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Left-invariant Lorentzian metrics

on 3-dimensional Lie groups

L. A. CORDERO – P. E. PARKER

Riassunto: Si determina i tensori di curvatura Riemanniana di tutte le metriche
di Lorentz invarianti a sinistra nel gruppo di Lie tridimensionale.

Abstract: We find the Riemann curvature tensors of all left-invariant Lorentzian
metrics on 3-dimensional Lie groups.

1 – Introduction

The geometry of left-invariant Riemannian metrics on 3-dimensional

Lie groups is so well understood that the theory can be regarded as

essentially complete [9, §4]. For the other possible signature of metric

tensors in dimension three, however, very little was known [2], [10]. In

this paper we complete the study of this Lorentzian case, presenting a

classification of all left-invariant Lorentzian metric tensors on Lie groups

of dimension 3 by determining their curvatures and the symmetries of

their sectional curvature functions.

Supported by Project XUGA8050189, Xunta de Galicia, Spain and partially supported
by DGICYT-Spain.
Key Words and Phrases: Lie group – Lorentzian metric – Riemann curvature tensor
A.M.S. Classification: 53C50 – 53B30 – 53C30



130 L. A. CORDERO – P. E. PARKER [2]

The motivation and methodology of our study derives from our clas-

sification of the symmetries of sectional curvature in dimension three,

which we now recall. Let M be a smooth 3-manifold and g a pseu-

doriemannian metric tensor on M . Let G2(M) denote the Grassmannian

bundle with fibers G2(TxM), the space of (2-dimensional) planes in the

tangent space TxM at a point x ∈ M . Observe that each G2(TxM) may

be regarded as a (real) algebraic variety, diffeomorphic to the (real) pro-

jective plane P2. As in [3], [4], [5], we shall regard the sectional curvature

Kx at each point x ∈ M as a rational mapping of algebraic varieties

G2(TxM) → IR, or a rational function for short. The group of all auto-

morphisms of G2(TxM) is isomorphic to PGL3 ≡ PGL3(IR), the group

of projective automorphisms of P2.

In [4] we determined the possible symmetry groups of K at x; i.e.,

the largest subgroup of PGL3 which leaves Kx invariant as a rational

function. We shall refer to any one of these as a sectional curvature

symmetry, or SCS for short. We also showed the existence of naturally

reductive homogeneous spaces with constant SCS, and gave general de-

scriptions of some examples of them. In [5], we exhibited explicit forms

of the metric tensors on some of these examples. We also gave some in-

homogeneous examples utilizing warped products, and began the study

of how the SCS and CF-type can vary on a connected space.

In continuation of these two papers, we present here a classification

of all left-invariant Lorentzian metric tensors on Lie groups of dimension

3 by determining the SCS of their curvatures. As in [4], [5], we defer the

exhibition of more explicit forms of these metric tensors to a later article.

As in [5], we present much of the information in the form of figures for

greater efficiency (and, we hope, clarity). At present, there are only two

subcases (out of almost 200) for which we have not yet determined the

exact SCS; we hope to see these completed soon. We have given the

full Riemann tensor in each case, however, so no traditional geometric

information is lacking. (We have left it to the reader to work out the

Ricci and scalar curvatures as exercises.)

Our Lorentzian metric tensors will have signature + − −. When

necessary, we distinguish among the possible orderings + − −, − + −,

− − +. (To convert to the other signature convention + + −, see [11,

p. 92].) Thus a vector v is timelike if g(v, v) > 0, lightlike or null if

g(v, v) = 0, spacelike if g(v, v) < 0, and causal if g(v, v) ≥ 0.
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When convenient, we regard the Riemann tensor Rijkl as a quadratic

form on
∧2 TM ; cf. [3], [4]. In local coordinates,

R =




R1212 R1213 R1223

R1213 R1313 R1323

R1223 R1323 R2323


 .

Then the sectional curvature appears as a rational function on G2(M) in

the form of a quotient of two quadratic functions:

K =
R

∧2 g
.

Here, we recall that if A is a matrix regarded as a linear transforma-

tion Rn → Rn, then the induced mapping
∧2A :

∧2Rn → ∧2Rn is given by

the matrix classically called the second compound of A, the matrix whose

entries are the determinants of 2 × 2 submatrices of A in an appropriate

ordering [8, Sec. 7.2]. For example,
∧2 diag[ 1, −1,−1 ] = diag[−1, −1, 1 ].

Also recall that the associated tensor Rij
kl represents the curvature

operator R̄:
∧2TM → ∧2TM in local coordinates. Note that if R and R̄

are written as matrices with respect to the same local coordinates, then

R = (
∧2g)R̄.

We denote the Lorentz group in (n = p + q) dimensions of signature

(p, q) by Oq
p = Oq

p(IR), thus the (usual) orthogonal group by On = On(IR).

Projectivization of any group of linear transformations is indicated by a

prefixed P ; for example PGL3 = GL3/{aI ; 0 6= a ∈ IR} ∼= SL3.

