
Rendiconti di Matematica, Serie VII
Volume 16, Roma (1996), 689-713

Some non homogeneous deformations for a

special class of isotropic constrained materials

M. BOSI – M.C. SALVATORI

Riassunto: Si esaminano le risposte elastiche di una nuova classe di materiali
soggetti a deformazione, in presenza di un vincolo interno isotropo, studiando le conse-
guenze cinematiche derivanti dall’imposizione del suddetto vincolo interno e le relative
restrizioni sull’insieme delle deformazioni possibili. Si considerano in particolare le
deformazioni non omogenee e dopo aver determinato l’equazione costitutiva, vengono
presentate alcune famiglie di soluzioni universali per la classe di materiali considerata.

Abstract: The nonlinear elastic response of a class of materials for which the
deformation is subject to an internal material constraint is investigated. The purely
kinematical consequences of this constraint are discussed and restrictions on the full
range of compatible deformations are presented. This paper focuses in particular on
non homogeneous deformations and after deriving constitutive equation for this new
class of materials, some families of solutions are presented.

1 – Introduction

We present a theory describing the class of materials characterized

by the internal constraint IIV − 3 = 0, where IIV is the second principal

invariant of the left stretch tensor V. This constraint is a second degree

isotropic constraint.
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Common and meaningful examples of internal constraints are those

of incompressibility and inextensibility.

The incompressibility means that only isochoric deformations are al-

lowed and this internal constraint is expressed by IIIV − 1 = 0, where

IIIV is the third principal invariant of V; this is a third degree isotropic

constraint. The inextensibility implies that the material is not permitted

to extend at all in the preferred direction; that is, it deforms preserving

material length along that direction. The former is often assumed to de-

scribe mechanical behaviours of rubber or rubberlike materials, especially

for finite deformations of those materials.

The Bell materials [3], [4] constitute an important class of internally

constrained materials. In this case the isotropic constraint is given by

IV − 3 = 0 where IV is the first principal invariant of V; it is a first

degree constraint. This constraint represents the inextensibility in the

mean and Bell [1], [2] reported on an extensive series of experiments on

various metals conducted by him and his students over many years.

In association with the volume- and length-preserving materials, an

idea of an “area-preserving” material naturally occurs to us. In fact we

recall the meaning of IIV − 3 = 0 for a pure homogeneous deforma-

tion with principal stretches λα. A unit cube whose edges are along the

principal axes of strain becomes a cuboid with edges of length λα. The

constraint becomes λ1λ2+λ2λ3+λ3λ1 = 3, so that the surface area of the

cuboid is equal to the surface area of the cube. It is in this context that

the “areal constraint” [6] is to be interpreted. Furthermore this kind of

constraint is also meaningful from a biomechanical point of view. In fact

first Kurashige [10] imagined a material having the kinematical inter-

nal constraint of “inexpansibility” on its material surfaces defined by the

unit normal vector field throughout it. The term inexpansibility is used

correspondingly to the well-known incompressibility and inextensibility.

Kurashige states that some of the biomembranes belong to this kind of

materials. In particular a red blood cell membrane can be stretched uni-

axially several hundred percent but its area cannot be changed more than

3 or 4 percent without rupturing it. In his paper Kurashige assumed that

the material is inexpansible as well as incompressible and the constraint

he consider is not an isotropic one.

There is not yet a physical justification for considering this new class

of constrained materials, but the previous studies of Kurashige [10] and
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of Beatty and Hayes [6] have suggested us the idea for this paper. We

think this kind of constraint is also interesting and meaningful from a

mathematical point of view; we conclude that the model is studied now

for purely mathematical reasons.

In considering kinematical effects of the constraint, it is seen that

the material volume in every deformation from an undistorted state must

decrease, thus isochoric deformations are not possible. This means that

many members of the well known five families [5] of non homogeneous

deformations possible in every incompressible, homogeneous and isotropic

elastic materials are not possible in the class of materials we examine.

For example bending, stretching and shearing of a rectangular block by

surface tractions alone and isochoric inflation or eversion of a spherical

shell are not possible.

A possible deformation is a generalized shear with normal stretch,

but this is admissible only with contraction normal to the plane of the

shear.

We derive T = β0I + (β1 − qIV )V + qV2, that is the constitutive

equation for the areal constraint materials, in which T is the Cauchy

stress, β0, β1 are the response functions and q is an undetermined scalar

function.

