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On the definition of a probabilistic

inner product space

C. ALSINA – B. SCHWEIZER – C. SEMPI – A. SKLAR

Riassunto: In questo articolo presentiamo una definizione di spazio probabilistico
con prodotto interno basata sulla recente definizione di spazio normato probabilistico.
Tale definizione consente di comprendere le piú importanti classi di spaẑı probabilistici
con prodotto interno.

Abstract: In this paper we give a definition of a probabilistic inner product space
which is based on the new and recently formulated definition of a probabilistic normed
space. This definition is sufficiently general to encompass the most important classes
of probabilistic inner product spaces.

1 – Introduction

The purpose of this paper is to present a definition of a probabilistic

inner product space which is based on the new definition of a probabilisitic

normed space that was recently introduced and studied in [1], [2], [8]. It

employs the probabilistic generalization of the triangle inequality rather

than a probabilistic generalization of the Cauchy-Schwarz inequality, and

thereby overcomes many of the obstacles encountered in the earlier ap-

proaches of M.L. Senechal [13], and J.M. Fortuny [4]. Thus it leads

naturally to the definition of the most important classes of probabilistic
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inner product spaces, namely the Menger spaces and the Šerstnev spaces;

and it also includes probabilistic inner product spaces generated by fami-

lies of mappings from a probability space into a real inner product space.

However, a number of important issues, e.g., questions of continuity and

a reasonable definition of orthogonality, remain to be settled.

In the sequel we generally follow the notation and terminology of [12].

2 – Preliminaries

A distribution function (briefly, a d.f.) is a function F from the

extended real line R = [−∞,+∞] into the unit interval I = [0, 1] that is

nondecreasing and satisfies F (−∞) = 0, F (+∞) = 1. We normalize all

d.f.’s to be left–continuous on the unextended real line R = ]−∞,+∞[.

In particular then, for every a in [−∞, +∞[, the functions εa defined by

(1) εa =

{
0, x ∈ [−∞, a] ,

1, x ∈ ]a,+∞] ,

are d.f.’s, as is the function ε∞ defined by ε∞(x) = 0 for x in [−∞,+∞[

and ε∞(+∞) = 1. The set of all d.f.’s will be denoted by ∆ and the subset

of all F ’s in ∆ satisfying F (0) = 0 will be denoted by ∆+. The sets ∆

and ∆+ are partially ordered by the usual pointwise partial ordering of

functions: ε∞ is the minimal element of both ∆ and ∆+; ε−∞ is the

maximal element of ∆, and ε0 the maximal element of ∆+ .

A triangle function is a binary operation on ∆+ that is commutative,

associative, nondecreasing in each place, and has ε0 as identity. Continu-

ity of a triangle function means continuity with respect to the topology

of weak convergence in ∆+.

Typical (continuous) triangle functions are convolution and the op-

erations τT and τS, which are, respectively, given by

(2) τT (F, G)(x) = sup
u+v=x

T (F (u), G(v)) ,

and

(3) τS(F, G)(x) = inf
u+v=x

S (F (u), G(v)) ,
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for all F, G in ∆+ and all x in R [12; Secs. 7.2 and 7.3]. Here T is a

continuous t-norm and S is a continuous t-conorm, i.e., both are con-

tinuous binary operations on I that are commutative, associative and

nondecreasing in each place; T has 1 as identity and S has 0 as identity.

If T is a t-norm and T ∗ is defined on I × I via

T ∗(x, y) = 1 − T (1 − x, 1 − y) ,

then T ∗ is a t-conorm, specifically the t-conorm of T .

It follows without difficulty from (1)-(3) that, for every continuous

t-norm T and every continuous t-conorm S, the triangle functions τT and

τS satisfy the condition

(4) τ (εa, εb) = εa+b, for all a, b ≥ 0.

The most important t-norms are the functions W , Prod, and M

which are defined, respectively, by

W (a, b) = max(a + b − 1, 0),

Prod(a, b) = a b,

M(a, b) = min(a, b).

Their corresponding t-conorms are given, respectively, by

W ∗(a, b) = min(a + b, 1),

Prod∗(a, b) = a + b − a b,

M∗(a, b) = max(a, b).

The set of all t-norms is partially ordered by the usual pointwise partial

ordering of functions. Thus we have W ≤ Prod ≤ M . Moreover, M is

the maximal t-norm and, since min(a, b) ≤ max(a, b) for all a, b in I, it

follows at once that

(5) T (a, b) ≤ S(a, b),

for every t-norm T and every t-conorm S. Correspondingly, the set of all

triangle functions is partially ordered via

τ1 ≤ τ2 iff τ1 (F, G) ≤ τ2 (F, G) , for all F, G in ∆+.
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It follows from (2), (3) and (5) that τT ≤ τS for every continuous t-norm

T and every continuous t-conorm S.