Again, Parker thanks Cordero and the Departamento at Santiago for

their extraordinary hospitality during his visits. He also apologizes for

the delay of this paper due to his disability.

2 – Preliminary Recollections

For the convenience of the reader, we state some of the main results

of [4] and [5]. This is Theorem 2.2 of [4]:

Theorem 2.1. At each point x of a Lorentzian 3-manifold (M, g),

there exists a choice of g-orthonormal coordinates with respect to which
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the Riemann tensor Rx on
∧2TxM takes on exactly one of these canonical

forms:

CF1 diag[B,C,A];

CF2




B 0 0

0 −A F

0 F A


 , F 6= 0;

CF3




B 0 0

0 −λ ± 1

2
±1

2

0 ±1

2
λ ± 1

2


 ,

CF4




−λ − 1√
2

− 1√
2

− 1√
2

−λ 0

− 1√
2

0 λ




.

We note that these forms can also be characterized in terms of eigen-

vectors of R̄: timelike, spacelike, double null, and triple null, respectively;

compare [7, § 4.3].

We also give Table 1 of [4].

Table 1 – Lorentzian SCS

Canonical form of Symmetry group of

Rx Kx = Rx/
∧2

gx

CF1 diag[B, C, A]

A = −B = −C PGL3

B = C &= −A PO2

A = −B &= −C

A = −C &= −B

}
PO1

1

generic Z2 ⊕ Z2

CF2 Z2

CF3
B &= −λ Z2

B= −λ PHT

CF4 1
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Recall the group HT of horocyclic translations (called “null rota-

tions” in relativity because there is a fixed null direction). The identity

component of this group consists of the matrices

exp




0 −t t

t 0 0

t 0 0


 =




1 −t t

t 1 − t2

2

t2

2

t − t2

2
1 +

t2

2




, t ∈ IR.

Each component of O2
1(− − +) contains one component of HT . See

also [1], where these are called parabolic matrices, and [6].

In the Riemannian case, only CF1 and only the groups PGL3 , PO2

, and Z2 ⊕ Z2 occur. The SCS is PO2 whenever two of A, B, C are equal

but all three are not equal.

Next, we summarize Theorem 3.1 of [4].

Theorem 2.2. If M = G is an irreducible, naturally reductive,

Lorentzian homogeneous space of dimension 3, then either M is flat or

of constant negative curvature. In the former case, M is Minkowskian

3-space or one of its quotients by a discrete group of translations. In the

latter, M is SO2+
1 (IR) or one of its coverings or quotients by a discrete

subgroup.

In [5] we began the study of how the SCS and CF-type can vary on

a connected space. For later use and comparison, we briefly recall some

of our results.

As in [5], we identify the space of possible curvature tensors at a

point p with Sym3, the symmetric 3 × 3 matrices regarded as quadratic

forms on
∧2IR3. We coordinatize Sym3

∼= IR6 via (see [4], [5])




B D E

D C F

E F A


 ?−→ (B, C, A, D, E, F ) .

If the metric tensor gp = diag[1,−1,−1], then
∧2gp = diag[−1,−1, 1].

A change of normal coordinates at p acts on TpM ∼= IR3 by an element

of O2
1(+ − −), the Lorentz group for gp. It is an easy exercise in linear

algebra to verify that
∧2O2

1(+−−) = SO2
1(−−+). Thus we consider the
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action of SO2
1(−−+) on Sym3 where A ·R = AtRA for A ∈ SO2

1(−−+)

and R ∈ Sym3.

Figure 1 from [5] shows how the orbits of CF1-types of R are related

to each other. It represents a plane perpendicular to the line of constant

curvature in BCA-space. The view is from the third octant, toward the

origin along this line. In the figure, “dim d” means the full orbit in IR6

has dimension d.

Figure 2 from [5] represents a plane parallel to {C = A} in CAF -

space. The view is from the fourth quadrant of the CA-plane toward

the origin along the line {C = −A}. The lines have slopes of ±1/
√

2,

and the two bullets for CF3 have coordinates ±(1/
√

2, 1/2). Considering

the B-axis as perpendicular to the page, we have a representation of a

translate of the 3-space with axes B, C = A, and F along the B-axis in

BC A F -space. The part of the B-axis with B > C is PO1
1 I and the

part with B < C is PO1
1 II. The SO2

1-orbits of PO2 from CF1 are the

portions of the elliptic cone {(2B − C + A)2 + 4F 2 = (C + A)2} above

and below the CF1 regions, PO2 I to the right and PO2 II to the left.

Figure 3 from [5] shows the three coordinate planes of DEF -space.