Following the idea of Rivlin (1948), we use the so called inverse

or seminverse method to construct, by special examples, a collection of

exact solutions to a number of traction boundary problems that interest

both analysts and experimenters [14]. Rivlin, with this work, marked

the birth of the modern theory of finite elasticity. A different and more

general approach to the investigation of inverse solutions was introduced

by Ericksen in 1954 [9] that improved Rivlin’s method. In [8], [9] he

examined the deformations possible in every isotropic elastic material

(compressible or incompressible).

Recently Pucci e Saccomandi have studied Ericksen’s problem for

an isotropic elastic material constrained with a generic isotropic con-

straint in the case of plane deformation [13].

The purpose of our paper is to present a set of families of solutions

controllable in the class of materials under consideration.

We study the following families:

1. the bending and stretching of a rectangular block;

2. the straightening of a cylindrical sector into a rectangular block;
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3. the bending with axial stretch of one circular cylindrical wedge into

another such wedge;

4. the Singh-Pipkin deformation for the inflation, bending, extension

and azimuthal shearing of an annular wedge;

5. the radial deformation of a thick spherical shell;

6. the equibiaxial stretch and sinusoidal shear.

In particular, for every family, we consider the non trivial universal

relations deriving by coaxiality of T and V, and in some cases the new

universal relations determined by Pucci and Saccomandi [11].

2 – Basic equations and definitions

Let κR and κ denote the respective reference and current configura-

tion of a body B. In a Cartesian frame φ = {0, ek} the position vector

x(X, t) is the place in κ at time t occupied by the material point P ∈ B
whose place was X = X(P, tR) in κR at the instant tR.

The deformation gradient F = ∂x
∂X

is such that detF > 0 and the

polar decomposition theorem applied pointwise, yields the decomposition

(1) F = RU = VR

where U and V are symmetric positive tensors and R is proper orthogonal

tensor.

The left Cauchy-Green stretch tensor B is defined by

(2) B ≡ FFT = V2 .

We recall also the velocity gradient tensor

(3) L ≡ grad v = ḞF
−1

with v(x, t) = ẋ(X, t).

As usual · ≡ ∂
∂t

denotes the material time derivative, the time rate

of change following the particle P .

The symmetric part D and antisymmetric part W of L are known

as the stretching and spin tensors, respectively.
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Let IV , IIV , IIIV the principal invariants of V defined by

IV = trV, IIV =
1

2
[(trV)2 − trV2], IIIV = detV .

An internal constraint imposed on the deformation is a scalar valued

kinematical relation defined by a smooth function γ(F) = 0. The present

paper concerns a class of materials for which the internal constraint

(4) γ(V) ≡ IIV − 3 = 0 ,

holds for all deformations of B.

Using (1), (3) and the orthogonality condition RRT = RTR = I, it

can be shown that the material time derivative of (4) yields the equivalent

constraint equation

(5) γ̇(V) ≡ (IV V − V2) · D = 0

in which it is helpful to recall here that S = RṘT is a skew tensor and

tr[(W + S)V] = 0.

We recall that the stress working is defined by tr(TD) and requires

that the symmetric constraint reaction stress N be workless [17] in any

motion that respects (5). That is

tr(ND) ≡ N · D = 0

for all symmetric tensors D for which (5) holds. Thus the constraint

reaction stress is proportional to IV V − V2

(6) N = p(IV V − V2)

where p = p(x, t) is an undetermined scalar function of x and t in κ.

Thus the total Cauchy stress T, in an elastic material constrained by

(4), is determined by F only to within the arbitrary stress (6); that is

(7) T = p(IV V − V2) + TE(F)

wherein TE(F) is the symmetric extra stress. When the material is

isotropic the extra stress has the form [5]

(8) TE = ω0I + ω1V + ω2V
2



694 M. BOSI – M.C. SALVATORI [6]

where the response functions

ωi = ωi(IV , IIV , IIIV ) i = 0, 1, 2

depend upon the principal invariants of V.

The constraint (4) implies

ωi = ωi(IV , IIIV ) .

Bearing in mind the form of the constraint reaction stress in (7), we

see that (8) provides a natural choice for the extra stress.

There is in this case an indeterminateness in the Cauchy stress pro-

portional to V and V2 and hence we obtain the following reduced form of

the constitutive equation for the isotropic materials under consideration

(9) T = β0I + (β1 − qIV )V + qV2

where 



β0 = ω0

β1 = IV ω2 + ω1

q = ω2 − p .

Obviously we have coaxiality between V and T i.e. TV = VT that is

the universal relation for isotropic, homogeneous elastic materials.

3 – Geometry of the constraint

The kinematical constraint (4)

(10) λ1λ2 + λ2λ3 + λ1λ3 − 3 = 0

describes in the λ-space of the principal values of V an elliptic hyper-

boloid.

