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A free boundary problem with convection

for the p-Laplacian

J.M. URBANO

Riassunto: Si dimostra l’esistenza di soluzioni deboli per un problema ai valori
iniziali del tipo di Stefan con convezione assegnata, generalizzando i risultati precedenti
al caso del p-Laplaciano.

Abstract: We prove existence of weak solutions for a Stefan-type initial value
problem with prescribed convection, generalizing previous results to the case of the p-
Laplacian.

1 – Introduction

The Stefan problem is a mathematical model used to describe a phys-

ical phenomenom, typically the melting of ice at constant temperature,

and consists of determining a temperature field θ and the phase change

boundaries in a pure material (see [5] or [6] for an introduction to the

Stefan problem).

In this paper, we consider an incompressible material occupying a

bounded regular domain Ω ⊂ IRN , with two phases, a solid phase corre-

sponding to a region S = {θ < 0} and a liquid phase corresponding to
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a region L = {θ > 0}, separated by an interface Φ = {θ = 0}, the free

boundary. We denote Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ), for some

T > 0.

Taking a generalized Fourier law of the type

(1) q = −|∇θ|p−2∇θ, 1 < p < ∞ ,

we obtain, from the equation of conservation of energy, the heat diffusion

equation with convection

(2) (∂t + v · ∇)b(θ) = ∆pθ in Q \ Φ = S ∪ L ,

where v is the prescribed velocity field, b a given continuous and increas-

ing function and ∆pθ = ∇ · (|∇θ|p−2∇θ) the p-Laplacian.

On the free boundary Φ, in addition to the condition θ = 0, we have

the Stefan condition, which represents the balance of heat fluxes

(3) [q]+− · n = [−|∇θ|p−2∇θ]+− · n = λ(v − w) · n on Φ = {θ = 0} .

Here, n is the unit normal to Φ, pointing to the solid region, w is the

velocity of the free boundary and λ = [e]+− > 0 is the latent heat of phase

transition, with [.]+− denoting the jump across Φ.

The boundary and initial conditions will be, respectively,

θ = θD on Σ ;(4)

θ(0) = θ0 in Ω .(5)

We mention that, to our knowledge, never the Stefan problem for

the p-Laplacian operator has been studied, not even in the case without

convection. In the classical setting, i.e. with p = 2, the problem with

prescribed convection has been previously considered, for example in [7],

with v = v(x) ∈ [C1(Ω)]N and [10], with v ∈ L∞(0, T ; [W 1,∞(Ω)]N),

without the incompressibility condition ∇·v = 0. We follow the approach

of [6], generalizing some results to the case p > 1. We will show existence

of weak solutions, extending the results of [9] obtained in the stationary

case.
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This approach is based on a regularization method, the use of an

extended weak maximum principle and on the finite dimensional approx-

imation of the regularized problem. It has the advantage of being easily

extended to the Neumann and mixed boundary value problems, and also

of yielding a method for numerical approximation. The main difficulty in

the passage to the limit is the simultaneous presence of the p-Laplacian

and the convection, which we take divergence free.

The paper is organized as follows. Since classical solutions are not

expected, in Section 2 we define a concept of weak solution, via the en-

thalpy formulation, and present our main result. The proof is postponed

to Section 5 and is obtained as the limit of approximated solutions, cor-

responding to regularized problems presented in Section 3, where we also

establish some a priori estimates. In Section 4, we prove existence of a

unique solution for the approximated problem.

2 – The enthalpy formulation and the existence result

Since classical solutions are not expected, we now introduce a weak

formulation corresponding to the classical formulation presented in the

introduction, following the original ideas of [3] for p = 2 and v = 0. We

consider the maximal monotone graph H associated with the Heaviside

function,

H(s) =





0 if s < 0

[0, 1] if s = 0

1 if s > 0

and define

γ(s) = b(s) + λH(s) .

Integrating formally by parts equation (2), with a smooth test func-

tion ξ such that ξ(T ) = 0 and ξ = 0 on Σ, assuming that Φ is smooth

and taking into account the jump of γ at 0, we get, recalling that the

flow is incompressible and therefore ∇ · v = 0,

(6) −
∫

Q

γ(θ)(∂tξ + v · ∇ξ) +

∫

Q

|∇θ|p−2∇θ · ∇ξ =

∫

Ω

γ(θ0)ξ(0) .