Parts (a) and (b) have B = C = −A. The orbits of the other canonical

forms are contained in the axes; for example, rotations of CF1 are in

the D-axis, and those CF2 with B = −A and certain boosts of CF3 are

in the F -axis. Part (c) still has B + C + 2A = 0, but now we allow

B 6= C. Note that the four CF3 points lie at D = ±1, not at D = 0;

their E- and F -coordinates are ±1/2
√

2. The CF4 lines can be either

CF4+ or CF4−, depending on the values of B and C. The open regions

are parts of the orbit of CF2, the others all being inside the axes. While

rotations act naturally in AEF -space, their action in DEF -space is more

complicated. Rotations acting here on CF4 sweep out the two branches of

the quartic surface D2(E2 + F 2) = (E2 − F 2)2. We recall that a rotation

acting through an angle θ clockwise about the A-axis in AEF -space, acts

through an angle 2θ counterclockwise about the line {B = C, D = 0} in

BCD-space.

For comparison with these, and for later use, we include contiguity

relations for the Riemannian case in Figure 4. Here, one uses
∧2O3 =

SO3. The view is from the first octant back toward the origin along the

line of constant curvature.
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!

PO1
1 I

−A = C < B

dim 4

PO2 I
−A < C = B

dim 4

PO1
1 I

−A = B < C

dim 4

PO1
1 II

B < C = −A

dim 4

PO2 II
B = C < −A

dim 4

PO1
1 II

C < B = −A

dim 4

Z2 ⊕ Z2 II
C < −A < B

dim 6

Z2 ⊕ Z2 I
−A < C < B

dim 6

Z2 ⊕ Z2 I
−A < B < C

dim 6

Z2 ⊕ Z2 II
B < −A < C

dim 6

Z2 ⊕ Z2 III
B < C < −A

dim 6

Z2 ⊕ Z2 III
C < B < −A

dim 6

!PGL3, B = C = −A, dim 1

Fig. 1: Contiguity relations for CF1.

!

CF3 I
C + A = 2F

dim 5

"

CF3 II
C + A = −2F

dim 5

CF3 II
C + A = 2F

dim 5

"
CF3 I

C + A = −2F

dim 5

CF1
Z2 ⊕ Z2

−A < C

CF1
Z2 ⊕ Z2

C < −A

CF2
dim 6

CF2
dim 6

! C = −A, F = 0" lines of CF3: C + A = ±1, F = ±1/2

Fig. 2: Contiguity relations for CF2 and CF3.
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(a) plane {F = 0}

!
CF4−
D = E

CF2

CF4+

D = −E

CF4+

D = E

CF1
Z2 ⊕ Z2

CF2

CF4−
D = −E

CF1
Z2 ⊕ Z2

! {B = C = −A}

(b) plane {E = 0}

!
CF4+

D = F

CF2

CF4−
D = −F

CF4−
D = F

CF1
Z2 ⊕ Z2

CF2

CF4+

D = −F

CF1
Z2 ⊕ Z2

! {B = C = −A}

(c) plane {D = 0}

!

CF4
E = F

" CF3 I

CF4
E = −F

"CF3 I

CF4
E = F

"CF3 II

CF4
E = −F

" CF3 II

at D = −1 at D = 1

! {B + C + 2A = 0, B 6= C}

Fig. 3: Contiguity Relations for CF4.

3 – Unimodular Groups

We begin by considering IR3 with the Lorentzian scalar product given

by η = diag[ 1, −1, −1 ]. Let e1, e2, e3 denote the usual basis vectors of IR3.

The Euclidean cross product on IR3 is then determined by e1 × e2 = e3,

e2 × e3 = e1, and e3 × e1 = e2. We shall use the Lorentzian cross product

determined in contrast by e1 × e2 = e3, e2 × e3 = −e1, and e3 × e1 = e2,

extended to all of IR3 as a bilinear and skewsymmetric operation; see [11,

p. 262, ex. 22, and p. 124, ex. 7].

Now let g be a 3-dimensional Lie algebra with a Lorentzian scalar

product β. We choose a β-orthonormal basis e1, e2, e3 and identify g with

IR3 and β with η.
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!

PO2 I
C = A > B

dim 4

PO2 I
B = C > A

dim 4

PO2 I
B = A > C

dim 4

PO2 II
C = A < B

dim 4

PO2 II
B = C < A

dim 4

!

PO2 II
B = A < C

dim 4

Z2 ⊕ Z2

dim 6

Z2 ⊕ Z2

dim 6
Z2 ⊕ Z2

dim 6

Z2 ⊕ Z2

dim 6

Z2 ⊕ Z2

dim 6
Z2 ⊕ Z2

dim 6

! PGL3, B = C = A, dim 1

Fig. 4: Riemannian contiguity relations.

Lemma 3.1. The bracket operation on g is related to the Lorentzian

cross product by [u, v] = L(u×v) for a unique linear L : g −→ g. Further,

g is unimodular if and only if L is β-selfadjoint.

The proof is a direct parallel of the proof of Lemma 4.1 in [9] and we

omit the details.