Every deformation trajectory of a material point is thus described by

a plane curve that begins at the vertex (1, 1, 1) of the hyperboloid and

remains on the quadric surface.
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No isochoric deformations are allowed in the class of materials we are

examining. In fact the study of the critical points of the function

f(λ1, λ2, λ3) ≡ IIIV = λ1λ2λ3

on the surface (10), shows that IIIV has its greatest value 1 at the undis-

torted state, given in the λ-space by (1, 1, 1); and therefore IIIV < 1 for

all non trivial deformations of an “areal constraint material”. Then it

is evident that this class of materials doesn’t support isochoric deforma-

tions.

In consequence some of the familiar important families of non homo-

geneous isochoric deformations known to be controllable in every incom-

pressible, homogeneous and isotropic material [8] cannot be effected in

any material constrained by (4). Specifically the isochoric deformations

described as family 1, family 2 and family 4 by Ericksen [5], cannot be

produced in the class of material considered.

For a better understanding of this constraint we next describe an

example of a kinematically admissible homogeneous deformation possible

in the class of materials under consideration, namely the generalized shear

with normal stretch defined by

(11) x = X + KY, y = Y, z = µZ

in which (x, y, z) is the coordinate image in κ of the point (X, Y, Z) in κR

in a common rectangular cartesian frame. Hence (11) describes a shear of

amount K superimposed, with a normal stretch µ. For this deformation

we have λ1λ2 = 1, λ3 = µ and then from (10)

(12) µ =
2λ1

λ2
1 + 1

.

Since 0 < µ < IIIV ≤ 1, the equality holding only in the undistorted

state, a generalized shear with normal stretch can occour only with trans-

verse contraction normal to the plane of shear.

The extent of the contraction is determined by the degree of shear in

accordance with (12). If µ is a determined parameter then

λ1 =
1

µ
+

√
1

µ2
− 4, λ2 =

µ

1 +
√

1 − 4µ2
.
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Thus, in an “areal constraint” material, the extent of a generalized shear

may be controlled by application of forces that limit the degree of the nor-

mal contraction; so the transverse deformation may control the amount

of shear possible in a generalized shear with normal stretch.

4 – Bending and stretching of a rectangular block

This deformation describes the bending and stretching of a rectan-

gular parallelepiped into a cylindrical annular sector.

For this purpose we introduce a rectangular Cartesian system in the

reference configuration and cylindrical coordinates (r, θ, z) in the current

configuration.

The rectangular block is bounded by the three pairs of parallel planes

X = 0 and X = T , Y = 0 and Y = L, Z = 0 and Z = H. Then the

deformation

(13) r(X) = f(X), θ(Y ) = DY, z(Z) = λZ

where D and λ are constants, transforms the block into a circular cylin-

drical sector of height h ≡ Z(H) = λH, central angle α ≡ θ(L) = DL

and inner and outer cylindrical surfaces

(14) rI = r(0) = f(0), rO = r(T ) = f(T ) .

From (13) the physical component matrix of V is given by

(15) V = diag{f ′, Dr, λ}

where f ′ = df
dX

. Because r > 0 and V is positive definite (15) shows that

f ′ > 0, D > 0, λ > 0, ∀X ∈ [0, T ] .

By using the constraint equation (4) we determine f ; that is

(16) Drf ′ + λf ′ + λDr − 3 = 0
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and remembering that r = f we obtain a differential equation whose

solution is

f(X) =
1

λD

{
3 + (3 + λ2)W

(
exp(AX + B)

3 + λ2

)}

A = − λ2D
3+λ2 , B = C1λ2−3

3+λ2 and W is the “Lambert’s function” [7] that is

the function that satisfies

s
dW

ds
=

W

W + 1

i.e.

W (s) exp[W (s)] = s .

f(X) is a positive-valued function because

W (s) =
s

exp{W (s)} > 0

where s ≡ exp(AX+B)

3+λ2 > 0. The integration constant C1 may be specified

by (14) provided rI or rO is known from

rI =
1

λD

[
3 + (3 + λ2)W

(
exp B

3 + λ2

)]
,

rO =
1

λD

[
3 + (3 + λ2)W

(
exp(AT + B)

3 + λ2

)]
.

Imposing f ′ > 0, by (15) we obtain f < 3
λD

. From r = f we conclude

that the block can not be deformed in a cylindrical sector of arbitrary

radius, because r < 3
λD

.