Here, γ(θ) is to be understood in the sense that there exists a function

η, the enthalpy, verifying the pointwise inclusion η ∈ γ(θ) and satisfying
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the equation. We take as initial condition η(0) = η0, for a section η0 ∈
γ(θ0). This function η0 will replace γ(θ0) in (6) and it is the legitimate

initial data to consider (cf. [2]).

We now come to the definition of weak solution to our Stefan problem,

taking

V p
0 (Q) := {ξ ∈ Lp(0, T ;W 1,p

0 (Ω)) : ∂tξ ∈ L1(Q) , ξ(T ) = 0} ,

as the space of test functions. Observe that V p
0 (Q) ⊂ W 1,1(0, T ;L1(Ω)) ⊂

C([0, T ];L1(Ω)) and so the traces ξ(0) and ξ(T ) have a meaning.

Definition 1. We say that (η, θ) is a weak solution of the Stefan

problem, if

θ ∈ Lp(0, T ;W 1,p(Ω)) ∩ L∞(Q), θ = θD on Σ ;(7)

η ∈ L∞(Q) and η ∈ γ(θ), a.e. in Q ;(8)

−
∫

Q

η(∂tξ + v · ∇ξ) +

∫

Q

|∇θ|p−2∇θ · ∇ξ =

∫

Ω

η0ξ(0)(9)

∀ ξ ∈ V p
0 (Q) .

Remark 1. The free boundary Φ is absent from this weak formula-

tion but can be recovered a posteriori as the level set Φ = {(x, t) ∈ Q :

θ(x, t) = 0} = ∂L ∩ ∂S, which is a measurable subset of Q.

We introduce the space

Lp′
σ (Q) =

{
w ∈ [Lp′

(Q)]N :

∫

Q

w · ∇Φ = 0, ∀Φ ∈ Lp(0, T ;W 1,p(Ω))

}
,

which is the closure in [Lp′
(Q)]N of

Sσ(Q) = {w ∈ [D(Q)]N : ∇ · w = 0 in Q}

and corresponds to functions satisfying, in a weak sense, the condition of

being divergence free in Q and having vanishing normal component on

the lateral boundary.
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Assumptions

(A1) b ∈ C0,1(IR) is such that b(0) = 0 and 0 < b∗ ≤ b′(s) ≤ b∗, a.e. s ∈ IR;

(A2) v ∈ Lp′
σ (Q);

(A3) η0 ∈ γ(θ0) and ∃M > 0 : |θ0(x)| ≤ M , a.e. x ∈ Ω;

(A4) θD ∈ Lp(0, T ;W 1,p(Ω)), ∂tθD ∈ L1(Q) and ‖θD‖L∞(Q) ≤ M .

Theorem 1. Under the previous assumptions, there exists at least

one weak solution for the Stefan problem in the sense of Definition 1,

such that

(10) ‖θ‖L∞(Q) ≤ M .

The proof of Theorem 1 consists of passing to the limit in an ap-

proximated problem, presented in the next section, that is obtained after

regularization of γ and the data.

Remark 2. For simplicity, we will consider the homogeneous Dirich-

let boundary condition, that is, we’ll take θD ≡ 0, requiring θ ∈ Lp(0, T ;

W 1,p
0 (Ω)) in (7). This restriction is of no particular relevance. For the

non homogeneous case, we can take a similar approach, making the usual

appropriate changes, as explained in the remarks ahead.

3 – Regularization and a priori estimates

Let 0 < ε < 1 and consider the function

γε(s) = b(s) + λHε(s) ,

where Hε is a C∞-approximation of the Heaviside function, such that

(11) Hε(s) = 0 if s ≤ 0, Hε(s) = 1 if s ≥ ε and H ′
ε(s) ≥ 0, s ∈ IR

with Hε −→ H uniformly in the compact subsets of IR \ {0}, as ε → 0.

The function γε is bilipschitz and satisfies

(12) 0 < b∗ ≤ γ′
ε(s) ≤ b∗

ε = b∗ + λLε , a.e. s ∈ IR ,
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with Lε ≡ O( 1
ε
) being the lipschitz constant of Hε and recalling (A1). Its

inverse βε = γ−1
ε satisfies

(13) 0 <
1

b∗
ε

≤ β′
ε(s) ≤ 1

b∗ , a.e. s ∈ IR .