Definition 2.1. A probabilistic metric (briefly, PM) space is a

triple (S, F , τ), where S is a nonempty set, τ is a triangle function, and

F is a mapping from S × S into ∆+ such that, if Fpq denotes the value

of F at the pair (p, q), the following conditions hold for all p, q, r in S:

(M1a) Fpp = ε0;

(M1b) Fpq 6= ε0 if p 6= q;

(M2) Fpq = Fqp;

(M3) Fpr ≥ τ (Fpq, Fqr).

If (M1a), (M2) and (M3) are satisfied, then (S,F , τ) is a probabilistic

pseudometric space [12].

Every metric space can be regarded as a special kind of PM space.

For if (S, d) is a metric space, if F : S×S → ∆+ is defined via Fpq = εd(p,q),

and if τ is a triangle function such that τ (εa, εb) ≥ εa+b for all a, b ≥ 0 —

e.g., if τ is given by (2) or (3) (see (4)) — then (S, F , τ) is a PM space

from which the original metric space can be immediately recovered.

Definition 2.2. A probabilistic normed (briefly, PN) space is

a quadruple (S, N , τ, τ ∗), where S is a real linear space, τ and τ ∗ are

continuous triangle functions such that τ ≤ τ ∗, and N is a mapping from

S into ∆+ such that, if Np denotes the value of N at the point p, the

following conditions hold for all p, q in S:

(N1a) Nθ = ε0, where θ is the null vector in S;

(N1b) Np 6= ε0 if p 6= θ;

(N2) N−p = Np;

(N3) Np+q ≥ τ (Np, Nq);

(N4) Np ≤ τ ∗ (
Nα p, N(1−α) p

)
for all α in I.

If (N1a), (N2), (N3) and (N4) are satisfied, then (S, N , τ, τ ∗) is a

probabilistic pseudonormed space [1].

If (S, ‖ · ‖) is a real normed space, if τ is a triangle function such

that τ (εa, εb) ≥ εa+b for all a, b ≥ 0, and if N : S → ∆+ is defined via

Np = ε‖p‖, then (S,N , τ, τ ∗) is a PN space.

If (S, N , τ, τ ∗) is a PN space and if F : S × S → ∆+ is defined via

Fpq = Np−q, then (S, F , τ) is a PM space. If τ = τT and τ ∗ = τT∗ for some
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continuous t-norm T and its associated t-conorm T ∗, then (S, N , τT , τT∗)

is a Menger PN space, which we denote briefly by (S, N , T ). If τ ∗ = τM

and equality holds in (N4), then (S, N , τ, τM) is a Šerstnev PN space. In

this case, as shown in [1], the conditions

(6) Np = τM

(
Nα p, N(1−α) p

)
, for all p in S and all α in I,

and (N2), taken together, are equivalent to Šerstnev’s condition

(7) Nλ p(x) = Np

(
x

|λ|

)
, for all λ and x in R,

where, by convention, Np(x/0) = ε0(x) [14], [15].

3 – Probabilistic inner product spaces

In going from real to probabilistic inner products, the first thing to

notice is that, since real inner products can assume negative values, we

will need to deal with d.f.’s in ∆ rather than with d.f.’s confined to the

subspace ∆+. Accordingly, we begin with the following:

Definition 3.1. A multiplication on ∆ is a binary operation τ

on ∆ that is commutative, associative, nondecreasing in each place, and

whose restriction to ∆+ is a triangle function.

Multiplications of particular interest to us are the extensions of the

functions τT and τS defined on ∆ × ∆ by

(8) τT (F, G)(x) = sup
u+v=x

T (F (u), G(v)) ,

and

(9) τS(F, G)(x) = l−
[

inf
u+v=x

T ∗ (F (u), G(v))

]
,

respectively. Here T is a continuous t-norm, S a continuous t-conorm

and, for any F in ∆, l− F is the left-continuous normalization of F , i.e.,

l− F (x) = F (x−) for every x in R.



120 C. ALSINA – B. SCHWEIZER – C. SEMPI – A. SKLAR [6]

The fact that τT is indeed a multiplication on ∆ was established in

[10; Section 9]. There it was also shown that, in ∆, τT is not continuous

with respect to the topology of weak convergence.