The principal invariants

IV = f ′ + Dr + λ, IIIV = λDrf ′

are functions of r alone and so the response functions

βi = βi(IV , IIIV )

are functions of r alone too.
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Use of (9) yields that T is diagonal and its components are

Trr = f ′(β1 − qDr − qλ) + β0 ,

Tθθ = −qDrf ′ − r(qλ − β1)D + β0 ,

Tzz = −qf ′λ − qλrD + β0 − λβ1 .

The equilibrium equation in the absence of body forces, divT = 0, shows

that q = q(r) must satisfy the ordinary differential equation

(17)
dq

dr
= g(r)q + h(r)

where

g(r) = −Dr2f̂ ′ + λrf̂ ′ + rf ′D + λf ′ − λDr

Dr2f ′ + λrf ′ ,

h(r) =
f̂ ′β1r + f ′β1r + β′

0r + β̂1f
′ − β1Dr

Dr2f ′ + λrf ′

f̂ ′ = df ′
dr

, β′
1 = dβ1

dr
, β′

0 = dβ0
dr

being Dr2f ′ + λ '= 0.

Integration of (17) yields

q = exp

{∫
g(r)dr

} [
C2 +

∫
exp

{
−

∫
g(r)dr

}
h(r)dr

]

where C2 is the integration constant.

5 – Straightening of a cylindrical annular sector

We analize the deformation of a circular annular sector into a rect-

angular block.

Using cylindrical coordinates (R, Θ, Z) in the reference configuration

and rectangular Cartesian coordinates (x, y, z) in the current configura-

tion, the deformation is described by

(18) x = f(R), y = CΘ, z = λZ,

where λ and C are positive constants and f(R) must be determined using

the constraint equation. The mapping (18) describes the straightening
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of a circular cylindrical sector bounded by inner and outer cylindrical

surfaces R = RI and R = RO > RI respectively, vertical central axis

planes Θ = 0 and Θ = Γ, and horizontal planes Z = 0 and Z = H.

The cylindrical surfaces are deformed into the vertical planes xI ≡
x(RI) and xO ≡ x(RO) respectively and hence the cylindrical sector of

thickness T = RO −RI becomes a rectangular block of thickness t ≡ xO −
xI = x(RO) − x(RI), length l ≡ y(Γ) = CΓ and height h ≡ z(H) = λH.

From (18) the physical component matrix of V is given by

V = diag

{
f ′,

C

R
, λ

}
,

in which f ′ = df
dR

; because V is positive definite, we must have

C > 0, λ > 0, f ′ > 0 .

The constraint equation (10) yields the ordinary differential equation

f ′ C

R
+ λf ′ + λ

C

R
− 3 = 0

whose solution is given by

f = 3
R

λ
− C

(
3

λ2
+ 1

)
log |C + λR| + C1

where C1 is the integration constant.

From the condition f ′ > 0 we deduce the restriction on the constants
λC
R

< 3. The principal invariants are functions of R alone and thus of x

alone; in the absence of body forces we get from the equilibrium equation

that q = q(x) and dTxx
dx

= 0, that is the universal relation Txx = TO =

const. From (9)

Txx = β0 +

[
β1 − q

(
f ′ +

C

R
+ λ

)]
f ′ + qf ′2 ,

Tyy = β0 +

[
β1 − q

(
f ′ +

C

R
+ λ

)]
C

R
+ q

C2

R2
,

Tzz = β0 +

[
β1 − q

(
f ′ +

C

R
+ λ

)]
λ + qλ2 .
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We obtain that

q = R
β0 + β1f

′ − TO

f ′(λR + C)
.

Without loss, TO may be chosen equal to zero, so that the plane faces

x = xO and x = xI , may be rendered free of tractions.

6 – Bending of one circular cylindrical sector into another, with

axial stretch

In the reference configuration, in which we introduce a cylindrical

coordinate system (R, Θ, Z), let us consider an annular wedge with cir-

cular boundaries R = RO (outside) and R = RI (inside), bounded by the

central planes Θ = Θ1 and Θ = Θ2, and the horizontal planes Z = Z1

and Z = Z2; the undeformed wedge has wall thickness T = RO − RI ,

height H ≡ Z2 − Z1 and central angle Θ0 ≡ Θ2 − Θ1.

We analize the deformation in which the annular sector is bent into

a similar circular sector for which the current cylindrical coordinates

(r, θ, z) corresponding to the material point at (R, Θ, Z) are determined by

(19) r = f(R), θ = DΘ, z = λZ

where λ and D are constants and the positive-valued function f(R) will be

determined from the constraint equation. The deformed annular wedge is

thus bounded by the cylinders rI = f(RI) (inside); rO = f(RO) (outside);

the planes θ1 ≡ DΘ1 and θ2 ≡ DΘ2, horizontal planes z1 ≡ λZ1 and

z2 ≡ λZ2. Hence, the deformed wedge has wall thickness t ≡ rO − rI ,

height h ≡ z2 − z1 = λH and central angle θ0 ≡ θ2 − θ1 = DΘ0.