We also consider a sequence vε ∈ Sσ(Q) with

(14) vε → v in [Lp′
(Q)]N .

We now formulate the approximated problem, first for p > 2 and

then for p < 2. To simplify the notation and the development of the

main proofs, we consider an auxiliary operator A, defined, for any u, v ∈
Lp(0, T ;W 1,p

0 (Ω)), by

(15) 〈Au, v〉 =

∫

Q

|∇u|p−2∇u · ∇v .

We recall from [4] that A is bounded, hemicontinuous, monotone and

coercive.

• The case p > 2

Here we take a sequence of functions θ0ε ∈ W 1,p(Ω) such that, with

η0ε = γε(θ0ε),

(16) θ0ε → θ0, η0ε → η0 in Lp(Ω) and |θ0ε| ≤ M, a.e. in Ω .

The approximated problem is as follows.

(Pε) : For each ε > 0, find a function θε ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;

W 1,p
0 (Ω)) ∩ L∞(Q), such that, with ηε = γε(θε),

(17) −
∫

Q

ηε(∂tξ + vε · ∇ξ) + 〈Aθε, ξ〉 =

∫

Ω

η0εξ(0), ∀ ξ ∈ V p
0 (Q) .

Remark 3. Due to the properties of γε it is clear that θε and ηε have

the same regularity, so that if a solution exists we also have

ηε ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) .
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Remark 4. Equation (17) is the weak formulation, corresponding

to the test functions chosen, of the parabolic Dirichlet problem

(18)





∂tγε(θε) + vε · ∇γε(θε) − ∆pθε = 0 in Q

θε = 0 on Σ

θε(0) = θ0ε in Ω .

Before proving an existence and uniqueness result for this approxi-

mated problem, we will establish some a priori estimates for the solution,

that will allow us to pass to the limit and obtain the main result of this

paper.

Proposition 1. For any solution of problem (Pε) the following

estimates hold:

‖θε‖L∞(Q) ≤ M, ‖ηε‖L∞(Q) ≤ M ′ ;(19)

‖θε‖Lp(0,T ;W
1,p
0

(Ω))
≤ C ;(20)

‖Aθε‖Lp′
(0,T ;W−1,p′

(Ω)) ≤ C ;(21)

‖∂tηε‖Lp′
(0,T ;W−1,p′

(Ω)) ≤ C .(22)

Proof. Since ηε ∈ H1(0, T ;L2(Ω)) ⊂ C([0, T ];L2(Ω)), we can in-

tegrate (17) by parts, and, after a careful choice for the test functions,

conclude that ηε(0) = η0ε and that, for a.e. t ∈ (0, T ),

(23)

∫

Ω

[∂tηε(t) + vε(t) · ∇ηε(t)]Ψ+

+ |∇θε(t)|p−2∇θε(t) · ∇Ψ = 0, ∀Ψ ∈ W 1,p
0 (Ω) .

We also conclude that (17) is equivalent to

(24)

∫

Q

(∂tηε + vε · ∇ηε)ξ + 〈Aθε, ξ〉 = 0, ∀ ξ ∈ V p
0 (Q) and ηε(0) = η0ε .

We now obtain the desired estimates, starting with (19). Put Ψ =

(θε(t) − M)+ in (23) to get

∫

Ω

∂tβ̃M(ηε(t)) +

∫

Ω

vε(t) · ∇β̃M(ηε(t)) +

∫

Ω

|∇(θε(t) − M)+|p = 0 ,
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where

β̃M(s) =





∫ s

0

[βε(τ) − M ]+dτ if s > γε(M)

0 if s ≤ γε(M) .

Recalling that vε ∈ Sσ(Q) and integrating in time, we arrive at

∫

Ω

β̃M(ηε(T )) −
∫

Ω

β̃M(ηε(0)) +

∫ T

0

∫

Ω

|∇(θε(t) − M)+|p = 0 .

But ηε(0) = η0ε ≤ γε(M), by (16), so β̃M(ηε(0)) = 0. Observing that

β̃M ≥ 0, we finally obtain
∫

Q

|∇(θε − M)+|p = 0 so that θε ≤ M, a.e. in Q .