Table 2 – Unimodular Lie algebras.

rk E def/indef Lie alg representative group and description

3 d so3 SO3 rigid motions of elliptic plane

3 i so2
1 SO2+

1 rigid motions of hyperbolic plane

2 d e2 E2 rigid motions of Euclidean plane

2 i e1
1 E1

1 rigid motions of Minkowski plane

1 – h3 H3 Heisenberg

0 – IR3 IR3 Abelian
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We call L the structure operator since giving it is equivalent to giving

the structure equations of g. We shall also use the analogous Euclidean

selfadjoint operator E determined via the Euclidean cross product de-

fined with respect to the same basis of g, now regarded as a Euclidean

orthonormal basis. (Note, this is the L of [9].) Letting ι = diag[−1, 1, 1 ],

we find that E = Lι. Observe that E diagonalizes, since it is a Euclidean

selfadjoint operator. To identify a unimodular Lie algebra with struc-

ture operator L, we form E, diagonalize it, and consult Table 2 (adapted

from [9]).

From O’Neill [11, pp. 261–262, ex. 19], we find the following canonical

forms for Lorentzian selfadjoint operators.

Lemma 3.2. A Lorentzian selfadjoint operator on IR3 appears, with

respect to some η-orthonormal basis, in exactly one of these canonical

forms:

SA1 diag[ a, b, c ] ;

SA2




a −b 0

b a 0

0 0 c


 , b 6= 0 ;

SA3




a ± 1

2
±1

2
0

∓1

2
a ∓ 1

2
0

0 0 b


 ;

SA4




a 0 − 1√
2

0 a
1√
2

1√
2

1√
2

a




.

Thus, in order to determine all left-invariant Lorentzian metric ten-

sors on unimodular 3-dimensional Lie groups, it suffices to study the four

cases of L given by the preceding lemma.
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First, we determine which Lie algebras occur in each case. If the

canonical form of L is SA1, then L = diag[ a, b, c ] and E = diag[−a, b, c ].

The structure equations of g are

[e3, e2] = a e1 ,

[e3, e1] = b e2 ,

[e1, e2] = c e3 .

Clearly, all the Lie algebras listed in Table 2 occur here. We shall see

that so3 and IR3 occur only in this case.

When L is SA2, the structure equations of g are

[e3, e2] = a e1 + b e2 ,

[e3, e1] = −b e1 + a e2 ,

[e1, e2] = c e3 .

We find det(E −λI) = (λ2 −a2 −b2)(c−λ) and eigenvalues c, ±
√

a2 + b2.

Recalling that b 6= 0, we obtain so2
1 when c 6= 0 and e11 when c = 0.

When L is SA3, the structure equations of g are

[e3, e2] =
(
a ± 1

2

)
e1 ∓ 1

2
e2 ,

[e3, e1] = ±1

2
e1 +

(
a ∓ 1

2

)
e2 ,

[e1, e2] = b e3 .

We find det(E − λI) = (λ2 ± λ − a2)(b − λ) and eigenvalues b,
1
2

(
ε ±

√
1 + 4a2

)
where ε = ∓1 according to the sign choice in L. We

obtain Lie algebras as follows:

b, a 6= 0 so2
1 ;

b 6= 0, a = 0
ε = 1 ε = −1

b < 0 e11 e2
b > 0 e2 e11

;(3.1)

b = 0, a 6= 0 e11 ;

b = a = 0 h3 .
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Finally, when L is SA4 the structure equations of g are

[e3, e2] = a e1 +
1√
2

e3 ,

[e3, e1] = a e2 +
1√
2

e3 ,

[e1, e2] = − 1√
2

e1 +
1√
2

e2 + a e3 .

We find det(E −λI) = −λ3 +a λ2 +(a2 +1)λ−a3. It is easy to verify, by

using elementary calculus for example, that: when a < 0 there are one

positive and two negative eigenvalues; when a = 0 there is one negative,

one zero, and one positive eigenvalue; and when a > 0 there are one

negative and two positive eigenvalues. Thus, we obtain e11 when a = 0

and so2
1 when a 6= 0.

Next, we determine the CF-types and SCS in each case. The Rieman-

nian case may be somewhat familiar, however, so first we review in our

setting the results of [9, §4] concerning sectional curvature on unimodular

groups.

3.1 – The Riemannian case

Only SA1 occurs in the Riemannian case, so we have E =diag[a, b, c].

We plot the information in cab-space, the ordering of coordinates being

chosen for convenience in presenting the figures. R is always diagonal

here, so we need only the following formulas:

R1212 =
c

2
(a + b − c) − 1

4
(c − a + b)(c + a − b) ,

R1313 =
b

2
(c + a − b) − 1

4
(c − a + b)(a + b − c) ,

R2323 =
a

2
(c − a + b) − 1

4
(c + a − b)(a + b − c) .

Figure 5 shows the three coordinate planes. In each, E2 is in the

open quadrants I and III, E1
1 is in II and IV, and H3 is on the axes except

at the origin (large bullet), which is the Abelian IR3. The diagonal lines
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(a) ca-plane

!

B = C

PO2 I

C = A PO2 I

PGL3PO2 II

flat B = A

(b) cb-plane

!