Minor modifications of the arguments given in [10; Section 5] suffice

to show that the extended τS is also a multiplication on ∆. But, like

τT , the multiplication τS is not continuous on ∆. To see this, for every

positive integer n, let Fn = ε−n and Gn = G where G(x) = 1/2 for all

x in R. Then the sequence {Fn} converges weakly to ε−∞, while {Gn}
converges weakly to G; but for every x in R, we have

lim
n→∞

τS(ε−n, Gn)(x) =
1

2
6= 1 = τS(ε−∞, G)(x).

For any F in ∆, we let F denote the d.f. in ∆ defined via

(10) F (x) = l− (1 − F (−z)) , for all x in R.

Note that F = F for every F in ∆ and that F = F if and only if F is

symmetric.

Definition 3.2. A probabilistic inner product (briefly, PIP) space

is a quadruple (S, G, τ, τ ∗), where S is a real linear space, τ and τ ∗ are

multiplications on ∆ such that τ ≤ τ ∗ and G is a mapping from S × S

into ∆ such that, if Gp,q denotes the value of G at the pair (p, q) and if

the function N : S → ∆+ is defined via

(11) Np(x) =

{
Gp,p(x

2), x > 0,

0, x ≤ 0,

the following conditions hold for all p, q, r in S:

(P1a) Gp,p ∈ ∆+ and Gθ,θ = ε0, where θ is the null vector in S;

(P1b) Gp,p 6= ε0 if p 6= θ;

(P2) Gθ,p = ε0;

(P3) Gp,q = Gq,p;

(P4) G−p,q = Gp,q;

(P5) Np+q ≥ τ (Np, Nq);

(P6) Np ≤ τ ∗ (
Nα p, N(1−α) p

)
for every α in I;

(P7) τ (Gp,r, Gq,r) ≤ Gp+q,r ≤ τ ∗ (Gp,r, Gq,r).
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If τ = τT and τ ∗ = τT∗ for some continuous t-norm T and its as-

sociated t-conorm T ∗, then (S, G, τT , τT∗) is a Menger PIP space, which

we denote by (S, G, T ). If τ ∗ = τM and equality holds in (P6), then

(S, G, τ, τM) is a Šerstnev PIP space. If (P1a) and (P2)-(P7) are satis-

fied, then (S, G, τ, τ ∗) is a probabilistic pseudo-inner product space.

It is immediate that (S, N , τ, τ ∗) is a PN space and we shall refer to

N as the probabilistic norm derived from the probabilistic inner product

G. Note again that if (S, N , τ, τM) is a Šerstnev PIP space, then, in view

of the fact that N−p = Np, (P6) may be replaced by (7).

If, for any p, q in S and any x in R, we interpret the number Gp,q(x)

as “the probability that the inner product of p and q is less than x”,

then (P1)-(P4) are natural probabilistic versions of the corresponding

properties of real inner products; (P5) is the triangle inequality for the

associated probabilistic norm, (P6) is a probabilistic version of the homo-

geneity property of a norm and is also needed to ensure that N is indeed

a probabilistic norm, and (P7) is a weak distributivity property which

generalizes the usual bilinearity property of an inner product.

4 – Examples

If (S, 〈·, ·〉) is a real inner product space, if τ is a multiplication on ∆

such that τ (εa, εb) = εa+b for all a, b in R, and if G : S ×S → ∆ is defined

via Gp,q = ε〈p,q〉, then (S, G, τ, τ) is a PIP space. Thus, just as ordinary

metric and normed spaces may, respectively, be viewed as special cases

of PM and PN spaces, a real inner product space may be viewed as a

special instance of a PIP space.

Definition 4.1. Let (Ω, A, P ) be a probability space, (V, 〈·, ·〉) a real

inner product space, and S a set of functions from Ω into V . Then (S,G)

is an EP-space with base (Ω,A, P ) and target (V, 〈·, ·〉) if the following

conditions hold:

(i) S, under pointwise addition and scalar multiplication, is a real

linear space. The zero element in S is the constant function θ

given by θ(ω) = n for all ω in Ω, where n is the null vector in V .

(ii) For all p, q in S and all x in R, the set {ω in Ω : 〈p(ω), q(ω)〉 < x}
belongs to A, i.e., the composite function 〈p, q〉 from Ω into R
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defined by 〈p, q〉(ω) = 〈p(ω), q(ω)〉 is P -measurable, or, in other

words, is a real random variable.

(iii) For all p, q in S, G(p, q) is the distribution function of 〈p, q〉, i.e.,

for all x in R,

(12) Gp,q(x) = P {ω in Ω : 〈p(ω), q(ω)〉 < x} ,

If, for any p in S, 〈p, q〉 = 0 a.s. only if p = θ, then (S, G) is a

canonical EP-space.