The physical component matrix of V obtained from (19) is

(20) V = diag

{
f ′, D

r

R
, λ

}

in which f ′ = df
dR

. Because V is positive definite it requires that

f ′ > 0, D > 0, λ > 0 .

The constraint equation (10) requires that f(R) satisfy

(21) Dff ′ + λRf ′ + λDf = 3R
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and from f ′ > 0 we obtain f < 3R
λD

. Thus the cylindrical sector cannot

be deformed into an other wedge of arbitrary radius r because f(R) = r

must satisfy the previous inequality.

The implicit solution of (21) is given by

[Df2 + λ(1 + D)fR − 3R2]k
(

2Df + H2R

2Df + H1R

)2A

= const

in which

k =
√

λ2(1 + D)2 + 12D ,

H1 = λ(1 + D) − k ,

H2 = λ(1 + D) + k ,

2A = λD − λ.

Equation (21) has always a solution because Df '= −λR, and the inte-

gration constant may be choosen so that f > 0. Use of (20) in (9) yields

the following non trivial Cauchy stress components

Trr = β0 + β1f
′ − qD

r

R
f ′ − qλf ′ ,

Tθθ = β0 + β1D
r

R
f ′ − qDf ′ r

R
− qDλ

r

R
,

Tzz = β0 + β1λ − qλf ′ − qDλ
r

R
.

From (20) the principal invariants of V are given by

IV = f ′ + D
r

R
+ λ, IIIV = Dλ

r

R
f ′ .

We note that these invariants are functions of r alone and so βi are

functions of r alone. The equilibrium equation yields q = q(r), where q

satisfies the ordinary differential equation

(22)
dq

dr
= g(r)q + h(r)

with

g(r) =
Dr2f̂ ′ + f ′Dr + λrf̂ ′R + λf ′R − λDr

f ′λRr + f ′Dr2

h(r) =
rRβ′

0 + rf ′Rβ′
1 + rRβ1f̂

′ + β1f
′R − β1Dr

rRf ′λ + f ′Dr2

where f̂ ′ = df ′
dr

, β′
0 = dβ0

dr
, β′

1 = dβ1
dr

.
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In the case of bending without circumferential stretch we find an

explicit solution f(R) of (21) namely

f(R) = −λR +
√

λ2R2 + 3R2 + exp(C1)

where C1 is the integration constant. q can be obtained by (22) by sub-

stituting D = 1 in the expression of h(r) and g(r).

7 – Inflation, bending, extension and azimuthal shearing of an

annular wedge

A deformation family introduced by Singh and Pipkin [15] is consid-

ered next. For this deformation all the principal invariants are constant.

The deformation is described by

(23) r = AR, θ = B ln

(
R

R0

)
+ CΘ, z = λZ

with A, B, C, λ and R0 > 0 constants.

The physical component matrices of the deformation measures F, V

and B are

F =




A 0 0

AB AC 0

0 0 λ


 , V =




A(C + 1)K ABK 0

ABK AK[B2 + C(C + 1)] 0

0 0 λ




B =




A2 A2B 0

A2B A2(B2 + C2) 0

0 0 λ2




where K = [(C + 1)2 + B2]−
1
2 . The areal constraint (10) imposes the

condition

A2C + λA[B2 + C(C + 1)]
1
2 − 3 = 0 .

Since V is a positive tensor, it follows that A, C and λ must be positive,

but B is unrestricted in sign. From (9) we have the followings non trivial
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physical components of the Cauchy stress

Trr = β0 + (β1 − qIV )AK(C + 1) + qA2 ,

Tθθ = β0 + (β1 − qIV )AK[B2 + C(C + 1)] + qA2(B2 + C2) ,

Tzz = β0 + (β1 − qIV )λ + qλ2 ,

Trθ = (β1 − qIV )ABK + qA2B = AB(A − IV K)

(
β1K

A − IV K
− q

)

where β0 and β1 depend only upon the principal invariants.

We obtain the universal relation

Trr − Tθθ

Trθ

=
1 − B2 − C2

B

which is the same as that obtained for an isotropic elastic Bell mate-

rial [4] and a similar result, in a different context, is implicit in the work

of Singh and Pipkin [15].