B = A

PO2 I

C = A PO2 I

PGL3PO2 II

flat B = C

(c) ab-plane

!

B = A

PO2 I

B = C PO2 I

PGL3PO2 II

flat C = A

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Fig. 5: (+ + +) coordinate planes: Euclidean, Minkowskian, Heisenberg, and Abelian
groups.
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have slopes of ±1 and indicate metrics of particular SCS on E2 and E1
1 .

Each line (including the coordinate axes) is labeled with an SCS and (if

appropriate) an equation in the coordinates of the 6-dimensional space

of possible curvatures; cf. Section 2 and Figure 4 there. All the open

regions have the same discrete SCS as indicated.

Of the other two representative Lie groups, SO3 occurs in the open

octants I and VII. In Figure 6, the view is of octant I looking back toward

the origin along the line c = a = b (large bullet) which indicates metrics of

constant positive curvature. The lines in the figure now represent planes

in cab-space, the open circles are intersections with coordinate planes,

and the small bullets are lines of intersection in octant I. Each plane is

labeled with the SCS, its equation in cab-space, and the equation of the

curvature type in BCA-space; cf. Section 2. Note that the curvature

type changes on passing through the line of constant curvature. To see

octant VII, turn the figure upside down.

Finally, SO2+
1 occurs in the remaining open octants. Figure 7 shows

octants IV and VIII, somewhat more stylized than the other figures.

Again, the lines represent planes which are labeled as before and the

open circles are intersections with the coordinate planes. To see octants

II and VI, turn the figure upside down.

As a simple application, we recover

Theorem 3.3. Among the unimodular Lie groups of dimension 3,

only IR3, E2, and SO3 (and their coverings and quotients) admit left-

invariant Riemannian metrics of constant curvature. Those on IR3 and

E2 are flat, and those on SO3 have constant (strictly) positive curva-

ture. No unimodular Lie group of dimension 3 admits a left-invariant

Riemannian metric of (strictly) negative curvature.

With only slightly more effort, one obtains the results on Ricci and

scalar curvatures; we leave this to the reader.

3.2 – The Lorentzian case

We now turn to Lorentzian metrics and proceed by considering sep-

arately each of the canonical forms of the structure operator L.
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!

# c = 0

PO2 II

A = C < B

c = a

PO2 I B = A > C

" c + a = bPO2 I

B = A = −C
#a = 0

PO2 II

B = C < A

PO2 I
A = C > B

a = b

"

PO2 I
A = C = −B

c = a + b

#

PO2 II B = A < C

b = 0

PO2 I
B = C > A

c = b

""

PO2 I
B = C = −A

a = c + b

! c = a = b : PGL3 > 0

Z2 ⊕ Z2Z2 ⊕ Z2

Z2 ⊕ Z2

Z2 ⊕ Z2 Z2 ⊕ Z2

Z2 ⊕ Z2

Z2⊕Z2Z2⊕Z2

Z2⊕Z2

Z2⊕Z2 Z2⊕Z2

Z2⊕Z2

Fig. 6: (+ + +) SO3 in octant I.

Canonical form SA1

In this case L = diag[ a, b, c ] and E = diag[−a, b, c ]. To facilitate

comparison with Riemannian metrics, we shall use the coordinate ā = −a

and plot the results in cāb-space. We give results only for (+ − −), those

for the other two signatures (−+−) and (−−+) being obtained by cyclic

permutations of a, b, c. As in the Riemannian case, R diagonalizes in this

Lorentzian case (form CF1). We find

R1212 =
c

2
(c + a − b) − 1

4
(c + a + b)(a + b − c) ,

R1313 =
b

2
(a + b − c) − 1

4
(c + a + b)(c + a − b) ,

R2323 = −a

2
(c + a + b) − 1

4
(a + b − c)(c + a − b) .
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# a = c + b

PO2 II
B = C < A

#

c + a = b
PO2 II

B = A < C

c + a = b
PO2 II

B = A < C

# $ #
b = 0

#
c = a + b

PO2 II
C = A < B #

c = 0

c = 0

c = 0

a = 0

a = 0

a = 0

c = b
PO2 I

B = C > A

a = b
PO2 I

C = A > B Z2 ⊕ Z2

Z2 ⊕ Z2

Z2 ⊕ Z2

Z2 ⊕ Z2

Z2 ⊕ Z2

Z2 ⊕ Z2

Fig. 7: (+ + +) SO2
1 in octants IV and VIII.

Figures 8, 9, and 10 are the Lorentzian versions of Figures 5, 6, and

7, with the same location of groups in Figures 5 and 8, and with the same

labeling conventions in all. We observe now that in addition to IR3 and

E2, E1
1 also admits flat left-invariant Lorentzian metrics. This recovers

parts (1) and (2) of Theorem 2 in [10]. We will recover part (3) from

SA3.

Also, SO3 now admits no left-invariant Lorentzian metric of constant

curvature, but SO2+
1 admits ones of constant positive curvature. This

includes the results in Remarks 1 and 2 of [10], taking into account the

differing signatures here (+ − −) and there (− + +).