Analogously, we would get θε ≥ −M , by taking Ψ = (θε(t)+M)− in (23).

Now, from this estimate, we easily get ‖ηε‖L∞(Q) ≤ ‖b(θε)‖L∞(Q)+λ ≤ M ′.

We then turn to (20). Taking Ψ = θε(t) in (23), integrating in time

and defining

γ̂ε(s) =

∫ γε(s)

0

βε(τ)dτ ,

we arrive at
∫ T

0

∫

Ω

∂tγ̂ε(θε) +

∫

Q

vε · ∇γ̂ε(θε) +

∫

Q

|∇θε|p = 0 .

Since vε ∈ Sσ(Q), we obtain, recalling that |θε(0)| ≤ M ,
∫

Ω

γ̂ε(θε(T )) +

∫

Q

|∇θε|p ≤
∫

Ω

γ̂ε(θε(0)) ≤ C ,

because γ̂ε is uniformly bounded in [−M,M ]. We obtain the desired esti-

mate, having in mind that γ̂ε ≥ 0. As a simple consequence we get (21).

From (24), we get, ∀Ψ ∈ V p
0 (Q),

|
∫

Q

∂tηεΨ| = | −
∫

Q

ηε(vε · ∇Ψ) − 〈Aθε,Ψ〉| ≤

≤
(
C‖ηε‖L∞(Q)‖vε‖Lp′

(Q) + C‖θε‖p−1

Lp(0,T ;W
1,p
0

(Ω))

)
‖Ψ‖

Lp(0,T ;W
1,p
0

(Ω))
≤

≤ C‖Ψ‖
Lp(0,T ;W

1,p
0

(Ω))
,

having in mind the previous estimates and (14), thus obtaining (22).
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• The case 1 < p < 2

We’ll only comment on the differences with respect to the previous

case in order to avoid unnecessary duplication of arguments. Here we

add an extra term, in fact a perturbation of the Laplacian, that has an

additional regularizing effect on the problem.

Concerning the approximation for the initial condition, we take (16)

with p = 2. The approximated problem for this case is then

(P ′
ε) : For each ε > 0, find a function θε ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;

H1
0 (Ω)) ∩ L∞(Q), such that, with ηε = γε(θε),

(25)

−
∫

Q

ηε(∂tξ + vε · ∇ξ) + 〈Aθε, ξ〉 + ε

∫

Q

∇θε · ∇ξ =

=

∫

Ω

η0εξ(0), ∀ ξ ∈ V 2
0 (Q) .

Proposition 2. For any solution of problem (P ′
ε) we have the

independent of ε estimates (19), (20), (21) and

(26) ‖∂tηε‖L2(0,T ;H−1(Ω)) ≤ C .

In addition, we have the estimate

(27)
√

ε‖θε‖L2(0,T ;H1
0
(Ω)) ≤ C .

Proof. It follows exactly the same steps of the corresponding result

for p > 2, with the obvious changes. It is also clear how to get (27).

Remark 5. In the non homogeneous case, we take a suitable reg-

ularization θε
D of θD and obtain the L∞ estimate in the same way. To

obtain (20) we need to take Ψ = θε(t) − θε
D(t) as test function, and deal

with the extra terms making use of convenient assumptions on θε
D, basi-

cally the ones corresponding to (A4).
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4 – Existence and uniqueness of approximated solutions

Proposition 3. For each ε > 0, (Pε) (respectively (P ′
ε)) has at

least one solution.

Proof. The case p > 2: Let (vi)i∈IN be a Schauder basis, assumed

orthonormal for the L2-inner product, of the separable Banach space

W 1,p
0 (Ω) and put Vm =< v1, . . . , vm >. We look for a finite dimensional

approximation of the solution to the problem, in the form

θm(x, t) =
m∑

i=1

σmi(t)vi(x) ,

where the σmi solve the following system of O.D.E.’s:

(28)

∫

Ω

γ′
ε(θm(t))θ′

m(t)vj =

=

∫

Ω

γε(θm(t))(vε(t) · ∇vj) −
∫

Ω

|∇θm(t)|p−2∇θm(t) · ∇vj ,

for j = 1, . . . , m, that we can more expressively rewrite as

Σ′
m(t) = B−1

m (Σm(t))Fm(Σm(t), t) ,

where Σm(t) = (σm1(t), . . . , σmm(t)), Σ′
m(t) = (σ′

m1(t), . . . , σ′
mm(t)), Fm

is the mapping of IRm+1 into IRm whose jth component is

[Fm(Σm(t), t)]j =

∫

Ω

γε(θm(t))(vε(t) · ∇vj) −
∫

Ω

|∇θm(t)|p−2∇θm(t) · ∇vj

and Bm(Σm(t)) is the invertible m × m matrix with components

[Bm(Σm(t))]ij =

∫

Ω

γ′
ε(θm(t))vi vj .

