P1
fε

P 2
fε

,∇P1
fε

∇P1
fε

P 2
fε

). Comparing the expres-

sion ∂2

∂ε2 ĝ(∂fε

∂x
, ∂fε

∂x
) obtained by means of J̃R(∇, ĝ) with (4.15) of Part I,

one finds that J̃R(∇, ĝ) coincides with J
(2)
∇ (ĝ) as defined in (4.14) of Part I.

Since ǧ(∂fε

∂ε
, ∂fε

∂ε
) = 0, one may use (4.21) and (4.22) to obtain also the

first and second Jacobi 1-forms of g. Moreover, for the same reason, the

second variation of ǧ is in some sense “degenerate”, so that the regular

Hessian mapping coincides with both Jacobi 1-forms. Finally we have

also J̃R(∇, g) = J
(2)
∇ (g) where J

(2)
∇ (g) is defined in Part I.

The form JR(∇, ĝ) (respectively J̃R(∇, ĝ)) will be called the first

(respectively second) regular Jacobi 1–form of ĝ. Obviously, the corre-

sponding Jacobi equations follow by requiring:

(4.24) JR(∇, ĝ)(V, ∇P1
f0

V, ∇P1
f0

∇P1
f0

V ) = 0 ,

or, equivalently:

(4.25) J̃R(∇, ĝ)(V, ∇P1
f0

V, ∇P1
f0

∇P1
f0

V ) = 0 ,

where f0 is a solution of the Euler–Lagrange equation (4.16) and V is

any vector field along f0. If Ĥ = 0, then the two regular Jacobi 1–forms

coincide. Moreover, if T̄ = 0 and ω̆ = 0, we have:

(4.26)
JR(∇, ĝ)(V, ∇P1

f0

V, ∇P1
f0

∇P1
f0

V ) = − ĝ(∇P1
f0

∇P1
fo

V, V )+

+ ĝ(R̄(V, P 1
f0

)P 1
f0

, V ) .

Along the homotopic variations, which are obtained from the solutions of
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(4.24) and (4.25) when f0 is a solution of (4.16), we have respectively:

(4.27)

[ ∂2

∂ε2
ĝ
(∂fε

∂x
,
∂fε

∂x

)]
ε=0

=

=
[
2

∂

∂ε
div ∗ĝ

(∂fε

∂ε
,
∂fε

∂x

)
− div ∗

(
Ĥ(P 1

fε
, P 2

fε
, P 2

fε
)
)]

ε=0

and

(4.28)
[ ∂2

∂ε2
ĝ
(∂fε

∂x
,
∂fε

∂x

)]
ε=0

=
[
2

∂

∂ε
div ∗ĝ

(∂fε

∂ε
,
∂fε

∂x

)]
ε=0

.

Analogous definitions can be set for g and ǧ, obtaining analogous results.

5 – The expression of the curvature tensorfield and the second

Bianchi identity in the case of torsion-free connections

As announced in Section 3, we shall finally determine the second

Bianchi identity for the variational curvature tensorfield R(∇, g); we shall

here assume that ∇̄ and ∇̆ are torsion-free to make the calculation easier.

In this case the curvature tensorfield R(∇, g) assumes in fact a simpler

expression, since the following hold:

(5.1) 2F̄0(X,P, Y,Q) = 2Ĥ∇(X,Y, P,Q) + ĝ(R̄∗(Q, Y )P, X)

and

(5.2) C•F̄0 = B•F̄0 .

Then, a simple calculation involving the identities of the Appendix A

shows that R(∇, ĝ) can be expressed as follows:

(5.3)

4R(∇, ĝ)(X,P, Y,Q) = 4ĝ(R̄∗(Q, Y )P, X) + R̆∗(P, Q)ĝ(X, Y )+

− 4∆̂∇(Y, P, X,Q) + 4∆̂∇(Q, P, X, Y ) − 2Ĥ∇(X,P, Y,Q)+

+ 2Ĥ∇(P,X, Y,Q) .

We also take into account that our assumptions on ĝ and ∇ imply:

(5.4) kR(X,P, Y,Q) = R̆∗(P, Q)ĝ(X, Y ) ,

where kR is defined by equation (A.18) of the Appendix, and that the

relevant identities of the Appendix further simplify and make our calcu-

lations easier. The expression (5.3) for the curvature of g involves both
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the curvature of ∇̄ and the curvature of ∇̆, i.e. the curvatures of the

two manifolds M and N . Moreover, when entering the equations ensuing

from the calculus of variations the vectorfields X and Y and the tensor-

fields P and Q are no longer arbitrary. In particular, P = Q and (5.3)

simplifies to the following:

(5.5)

4R(∇, ĝ)(X,P, Y, P ) = 4ĝ(R̄∗(P, Y )P, X)+

− 4∆̂∇(Y, P, X, P ) + 4∆̂∇(P, P, X, Y ) − 2Ĥ∇(X,P, Y, P )+

+ 2Ĥ∇(P,X, Y, P ) ,

which no longer depend on the curvature tensorfield of ∇̆. In particu-

lar, this entails (as is well known) that the curvature of the harmonic

Lagrangian for mappings f : M → N (as defined by our standard pro-

cedure) coincides substantially with the curvature of the metric of the

target manifold N .