Theorem 4.2. If (S, G) is an EP-space, then (S, G, τW , τW∗) is a

pseudo-PIP space. If (S, G) is a canonical EP-space, then (S, G, τW , τW∗)

is a PIP space, i.e. (S, G, W ) is a Menger PIP space.

Proof. The properties (P1a), (P2), (P3) and (P4) are immediate,

as is (P1b) when (S, G) is canonical.

Next, it follows from Definition 4.1 and (11) that (S, N ) is an E-

normed space. As shown in [12; Theorem 15.1.7], such a space is a

pseudo-PN space in the sense of Šerstnev in which τ = τW . Condition

(P5) is just the triangle inequality for this space; and since (7) holds, (6)

yields (P6) with τ = τM and, since τM < τW∗ , a fortiori, with τ = τW∗ .

It remains to establish (P7). Using (12), for any x in R, we have

Gp+q,r(x) = P {ω in Ω : 〈p(ω) + q(ω), r(ω)〉 < x}
= P {ω in Ω : 〈p(ω), r(ω)〉 + 〈q(ω), r(ω)〉 < x} .

Thus Gp+q,r is the d.f. of the sum of the random variables 〈p, r〉 and

〈q, r〉. Let C〈p,r〉,〈q,r〉 be the copula of these random variables, so that

C〈p,r〉,〈q,r〉 (Gp,r, Gq,r) is their joint d.f. Then (see [5], [9] or [11]), we have

Gp+q,r = σC〈p,r〉,〈q,r〉 (Gp,r, Gq,r) ,

where, for any pair of d.f.’s F and G and any copula C,

σC(F, G) =

∫∫

u+v<x

dC (F (u), G(v)) .
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Next (see [7], [9] or [11]), for any copula C and for any pair of d.f.’s, F

and G,

τW (F, G) ≤ σC(F, G) ≤ τW∗(F, G).

This yields (P7), with τ = τW and τ ∗ = τW∗ , and completes the proof.

In particular Theorem 4.1 applies to the product of random variables

or of random vectors on a probability space (Ω,A, P ). In this case, S

is the set of random variables or vectors on Ω, while the target is Rk

(k ≥ 1) endowed with the usual inner product

〈x, y〉 =
k∑

j=1

xj yj (x, y in Rk).

Let (S, G) be an EP-space with base (Ω,A, P ) and target (V, 〈·, ·〉).
Then, for every ω in Ω, the function iω from S × S into R defined by

iω(p, q) = 〈p(ω), q(ω)〉 is a pseudo-inner product on S. Since distinct

functions p and q may agree at a particular point ω in Ω, so that p(ω) =

q(ω) while p 6= q, iω need not be an inner product on S. Now, noting

that

Gp,q(x) = P {ω in Ω : iω(p, q) < x}

is the P -measure of the set of all pseudo-inner products iω for which

the inner product of p and q is less than x, we have that the EP-space

(S, G) is a pseudo-inner product generated space, which is generated by the

collection {iω : ω in Ω}. H. Sherwood has shown that a pseudo PM space

is an E-metric space if and only if it is a pseudo-metrically generated space

[16]; and similarly (but with more difficulty) that a pseudo PN space is

an E-normed space if and only if it is a pseudo-norm generated space [17].

Whether this equivalence still holds for PIP spaces, i.e., whether every

pseudo-inner product generated space is an EP space, is at present an

open question.

5 – Final Remarks

We begin with a simple but, nevertheless, somewhat surprising result.

Recall that a t-norm T is positive if T (a, b) > 0 whenever a > 0 and b > 0.
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Theorem 5.1. Let (S, G, T ) be a Menger PIP space and suppose

that there is a pair of points p and q in S such that Gp,q is strictly positive

on R and Gp,p, Gq,q are both strictly positive on ]0,+∞[. Then T cannot

be a positive t-norm.

Proof. By (P7) and (P3), we have

Gp+q,p+q ≥ τT (Gp+q,p, Gp+q,q)

≥ τT (τT (Gp,p, Gp,q) , τT (Gp,q, Gq,q)) .

Consequently, for all t, u, v, w in R such that t + u + v + w = 0,

0 = Gp+q,p+q(0) ≥ T (T (Gp,p(t), Gp,q(u)) , T (Gp,q(v), Gq,q(w))) .

Choosing t > 0 and w > 0 yields Gp,p(t) > 0 and Gq,q(w) > 0. Since

Gp,q(x) > 0 for all real x, it follows that T is not positive.

Lemma 5.2. If F in ∆ is such that

(13) τT

(
F, F

)
= ε0,

where F is given by (10), then F is a proper d.f., i.e., limx→+∞ F (x) = 1

and limx→−∞ F (x) = 0.