The initial condition is σmj(0) = (θm(0), vj) = θj, where θj is the

jth coefficient of the usual orthogonal projection of θ0ε into Vm, denoted

by Pmθ0ε. By the Cauchy-Lipschitz-Picard theorem, the system has a

unique solution in an interval [0, tm), for some tm ≤ T .
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Multiplying (28) by σmj(t) and summing on j, using (12) and inte-

grating in time from 0 to t, with 0 ≤ t < tm, we obtain

(29)

b∗
2

∫

Ω

|θm(t)|2 +

∫ t

0

∫

Ω

|∇θm|p ≤

≤ b∗
2

∫

Ω

|θm(0)|2 +

∫ t

0

∫

Ω

vε · ∇γ̃ε(θm) ≤

≤ b∗
2

‖θ0ε‖2
L2(Ω) ,

due to the fact that vε ∈ Sσ(Q) and denoting with γ̃ε a primitive of γε.

So, we first obtain the estimate

(30) sup
0≤t<tm

‖θm(t)‖L2(Ω) ≤ C ,

and as a consequence tm = T , for all m ∈ IN, since this estimate is

independent of t. Then we get, still from (29),

(31)

∫ t

0

∫

Ω

|∇θm|p ≤ C, for all 0 ≤ t < T .

Combining the two, we conclude that, independently of m,

θm ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) .

We then multiply (28) by σ′
mj(t) and sum on j, obtaining, after us-

ing (12),

b∗

∫

Ω

|θ′
m(t)|2 +

1

p

d

dt

∫

Ω

|∇θm(t)|p ≤
∫

Ω

γε(θm(t))(vε(t) · ∇θ′
m(t)) .

Integrating in time from 0 to t, using again the assumption that vε ∈
Sσ(Q) and applying Young’s inequality, we arrive at

b∗
2

∫ t

0

∫

Ω

|θ′
m|2 +

1

p

∫

Ω

|∇θm(t)|p ≤

≤ b∗
ε
2

2b∗
‖vε‖2

L∞(Q)

∫

Q

|∇θm|p +
1

p
‖θ0ε‖p

W1,p(Ω)
≤ Cε,T ,
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where we used the estimate (31). We then obtain the following estimate,

independently of m:

(32) sup
0≤t≤T

‖θm(t)‖
W

1,p
0

(Ω)
+

∫

Q

|∂tθm|2 ≤ Cε,T .

Putting ηm = γε(θm), we have a similar estimate in

(33) ηm ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩ H1(0, T ;L2(Ω)) ,

that is a simple consequence of (32), since |γ′
ε| ≤ b∗

ε . We finally obtain

(34) ‖Aθm‖Lp′
(0,T ;W−1,p′

(Ω)) ≤ C ′ .

Due to estimates (32), (33) and (34), we can extract subsequences,

still denoted with the same index, such that,

θm −→ θε in L∞(0, T ;W 1,p
0 (Ω)) weak-∗,

H1(0, T ;L2(Ω)) weak and L2(Q) strong ;

ηm −→ ηε in L∞(0, T ;W 1,p
0 (Ω)) weak-∗,

H1(0, T ;L2(Ω)) weak and L2(Q) strong ;

Aθm ⇀ π in Lp′
(0, T ;W −1,p′

(Ω)) weak ,

for some limit functions θε, ηε ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩ H1(0, T ;L2(Ω)) and

for an element π of Lp′
(0, T ;W −1,p′

(Ω)). It is obvious that ηε = γε(θε).

Now we consider, for n < m, functions

ξn(x, t) =
n∑

i=1

ψi(t)vi(x) with ψi ∈ D[0, T ] , vi ∈ W 1,p
0 (Ω) ,

and, from (28), obtain, after the usual operations,

∫

Q

∂tηmξn =

∫

Q

ηm(vε · ∇ξn) − 〈Aθm, ξn〉 .