Unlike in the Riemannian case, E1
1 and SO2+

1 (or SL2) are easy to

distinguish here: the former admits a flat left-invariant Lorentzian metric

and the latter does not; compare Corollary 4.7 in [9].

We may not yet formulate the Lorentzian version of Theorem 3.3,

because there are still three cases of L to consider.
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(a) cā-plane

!

PO2 II

C = −A PO1
1 I

PO1
1 IIPGL3

B = −A flat

(b) cb-plane

!

B = −A

PO1
1 I

C = −A PO1
1 I

PGL3PO2 I

flat

(c) āb-plane

!

B = −A

PO1
1 I

PO2 II

PO1
1 IIPGL3

C = −A flat

Z2⊕Z2 III Z2⊕Z2 III

Z2⊕Z2 I Z2⊕Z2 II

Z2⊕Z2 II Z2⊕Z2 I

Z2⊕Z2 III Z2⊕Z2 III

Z2⊕Z2 I Z2⊕Z2 II

Z2⊕Z2 I Z2⊕Z2 II

Z2⊕Z2 II Z2⊕Z2 I

Z2⊕Z2 II Z2⊕Z2 I

Z2⊕Z2 I Z2⊕Z2 II

Z2⊕Z2 III Z2⊕Z2 III

Z2⊕Z2 III Z2⊕Z2 III

Z2⊕Z2 II Z2⊕Z2 I

Fig. 8:SA1(+−−) coordinate planes: Euclidean, Minkowskian, Heisenberg, and Abelian
groups.
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% % % % % % %
% % % %

ā

b

c = ā + b
PO1

1 II
B = −A

C = −A

PO1
1 II

c + ā = b

c = b
PO2 II

c

&&&&
&&&&
&&&

&&&&&&

Z2 ⊕ Z2 II

Z2 ⊕ Z2 III

Z2 ⊕ Z2 II
Z2 ⊕ Z2 III

'

Fig. 9: SA1(+ − −): SO3 in octant I.

Canonical form SA2

We continue with L of the form SA2. Calculating, we find the cur-

vature tensor

R =




b2 +
c2

4
− ac

2
0 0

0 −
(

b2 +
c2

4

)
b (2a − c)

0 b (2a − c) b2 +
c2

4




.

When c = 2a, we obtain R = diag[ b2,−(b2 + a2), b2 + a2 ] of the type

CF1 with SCS of PO1
1 I and −A = C < B. For a = 0 this comes from a

left-invariant Lorentzian metric on E1
1 , and for a 6= 0 from one on SO2+

1 .

When c 6= 2a, R is of the type CF2 with SCS of Z2. Again, the underlying

group is E1
1 or SO2+

1 according as c = 0 or c 6= 0, respectively. Observe
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# b = 0

PO1
1 II

c = −ā
PO1

1 I
B = −A

c = −ā
PO1

1 I
B = −A

c + ā = b
PO1

1 II
B = −C = A

Z2 ⊕ Z2 II

Z2 ⊕ Z2 III

c + ā + b = 0
PO2 I

B = C = A

Z2 ⊕ Z2 I

Z2 ⊕ Z2 I

!c = −ā = b PGL3 > 0

c = b
PO2 II

!
!

ā = −b
PO1

1 I
C = −A

"2c + ā = 0, c = b c = 2b, ā = −b

#c = 0

B = C = A

PO2 II
c + ā + b = 0

2c = b,

c = −ā
"

c = ā + b

PO1
1 I

−B = C = A

# ā = 0

B = −C = A

PO1
1 I

c + ā = b

Z2 ⊕ Z2 I Z2 ⊕ Z2 II

Z2⊕Z2 II Z2⊕Z2 IPO1
1 II PO2 I

Z2⊕Z2 III Z2⊕Z2 I

Z2 ⊕ Z2 III Z2 ⊕ Z2 II

Z2⊕Z2 III Z2⊕Z2 II

Fig. 10: SA1(+ − −): SO2
1 in octants IV and VIII
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that we obtain only a special 3-parameter family of the full CF2. It is

easy to verify that none of these occurred in SA1.

Canonical form SA3

Now we come to SA3. The curvature tensor is

R =




3

4
b2 − ab 0 0

0 −b2

4
± 1

2
(b − 2a) ±1

2
(b − 2a)

0 ±1

2
(b − 2a)

b2

4
± 1

2
(b − 2a)




.

When b = 2a, we obtain R = diag[ a2,−a2, a2 ] of the type CF1. For

a = 0 this comes from a flat left-invariant Lorentzian metric on H3,

which recovers part (3) of Theorem 2 in [10]. For a 6= 0, it has SCS of

PO1
1 I with B = −C = A and comes from a metric on SO2+

1 .