In order to calculate the second Bianchi identity for R(∇, g) we set:

(5.6)
Q̂(X, P, Y, Q, Z) = Ĥ(R̄∗(Y,Z)X,P,Q)+

+ Ĥ(Q, X, R̄∗(Y, Z)P ) + Ĥ(X, Q, R̄∗(Y,Z)P )

and

(5.7)
Q̌(X, P, Y, Q, Z) = Ȟ(R̄∗(Y, Z)X,P,Q)+

+ Ȟ(Q, X, R̄∗(Y,Z)P ) − Ȟ(X, Q, R̄∗(Y,Z)P ) .

Then, a long calculation involving the identities of the Appendix together

with (3.10), (3.20), (3.34), (3.37), (3.38) and (3.39) implies that:

(5.8)
4G

{[
∇ZR(∇, ĝ)

]
(X,P, Y,Q)

}
= 4G

{
A•

1Q̂(X, P, Y, Q, Z)
}
+

− R̆∗(P, Q)Ĥ(Y,X,Z) + R̆∗(P, Q)Ĥ(Z, X, Y ) ,

(5.9)
4G

{[
∇ZR(∇, ǧ)

]
(X,P, Y,Q)

}
= 4G

{
A•

1Q̌(X, P, Y, Q, Z)
}
+

− R̆∗(P, Q)Ȟ(Y,X,Z) + R̆∗(P, Q)Ȟ(Z, X, Y ) .

Also in this case, for P = Q, only the curvature tensorfield of ∇̄ is

involved.
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– A. Appendix

The following further permutation formulae can be easily calculated

(as for Section 1):

(A.1)
(σ∗g)(R∗(Y, P )Q, X) + (σ∗g)(Q, R∗(Y, P )X) =

= R∗(Y, P )(σ∗g)(Q, X) + k1(X,P, Y,Q) ,

(A.2)
(σ∗g)(R∗(P, X)Q, Y ) + (σ∗g)(Q, R∗(P, X)Y ) =

= R∗(P, X)(σ∗g)(Q, Y ) + k2(X,P, Y,Q) ,

(A.3)
g(R∗(P, Q)Y,X) + g(Y,R∗(P, Q)X) =

= R∗(P, Q)g(Y,X) + k3(X,P, Y,Q) ,

(A.4) g(R∗(X, Y )P, Q) + g(P, R∗(X, Y )Q) = k4(X,P, Y,Q) ,

(A.5)
g(R∗(Y, Q)P, X) + g(P, R∗(Y, Q)X) =

= R∗(Y,Q)g(P, X) + k5(X,P, Y,Q) ,

(A.6)
2g(R∗(Y, Q)P, X) − 2(σ∗g)(R∗(X, P )Q, Y ) =

= k(X,P, Y,Q) + kR(X,P, Y,Q) + kT (X,P, Y,Q) ,

(A.7)
g(R∗(X, W )Y, Z) + g(Y,R∗(X, W )Z) =

= R∗(X, W )g(Y,Z) + k6(X, Y, Z, W ) ,

(A.8) g(R∗(X, Y )W, Z) + g(W, R∗(X, Y )Z) = k7(X, Y, Z, W ) ;

where:

(A.9)
k1(X,P, Y,Q) =H∇(P, Y, Q, X) − H∇(Y, P, Q, X)+

+ H(T (P, Y ), Q, X) ,
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(A.10)
k2(X,P, Y,Q) =H∇(X, P, Q, Y ) − H∇(P, X, Q, Y )+

+ H(T (X, P ), Q, Y ) ,

(A.11)
k3(X,P, Y,Q) =(σ∗H∇)(Q, P, Y, X) − H∇(P, Q, Y, X)+

+ (σ∗H)(T (Q, P ), Y, X) ,

(A.12)
k4(X,P, Y,Q) =H∇(Y,X, P,Q) − H∇(X,Y, P,Q)+

+ H(T (Y,X), P, Q) ,

(A.13)
k5(X,P, Y,Q) =(σ∗H∇)(Q, Y, P, X) − (σ∗H∇)(Y, Q, P, X)+

+ (σ∗H)(T (Q, Y ), P, X) ,

(A.14)
k6(X, Y, Z, W ) =H∇(W,X, Y, Z) − H∇(X, W, Y, Z)+

+ H(T (W,X), Y, Z) ,

(A.15)
k7(X, Y, Z, W ) =H∇(Y,X,W,Z) − H∇(X, Y, W, Z)+

+ H(T (Y, X), W, Z) ,

(A.16) k(X,P, Y,Q) =
5∑

i=1

ki(X,P, Y,Q) − k5(Y, P, X, Q) ,

(A.17)
kT (X,P, Y,Q) =(σ∗g)(Q, T̃ (X,P, Y )) − g(P, T̃ (Y, Q, X))+

+ (σ∗g)(T̃ (Y, Q, P ), X) − g(T̃ (X,P,Q), Y ) ,

(A.18)

kR(X,P, Y,Q) = (σ∗g)(QR(X, P ), Y ) − g(PR(Y,Q), X)+

− (σ∗g)(QR(P, Y ), X) + g(PR(Q, X), Y )+

+ g(P, QR(X, Y )) + (σ∗g)(Q, PR(X, Y ))+

+ 2ǧ(R∗(P, Q)X, Y ) − 2ǧ(R∗(X, Y )P, Q)+

+ R∗(Y,Q)g(P, X) − R∗(X, Q)g(P, Y )+

− R∗(X, P )(σ∗g)(Q, Y ) + R∗(P, Q)g(Y,X)+

+ R∗(Y, P )(σ∗g)(Q, X) ,

for any X, Y, Z ∈ X (M), any P, Q ∈ I1
1 (M) and any W ∈ I1

2 (M).
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