Proof. By (8) and (1) we have

sup
u+v=x

T
(
F (u), F (v)

)
=

{
0, x ≤ 0,

1, x > 0.

Suppose that limt→+∞ F (t) = a < 1. Then, since T (a, 1) = a, we have

T
(
F (u), F (v)

)
≤ a for all u, v in R, whence (13) cannot hold.

Next, if limt→−∞ F (t) = b > 0, then

lim
t→+∞

F (t) = lim
t→+∞

(1 − F (−t)) = 1 − lim
t→−∞

F (t) = 1 − b < 1,

and, again, (13) cannot hold.
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In what follows, we need the notion of the (left-continuous) quasi-

inverse of a distribution function F . This is the function F ∧ defined on

the half-open interval ]0, 1] by

(14) F ∧(t) = sup {x : F (x) < t} .

Lemma 5.3. Suppose F is in ∆. Then τM

(
F, F

)
= ε0, if and only

if F = εc for some c in R.

Proof. By Lemma 5.2, F is a proper d.f., whence F is also proper.

Thus the duality theorem of [6] can be applied. This gives

(15) F ∧(t) + F
∧
(t) = 0, for any t in ]0, 1[,

where F ∧ is the quasi-inverse of F . But F
∧
(t) = −F ∧(1 − t), whence,

by (15), F ∧(t) = F ∧(1 − t). Since F ∧ is nondecreasing, this last equality

can hold if and only if F ∧ is constant, say equal to c. Hence F = εc and

the lemma is proved.

Theorem 5.4. If (S, G, M) is a Menger PIP space, then it is a real

inner product space, i.e., there exists a real inner product 〈·, ·〉 : S×S → R

such that Gp,q = ε〈p,q〉 for all p, q in S.

Proof. Since τM = τM∗ [12; Theorem 7.5.6], it follows at once from

(P7) that, for all p, q, r in S,

Gp+q,r = τM (Gp,r, Gq,r) .

Letting q = −p and using (P2) and (P4) yields

ε0 = τM

(
Gp,r, Gp,r

)
.

Thus, by the above lemmas, G∧
p,r = c for some c in R. Now,let 〈·, ·〉 be

the mapping from S × S into R defined by 〈p, q〉 = the value of G∧
p,q, for

any p, q in S. Then a few calculations (employing the characterization

of a normed space (V, ‖ · ‖) given in [1], i.e., the fact that the condition

‖λ p‖ = |λ| ‖p‖ for every p in V and every real λ may be replaced by the

conditions ‖ − p‖ = ‖p‖ and ‖p‖ = ‖α p‖ + ‖(1 − α) p‖ for every p in V

and all α in [0, 1]) yield that (S, 〈·, ·〉) is a real inner product space.
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The above result merits a comment. It is been known for a long time

(see, e.g., Corollary 8.2.2 and Theorem 8.2.3 in [12]) that if (S, F , M) is

a Menger PM space, then

F ∧
p,r(c) ≤ F ∧

p,q(c) + F ∧
q,r(c),

for all p, q, r in S and all c in [0, 1]. Thus, each of the functions dc defined

on S × S via dc(p, q) = F ∧
p,q(c) is a pseudo-metric on S. Similarly, if

(S, N , M) is a Menger PN space, then each of the functions νc defined on

S via νc(p) = N∧
p (c) is a pseudo-norm on S. It therefore is no surprise

that many results – mainly in the area of fixed-point theory – that hold

in ordinary metric or normed spaces extend at once to Menger spaces

under M . Nevertheless, in spite of this simple observation, there have

been many papers with the words “probabilistic metric” or “probabilistic

norm” in their title that belong to what C. Fenske [3] has so aptly called

“nonsense literature . . . devoted to absurd generalizations of the contrac-

tion principle”. Anyone tempted to “enrich” the theory of probabilistic

inner product spaces with contributions of this nature is strongly advised

to take careful note of Theorem 5.4.

Questions of continuity, questions concerning the Cauchy-Schwarz

inequality — a version of which was used in the earlier definitions of a

PIP space proposed by M.L. Senechal [13] and J.M. Fortuny [4] —

and questions concerning definitions of orthogonality will be considered

in subsequent papers.
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[8] B. Lafuerza Guillén – J.A. Rodŕıguez Lallena – C. Sempi: Some classes
of probabilistic normed spaces, (to appear).

[9] R. Moynihan – B. Schweizer – A. Sklar: Inequalities among operations on
probability distribution functions, General Inequalities, edited by E. F. Becken-
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