The principal invariants are

IV = λ + A[(C + 1) + B2]
1
2 , IIIV = λAC .

The equilibrium equation leads to q = q(r, θ) which satisfies a pair of

coupled linear first-order partial differential equations given by

a
∂q

∂r
+ b

1

r

∂q

∂θ
− 1

r
[qA + K(β1 − qIV )] = 0 ,

c
∂q

∂r
+ d

1

r

∂q

∂θ
+

1

r
[qA + K(β1 − qIV )] = 0

where

a =
A − IV K(C + 1)

B2 + C2 − 1

K

A − KIV

,

b =
AB − IV BK

B2 + C2 − 1

K

A − KIV

,

c =
1

2B
,

d =
A(B2 + C2) − IV K[B2 + C(C + 1)]

2B(A − KIV )
.
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Upon use of

(24) q∗ = q +
Kβ1

A − KIV

, x = ln

(
r

r0

)

this pair of coupled equations may be written as

a
∂q∗

∂x
+ b

∂q∗

∂θ
− q∗ = 0 ,

c
∂q∗

∂x
+ d

∂q∗

∂θ
+ q∗ = 0 .

This system may be readily integrated to give

q∗ = C exp

[
(d + b)x − (a + c)θ

da − bc

]

where C is the integration constant. It can be found by using (24)

q =
1

A − KIV

Kβ1 + Cr(d+b)/(da−bc) exp

(
a + c

da − bc
θ

)
.

If C '= 0 it is easy to verify that substituting q into Trθ we obtain the

universal relation for the scaled shear stress

T̂rθ =
Trθ

C
= AB(IV K − A)

[
r(d+b)/(da−bc) exp

(
a + c

da − bc
θ

)]
.

The special case B = 0, C '= 1

The previous results require that B '= 0. We now analize the deformation

described by the mapping

(25) r = AR, θ = CΘ, z = λZ

and obtain

V = diag{A, AC, λ} .

The constants A, C, λ satisfy

A2C + λAC + λA − 3 = 0
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and the non trivial physical components of the Cauchy stress are

Trr = β0 + (β1 − qIV )A + qA2 ,

Tθθ = β0 + (β1 − qIV )AC + qA2C2 ,

Tzz = β0 + (β1 − qIV )λ + qλ2

where the response functions are constant-valued.

The equilibrium equation is satisfied by q = q(r) solution of

(A − IV )r
dq

dr
+ (1 − C)(β1 − qIV + qA + qAC) = 0

given by

q = C1r
j − β1

AC + A − IV

where j = (C−1)(AC+A−IV )

A−IV
and C1 integration constant. For example the

constant of integration can be determined by assuming Trr(rO) = 0; so if

rO is the outer radius of the annular wedge, this is free of normal traction.

Thus, for this deformation, we obtain the fourth universal relation

Trr

Tθθ

=
1 + ρω

1 − (ω + 1)ρω

where ρ = r
rO

and ω = λ(C−1)

AC+λ
as stated by Pucci and Saccomandi [11].

In particular the corresponding universal relation obtained respectively

for the Bell and the incompressible materials are [11]

Trr

Tθθ

=
ρC−1 − 1

CρC−1 − 1
;

Trr

Tθθ

=
log ρ

1 + log ρ

in which ρ = r
rO

.

8 – Inflation and compression of a thick spherical shell

Let the inner and outer radii of the shell be denoted by RI and R0

respectively. Introducing the usual spherical polar coordinates (R, Θ,Φ)

of a material point of the shell in its reference configuration and the
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corrisponding spherical coordinates (r, θ,φ) in its current configuration,

we consider the deformation

r = λ(R)R, θ = Θ, φ = Φ

where λ is a function of R which is to be determined.

It is easy to see that λ(R) is the isotropic stretch of a spherical

surface of radius R. Plainly, the respective external and internal radii of

the deformed shell are given by

rO = λORO, rI = λIRI

where λO = λ(RO) and λI = λ(RI).

The physical component matrix of V for the previous deformation is

given by

V = diag{r′, λ, λ}
where

(26) r′ ≡ dr

dR
= λ + R

dλ

dR
.

The constraint (4) requires that

(27) 2r′λ + λ2 − 3 = 0.

Therefore with the aid of (26) and (27) the stretch functions are deter-

mined by

(28) λ(R) =
√

1 + CR3, r′ =
2 − CR3

2
√

1 + CR3

where C is an arbitrary constant.

So the explicit form of the deformation is

(29) r = R
√

1 + CR3, θ = Θ, φ = Φ.