When b 6= 2a, there are three cases. For b = 0 it is a boosted type

CF3 with SCS of PHT , and comes from a left-invariant Lorentzian metric

on E1
1 . For a = 0 it is a boosted type CF3 with SCS of Z2 and comes

from a metric on E1
1 or E2, depending on the sign of b and the sign choice

in L; cf. (3.1). For both b, a 6= 0 it is a boosted type CF3 and comes

from a metric on SO2+
1 . When b = a the SCS is PHT and when b 6= a

the SCS is Z2.

Canonical form SA4

Finally, we consider SA4. The curvature tensor is

R =




−a2

4
− a√

2
− a√

2

− a√
2

1 − a2

4
1

− a√
2

1 1 +
a2

4




.

When a = 0, this is a boosted type CF3 with SCS of PHT and comes

from a left-invariant Lorentzian metric on E1
1 . When a 6= 0, it comes

from a metric on SO2+
1 . We have not been able to determine the exact

SCS, but it is not PGL3.
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As promised earlier, we may now observe that indeed so3 and IR3 do

occur only when L is of type SA1. Finally, we give the Lorentzian version

of Theorem 3.3.

Theorem 3.4. Among the unimodular Lie groups of dimension 3,

only SO3 (and its coverings and quotients) does not admit left-invariant

Lorentzian metrics of constant curvature. Only those on SO2
1 have con-

stant (strictly) positive curvature; the rest are flat. No unimodular Lie

group of dimension 3 admits a left-invariant Lorentzian metric of (strictly)

negative curvature.

With only slightly more effort, one can obtain results on Ricci and

scalar curvatures; we leave this to the reader.

4 – Nonunimodular Groups

Now we consider the rest of the 3-dimensional Lie algebras g. We

note in passing that these are in fact all solvable, and that e11 and e2 are

the only other solvable algebras which are not nilpotent (or Abelian).

We shall exclude from our study the class S of [9], [10]; its curvatures

have already been completely determined [10]. Briefly, all left-invariant

Lorentzian metrics on groups of this class have constant curvature, and

this constant can be any real number.

Given a nonunimodular g not in S, let u denote its unimodular kernel,

u = ker(tr ad : g −→ IR) ,

and let β be a Lorentzian metric tensor on g. There are two cases.

If u is not a null plane (i.e., u is not tangent to the lightcone of β in

g), then we can choose a β-orthonormal basis e1, e2, e3 with e3 ⊥ u and

[e1, e3] ⊥ [e2, e3] in u, where ⊥ denotes β-orthogonal. If u is a spacelike

plane, then e3 is a timelike vector and we have the signature − − +. If

u is a spacetime plane (also called a timelike plane in relativity), then e3

is spacelike and we have the signature either + − − or − + −. Taking

into account the semidirect product structure of our g, it easily follows

that these last two signatures produce equivalent geometries. We shall

consider only + − − explicitly and leave the transfer to − + − to the

reader.
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If u is a null plane, then we can choose a null basis e1, e2, e3 with

e3 /∈ u a null vector, e1, e2 ∈ u, and with

〈e3, e3〉 = 〈e2, e2〉 = 〈e1, e3〉 = 〈e1, e2〉 = 0 ,

〈e3, e2〉 = −〈e1, e1〉 = 1 ,

[e1, e3] ⊥ [e2, e3] .

In both cases the structure equations of g are of the form

(4.1)

[e1, e2] = 0 ,

[e1, e3] = a e1 + b e2 ,

[e2, e3] = c e1 + d e2 , a + d 6= 0 ,

with at least two of a, b, c, d different from zero (otherwise we are reduced

to H3 or IR3). It follows from [9, p. 321] that nonunimodular g with

structure equations of this form are classified up to isomorphism by the

invariant D = (ad − bc)/(a + d)2.

Thus, we need consider only g of the form (4.1) with β= diag[ 1,−1,−1],

β = diag[−1, −1, 1 ], or

β =




−1 0 0

0 0 1

0 1 0


 .

In the first case, the condition [e1, e3] ⊥ [e2, e3] becomes ac − bd = 0. We

find the curvature

R = diag

[
−1

4
(b − c)2 + ad,

1

4
(b − c)(3b + c) − a2,

1

4
(b − c)(b + 3c) + d2

]

of type CF1. The SCS other than Z2 ⊕ Z2 are as follows:

bc + ad = b2 − a2 = c2 − d2 PGL3 > 0 ;

bc + ad = b2 − a2 and

b2 − c2 + d2 − a2 > 0 PO2 I ,

b2 − c2 + d2 − a2 < 0 PO2 II ;
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bc + ad = c2 − d2 and

b2 − c2 + d2 − a2 > 0 PO1
1 I − A = B < C ,

b2 − c2 + d2 − a2 < 0 PO1
1 II C < B = −A ;

b2 − a2 = c2 − d2 and

a2 − b2 + ad + bc > 0 PO1
1 I − A = C < B ,

a2 − b2 + ad + bc < 0 PO1
1 II B < C = −A .

Figure 11 shows a slice a = const. > 0 in abd-space. There, c > 0 in

quadrants I and III and c < 0 in quadrants II and IV. The PO2 curve

has the equation d = a(b2 − a2)/(b2 + a2) and is asymptotic to d = a.