[13] A free boundary problem with convection etc. 13

Passing to the limit for m → ∞, the convergences established produce

(35)

∫

Q

∂tηεξ =

∫

Q

ηε(vε · ∇ξ) − 〈π, ξ〉 ,

first for ξn and, since the ξn are dense in Lp(0, T ;W 1,p
0 (Ω)), also for any

ξ ∈ Lp(0, T ;W 1,p
0 (Ω)), that contains V p

0 (Q). Again from (28), we have

lim 〈Aθm, θm〉 = lim

(
−

∫

Q

∂tηmθm +

∫

Q

ηm(vε · ∇θm)

)
=

= −
∫

Q

∂tηεθε +

∫

Q

ηε(vε · ∇θε) = 〈π, θε〉 ,

where the last identity is obtained putting ξ = θε in (35). Since A is a

monotone hemicontinuous operator, we conclude that π = Aθε (cf. [4]).

We obtain (24) which is equivalent to (17).

The case 1 < p < 2: Here we choose a basis in H1
0 (Ω) and add to Fm

the term −ε
∫
Ω ∇θm(t) · ∇vj.

The independent of m estimates that we obtain are

(36) sup
0≤t≤T

∫

Ω

|∇θm(t)|2 +

∫

Q

|∂tθm|2 ≤ Cε,T ,

that also hold for ηm.

Considering the auxiliary operator Aε = −∆p − ε∆ which is also

bounded, hemicontinuous, monotone and coercive we may proceed as in

the previous case.

Proposition 4. The solution of (Pε) (respectively (P ′
ε)) is unique.

Moreover, if θ1
ε and θ2

ε are two solutions, corresponding respectively to

initial data θ1
0ε and θ2

0ε such that θ1
0ε ≤ θ2

0ε then θ1
ε ≤ θ2

ε .

Proof. The case p > 2: Here, we ommit the ε’s for convenience

of writing and follow the approach of [2]. Suppose that θ1 and θ2 are

two solutions of the problem corresponding to initial data θ1
0 and θ2

0,

respectively, with θ1
0 ≤ θ2

0, a.e. in Ω. Define, for η1 = γε(θ1) and η2 =

γε(θ2),

θ̂ = θ1 − θ2 and η̂ = η1 − η2 .



14 J.M. URBANO [14]

We consider, as we did before, a C∞-approximation of the Heaviside func-

tion, say Hδ, satisfying (11), and take Ψ = Hδ(θ̂(t)) as test function in

equation (23), corresponding to θ1 and θ2. After subtraction, we obtain

(37)

∫

Ω

(∂tη̂ + vε · ∇η̂)Hδ(θ̂)+

+

∫

Ω

(|∇θ1|p−2∇θ1 − |∇θ2|p−2∇θ2) · ∇Hδ(θ̂) = 0 .

The second term on the left hand side is positive, since H ′
δ ≥ 0, so we

have

(38)

∫

Ω

(∂tη̂ + vε · ∇η̂)Hδ(θ̂) ≤ 0 .

Since

Hδ(t) → H0(t) =

{
0 if t ≤ 0

1 if t > 0 ,

uniformly in the compacts of IR\{0}, we take the limit as δ → 0, obtaining

(39)

∫

Ω

(∂tη̂ + vε · ∇η̂)H0(θ̂) ≤ 0 .

We next observe that θ1 > θ2 ⇔ η1 > η2, since γε and βε are strictly

increasing functions. For that reason, H0(θ̂) = H0(η̂) and (39) gives

∫

Ω

(∂tη̂ + vε · ∇η̂)H0(η̂) ≤ 0 ⇒
∫

Ω

∂t(η̂
+) +

∫

Ω

vε · ∇(η̂+) ≤ 0 .

After integrating in time from 0 to t, we obtain,

∫

Ω

(η̂(t))+ ≤
∫

Ω

(η̂(0))+ =

∫

Ω

(η1
0 − η2

0)
+ = 0, ∀ t ∈ (0, T ) ,

since the second term vanishes and recalling that η1
0 ≤ η2

0 ⇔ θ1
0 ≤ θ2

0.