From (28) it follows that

λO = λ(RO) = RO

√
1 + CR3

O

λI = λ(RI) = RI

√
1 + CR3

I
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and eliminating C we obtain the following universal, kinematical rule

relating the stretches of the inner and outer spherical surface boundaries

λ2
I − R2

I =

(
RI

RO

)4

(λ2
O − R2

O) .

We remember that the related rule for a Bell constrained material [4] is

λO − 1 = (λI − 1)

(
RI

RO

)3

.

In view of (27) it is apparent that the non homogeneous stretch λ(R)

must be restricted so that

0 < λ(R) <
√

3 ,

while for a Bell material [4]

0 < λ(R) <
3

2
.

Therefore the inflation of a spherical shell, composed of an areal con-

straint material, is intrinsecally controlled so that no material sphere can

be deformed to a radius equal to
√

3 times its original radius.

It follows from (28) that for r′ > 0 we must have C < 2
R3 , ∀R ∈

[RI , RO].

For an inflation response, r > R and (30) shows that C ≥ 0; thus for

an inflation of the shell, whatever may be the boundary tractions it is

(30) 0 ≤ C <
2

R3
O

.

On the other hand, for compression response, r < R and (30) indicates

that C ≤ 0.

Moreover, for positive λ, (28) shows that

C > − 1

R3
, ∀R ∈ [RI , RO] .
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Therefore for a compression of the shell, regardless of the specific tractions

required to produce it, it is

(31) 0 ≤ −C <
1

R3
O

.

Combining (30) and (31) we have the range of the radial stretch parameter

− 1

R3
O

< C <
2

R3
O

∀R ∈ [RI , RO], ∀λ ∈ (0,
√

3)

with C > 0 for inflation, and C < 0 for compaction. For a Bell mate-

rial [4] the range of the radial stretch parameter is given by

−R3
I < C <

1

2
R3

I , ∀R ∈ [RI , RO], ∀λ ∈
(

0,
2

3

)
.

The non trivial physical components of the Cauchy stress are ob-

tained from (9). We find that

Trr = β0 + (β1 − qIV )

(
λ + R

dλ

dR

)
+ q

(
λ + R

dλ

dR

)2

,

Tθθ = β0 + (β1 − qIV )λ + qλ2 ,

with Tθθ = Tφφ and the response functions depend on λ alone.

In the absence of body forces the equilibrium equation reduces to

(32)
∂Trr

∂r
+

2

r
(Trr − Tθθ) = 0,

∂Tθθ

∂θ
= 0,

∂Tφφ

∂φ
= 0 .

It follows that q = q(r) = q̂(λ) and hence Trr, Tθθ, Tφφ are functions of λ

alone.

Therefore (32)1 may be written as

4λ2 dTrr

dλ

dλ

dr
+ 2

C
1
3

(λ2 − 1)
1
3

[6λ(β1 − qIV )(1 − λ2) − 3q(λ4 − 2λ2 − 3)] = 0 .

If λ '= 1 from the previous equation we may get Trr depending on a

constant Q that can be determined by the boundary conditions.

Therefore we can obtain q from Trr and then we can substitute it

into Tθθ. We find so that (29) is a controllable deformation.
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9 – Equibiaxial stretch and sinusoidal shear

Suppose that a material constrained by IIV − 3 = 0 is subjected

simultaneously to an equibiaxial stretch and sinusoidal shear deformation

so that the material point at (X̂, Ŷ , Ẑ) in the reference configuration is

mapped onto the point (x̂, ŷ, ẑ) in the current state in accordance with

(33) x̂ = AX̂ + E sin(κŶ ), ŷ = DŶ , ẑ = AẐ − E cos(κŶ )

where A, D, E and κ are positive deformation parameters. Then the

deformation gradient F is given by

(34) F =
∂x

∂X
= Ab11+Eκ cos(κŶ )b12+Db22+Eκ sin(κŶ )b32+Ab33

where bjα ≡ ej × Eα (j, α = 1, 2, 3) is the usual mixed Cartesian tensor

product basis for F. In the present case, we have a common Cartesian

frame φ so that ej = Ej. For future convenience, it is helpful to introduce

the dimensionless variables

(x, y, z) ≡ κ(x̂, ŷ, ẑ), (X, Y, Z) ≡ κ(X̂, Ŷ , Ẑ)

and take E so that Eκ = 1. Then (33) is transformed to

x = AX + sinY, y = DY, z = AZ − cos Y

and the scaled matrix F of (34) in bjα ≡ ej × Eα is given by

F =




A cos Y 0

0 D 0

0 sinY A


 .