The three pieces of PO1
1 curve have the equation d = a(b2 + a2)/(b2 − a2)

and are asymptotic to b = ±a and d = a. To see a < 0, turn the figure

upside down. Every nonunimodular Lie algebra not in S is isomorphic

to one with a > 0 and −a < d ≤ a [9]. Thus, this illustrates the result

of [2] that Lie groups which admit left-invariant Riemannian metrics of

constant negative curvature, admit left-invariant Lorentzian metrics of

constant positive curvature.

Figure 12 shows the bc-plane regarded as the plane a = d = 0. Fi-

nally, we describe the remaining set where a = b = 0. When d = ±c 6= 0

the SCS is PGL3 with constant positive curvature. Otherwise the SCS

is PO2 I for c2 − d2 < 0 and PO2 II for c2 − d2 > 0.

In the second case, the condition [e1, e3] ⊥ [e2, e3] becomes −ac−bd =

0. We find the curvature

R = diag

[
1

4
(b + c)2 − ad,

1

4
(b + c)(3b − c) + a2, −1

4
(b + c)(b − 3c) + d2

]

of type CF1. Note carefully that
∧2 diag[−1,−1, 1 ] = diag[ 1,−1, −1 ],

so the correct labeling is R = diag[A, B, C]. When a = b = 0 the SCS

is PO1
1 I with −A = B < C. Figure 13 shows the bc-plane as the set

a = d = 0. Finally, Figure 14 shows a slice a > 0 in abd-space. Now

c < 0 in quadrants I and III and c > 0 in quadrants II and IV. To see

a < 0, turn the figure upside down. This case contains the only instance

of constant negative curvature we have observed so far, and illustrates

the result in [2] that there are odd-dimensional Lie groups which admit
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b

%%%
%%%
%%%
%%%
%%
%%
%%%
%%%
%%%
%%%
%%%
%%
%%%
%%d

d = a

d = −aPGL3 > 0

!

PO1
1 II

B < C = −A

PO1
1 I

−A = C < B

!

PO1
1 II

B < C = −A

PO1
1 I

−A = C < B

! PGL3 > 0

B = A = −C

PO1
1 I

PO2 I

PO2 II PO2 II

PO2 I

PO1
1 I

−A = B < C

PO1
1 II

C < B = −A
PO1

1 I
−A = B < C

PO1
1 I −A = B < C

C < B = −A

PO1
1 II

C < B = −A

PO1
1 II

Z2⊕Z2 I Z2⊕Z2 I

Z2⊕Z2 I Z2⊕Z2 I

Z2⊕Z2 I

Z2⊕Z2 I

Z2⊕Z2 II Z2⊕Z2 II

Z2⊕Z2 II

Z2⊕Z2 III

Z2⊕Z2 II

Z2⊕Z2 III

Z2⊕Z2 III

Z2⊕Z2 II

Z2⊕Z2 II Z2⊕Z2 II

Z2⊕Z2 III Z2⊕Z2 III

Z2⊕Z2 III Z2⊕Z2 III

Fig. 11: Nonunimodular groups + − −, a #= 0.

left-invariant Riemannian metrics of constant negative curvature but do

not admit left-invariant Lorentzian metrics of constant negative or zero

curvature.

In the last case, the condition [e1, e3] ⊥ [e2, e3] becomes ac = 0. We

find the curvature

R =




0 −c2

4
0

−c2

4
a(a − d) + bc 0

0 0
3c2

4




.
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PO2 II

−A = B < C PO1
1 I

PGL3PO1
1 II

flat B < C = −A

Z2⊕Z2 III Z2⊕Z2 III

Z2⊕Z2 II Z2⊕Z2 I

Z2⊕Z2 I Z2⊕Z2 II

Z2⊕Z2 III Z2⊕Z2 III

Fig. 12: Nonunimodular groups (+ − −), a = d = 0.

−A = C < B PO1
1 I

−A = B < C

PO1
1 I

PO2 IPGL3

B = C = A flat

Z2⊕Z2 II Z2⊕Z2 I

Z2⊕Z2 II Z2⊕Z2 I

Z2⊕Z2 I Z2⊕Z2 II

Z2⊕Z2 I Z2⊕Z2 II

Fig. 13: Nonunimodular groups (− − +), a = d = 0.

When a = c = 0 the SCS is PGL3 flat. When a 6= 0 = c, after a rotation

and a boost we find the type CF3 with SCS of PHT . Finally, when

a = 0 6= c, we have not yet been able to determine the exact SCS.
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%%%
%%%
%%%
%%%
%%%
%%%
%%%
%%%
d

d = −aPO2 I
B = C = A

bPO1
1 I

−A = C < B

d = aPGL3 < 0

Z2⊕Z2 I

Z2⊕Z2 I

Z2⊕Z2 II

Z2⊕Z2 II

Fig. 14: Nonunimodular groups − − +, a #= 0.
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