This means that η̂ ≤ 0, that is η1 ≤ η2 ⇔ θ1 ≤ θ2.

Uniqueness is now an obvious consequence.

The proof for the case 1 < p < 2 is the same, due to the positive

contribution of the extra term.
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Remark 6. In the non homogeneous case we solve the problem for

θ̃ε = θε − θε
D. We need to appropriately redefine the operator A (see [9]

for details).

5 – Existence of weak solutions

The case p > 2: From the estimates (19)-(22) obtained for the

approximated problem, we may extract subsequences, for which we use

the same index as usually and for simplicity, such that, when ε → 0,

θε ⇀ θ in L∞(Q) weak- ∗ and Lp(0, T ;W 1,p
0 (Ω)) weak ;(40)

ηε ⇀ η in L∞(Q) weak-∗ ;(41)

Aθε ⇀ χ in Lp′
(0, T ;W −1,p′

(Ω)) weak ,(42)

for some limit functions θ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), satisfying (10),

and η ∈ L∞(Q) and for an element χ of Lp′
(0, T ;W −1,p′

(Ω)). Passing to

the limit in (17), we obtain

(43) −
∫

Q

η(∂tξ + v · ∇ξ) + 〈χ, ξ〉 =

∫

Ω

η0ξ(0), ∀ ξ ∈ V p
0 (Q) ,

taking also into account the convergences (16) and (14). We now need to

identify χ = Aθ and show that θ = β(η). We start with the latter.

Since γε(θε) = ηε, γε is increasing and γε = βε
−1, we have

∫

Q

[ηε − ξ][θε − βε(ξ)] ≥ 0, ∀ ξ ∈ L∞(Q) .

In order to continue, we must pass to the limit in this inequality, where

the only difficulty is the term
∫

Q ηεθε, because βε → β, uniformly in the

compact subsets of IR. Since θε converges weakly in Lp(0, T ;W 1,p
0 (Ω)),

it is enough to obtain strong convergence for ηε in Lp′
(0, T ;W −1,p′

(Ω)).

We use a compactness result, recalling that ηε ∈ L∞(Q), uniformly in ε

and ∂tηε ∈ Lp′
(0, T ;W −1,p′

(Ω)), also uniformly in ε. Since the embedding

L∞(Ω) ↪→ W −1,p′
(Ω) is compact, we can use Corollary 4 in [8, pg. 85]

and conclude that (ηε)ε>0 is relatively compact in C([0, T ];W −1,p′
(Ω)).
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In particular, ηε → η strongly in Lp′
(0, T ;W −1,p′

(Ω)) and this, together

with (40), is enough to obtain

(44)

∫

Q

ηεθε = 〈ηε, θε〉Q −→ 〈η, θ〉Q =

∫

Q

ηθ .

Passing then to the limit, we get

∫

Q

(η − ξ)(θ − β(ξ)) ≥ 0, ∀ ξ ∈ L∞(Q) ,

and choosing ξ = η − λζ, with λ ∈ IR and ζ ∈ L∞(Q), we find, after

taking the limit as λ → 0, that

∫

Q

ζ(θ − β(η)) = 0, ∀ ζ ∈ L∞(Q) .

This shows that θ = β(η) ⇔ η ∈ γ(θ).

We now identify χ = Aθ, using the monotonicity properties of A. We

know that, for any v ∈ Lp(0, T ;W 1,p
0 (Ω)),

(45) 〈Aθε − Av, θε − v〉 ≥ 0 ,

so we can proceed as usually if we are able to pass to the limit in this

expression obtaining

〈χ − Av, θ − v〉 ≥ 0 .

The difficulty in passing to the limit in (45) is the term 〈Aθε, θε〉, since

here both convergences are weak. It’s clearly enough to show that

(46) lim sup〈Aθε, θε〉 ≤ 〈χ, θ〉 ,

and we start by identifying 〈Aθε, θε〉 from equation (24), taking ξ = θε.