To formulate the rest of our problem for a material in the class we are

studing, we shall need to find V. Therefore, we next consider B = FFT

whose scaled matrix in φ is given by

B =




A2 + cos2 Y D cos Y sin Y cos Y

D cos Y D2 D sin Y

sin Y cos Y D sin Y A2 + sin2 Y


 .
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Being V =
√

B, the principal values λκ of V are the square roots of those

of B while their principal vectors are the same. We find that the squared

principal stretches are constant provided by

(35) λ2
1,2 =

1

2
(1 + A2 + D2 ± C), λ2

3 = A2

in which C ≡ [1+ (A2 −D2)2 +2(A2 +D2)]
1
2 . So the principal invariants

of V and B are constant and they are indipendent of the sinusoidal shear.

The corresponding right-oriented principal vectors nκ are determined as

nκ = ακ(cos Y e1 + aκe2 + sinY e3), κ = 1, 2

n3 = sinY e1 − cos Y e3(36)

wherein by definition

α1,2 ≡ 2D

[2C(C ± (1 + A2 − D2))]
1
2

a1,2 ≡ D2 − A2 − 1 ± C

2D
(37)

respectively. It may be seen from (35) and (37) that 0 < C < 1+A2 +D2

and ακ > 0.

We observe also the following useful identities:

a1a2 = −1, a1 + a2 =
D2 − A2 − 1

D
(38)

α2
1 + α2

2 = 1, (a1 − a2)α1α2 = 1(39)

α2
1(1 + a2

1) = 1, α2
2(1 + a2

2) = 1 .(40)

Equation (38) shows that a1 and a2 have opposite signs; (39) indicates

that a1 > 0 and hence D2 ± C > 1 + A2.

It is seen from (35) that λ1λ2 = AD; hence, forming the squares of

the sum and the difference of the principal stretches, we obtain eventually

the principal values of V in the form

(41) λκ =
1

2
{[1 + (A + D)]

1
2 ± [1 + (A − D)]

1
2 }, λ3 = A
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where we order λ1 > λ2, with κ = 1, 2.

Now we obtain the principal invariants

IV = A + [1 + (A + D)]
1
2

IIV = A{D + [1 + (A + D)2]
1
2 }

IIIV = A2D

so that the constraint we consider yields

A{D + [1 + (A + D)2]
1
2 } = 3 .

The constraint thus yields

D =
9 − A2 − A4

2A(A2 + 3)
.

Therefore, as A varies over
[

−1+
√

37
2

, 0
]
, D varies over [0,∞].

Notice that the principal invariants of the non-homogeneous, equibi-

axial, sinusoidal shearing deformation are constants and are indipendent

of the sinusoidal shear. With the aid of the basis transformation (36) and

V∗ = diag{λ1, λ2, λ3}

in the principal cartesian basis nκ, we derive the scaled matrix of V in

eκl = eκ × el in φ, namely

(42) V =




α cos2 Y + A sin2 Y β cos Y (α − A) cos Y sinY

β cos Y γ β sin Y

(α − A) cos Y sin Y β sinY α sin2 Y + A cos2 Y




wherein
α ≡ λ1α

2
1 + λ2α

2
2 β ≡ λ1a1α

2
1 + λ2a2α

2
2

γ ≡ λ1a
2
1α

2
1 + λ2a

2
2α

2
2 .

Substitution of B and V into the constitutive equation (9) yields the
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Cauchy stress components

T11 = β0 + (β1 − qIV )(α cos2 Y + A sin2 Y ) + q(A2 + cos2 Y )

T22 = β0 + (β1 − qIV )γ + qD2

T33 = β0 + (β1 − qIV )(α sin2 Y + A cos2 Y ) + q(A2 + sin2 Y )

T12 = (β1 − qIV )β cos Y + qD cos Y

T13 = (β1 − qIV )(α − A) sinY cos Y + q sin Y cos Y

T23 = (β1 − qIV )β sin Y + qD sin Y

where T12 = T21, T13 = T31, T23 = T32. Recalling the scaling introduced

earlier, we find that the equilibrium equation, without body forces, sim-

plify to the form

(V2 − VIV ) grad q =
1

D
(β1β − qIV β + qD)n3

where n3 is the eigenvector in (36). Therefore the equilibrium equation

simplify to a system of three linear partial differential equations given by

(43) grad q =
1

D

1

V2 − VIV

(β1β − qIV β + qD)n3.

Bearing in mind (36) and the functional dependence, it now follows easily

that (43) may be satisfied if and only if q is a constant given by

q = − β1β

D − IV β
.

In consequence, the shear stress on 12- and 23-plane must vanish.
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