This is possible since V p
0 (Q) is dense in Lp(0, T ;W 1,p

0 (Ω)). Denoting the

primitive of βε that vanishes at 0 by β̃ε, we obtain:

〈Aθε, θε〉 = −
∫

Q

∂tβ̃ε(ηε) −
∫

Q

vε · ∇β̃ε(ηε) =

∫

Ω

β̃ε(η0ε) −
∫

Ω

β̃ε(ηε(T )) ,
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because vε ∈ Sσ(Q). To pass to the limit in this identity, we first observe

that, denoting with β̃ the primitive of β such that β̃(0) = 0, β̃ε → β̃,

uniformly in IR, and consequently assumption (16) assures that

∫

Ω

β̃ε(η0ε) −→
∫

Ω

β̃(η0) .

To deal with the other term requires some additional reasoning. We recall

that ηε ∈ C([0, T ];L2(Ω)) and satisfies an independent of ε estimate in

L∞(0, T ;L2(Ω)) (recall (19)). We have, in particular, that ‖ηε(T )‖L2(Ω) ≤
C and so ηε(T ) ⇀ η∗ in L2(Ω). But we also know that ηε → η in

C([0, T ];W −1,p′
(Ω)) and this forces η∗ = η(T ). We can now show that

lim inf

∫

Ω

β̃ε(ηε(T )) ≥
∫

Ω

β̃(η(T )) .

In fact, the uniform convergence β̃ε → β̃ makes it enough to prove that

lim inf

∫

Ω

β̃(ηε(T )) ≥
∫

Ω

β̃(η(T )) ,

and due to the fact that β̃ is a convex function, we have

lim inf

∫

Ω

[
β̃(ηε(T )) − β̃(η(T ))

]
≥ lim inf

∫

Ω

β(η(T )) [ηε(T ) − η(T )] = 0 ,

because ηε(T ) ⇀ η(T ) in L2(Ω). We then have

(47)
lim sup〈Aθε, θε〉 ≤

∫

Ω

β̃(η0) − lim inf

∫

Ω

β̃ε(ηε(T )) ≤

≤
∫

Ω

β̃(η0) −
∫

Ω

β̃(η(T )) = −〈∂tη, θ〉Q ,

where the identification is allowed by Lemma 2 in [1].

We now reanalyze equation (43), observing that ∂tη can be written,

as an element of the space Lp′
(0, T ;W −1,p′

(Ω)), in the form

(48) 〈∂tη,Ψ〉Q = −〈χ,Ψ〉 +

∫

Q

η(v · ∇Ψ), ∀Ψ ∈ Lp(0, T ;W 1,p
0 (Ω)) .
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Putting Ψ = θ in (48) and denoting with γ̃∗ the primitive of a function

γ∗ ∈ γ, we find that

〈∂tη, θ〉Q = −〈χ, θ〉 +

∫

Q

η(v · ∇θ) = −〈χ, θ〉 +

∫

Q

v · ∇γ̃∗(θ) = −〈χ, θ〉 ,

since η = γ∗(θ) for θ 6= 0, v ∈ Lp′
σ (Q) and γ̃∗(θ) ∈ Lp(0, T ;W 1,p(Ω)). So,

from (47), we conclude (46) and the proof is complete.

The case 1 < p < 2: We obtain the same convergent subsequences,

so we are able to pass to the limit in (25), obtaining (43), first for ξ ∈
V 2

0 (Q) and by density also for ξ ∈ V p
0 (Q). We only remark that the extra

term converges to 0 due to estimate (27), since

0 ≤ ε

∣∣∣∣
∫

Q

∇θε · ∇ξ

∣∣∣∣ ≤ √
ε‖θε‖L2(0,T ;H1

0
(Ω))

√
ε‖ξ‖L2(0,T ;H1

0
(Ω)) .

We show that θ = β(η), using the same arguments. In this case, we

have

L∞(Ω) ⊂ W −1,p′
(Ω) ⊂ H−1(Ω) ,

being the first injection compact, so we still obtain, from the results of [8],

that ηε → η strongly in Lp′
(0, T ;W −1,p′

(Ω)), in virtue of estimates (19)

and (26).

To identify χ = Aθ, there are no additional problems since the extra

term disappears in the limit and we can also get rid of it when we study

lim sup〈Aθε, θε〉, since its contribution is positive.

Remark 7. We were unable to establish an uniqueness result for

this problem. We recall that in the case p = 2, a positive answer was

given in [6], following the technique of [3], that is clearly inadequate to

deal with the nonlinearity produced by the p-Laplacian. This question

remains an interesting open problem to be investigated in the future.
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