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A unilateral problem

for a nonlinear hyperbolic operator

F. LUTEROTTI

Riassunto: Si dimostra l’esistenza di soluzioni deboli per un problema con ostacolo
associato ad un operatore iperbolico non lineare con smorzamento; i vincoli unilateri
riguardano la funzione incognita.

Abstract: We prove the existence of weak solutions for an obstacle problem as-
sociated to a nonlinear hyperbolic operator with damping; the unilateral constraints
concern the unknown function.

1 – Introduction

In [16] Medeiros and Milla Miranda proved the global existence

of solutions to the following hyperbolic mixed problem:

(1.1)





∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u + (−∆)α ∂u

∂t
=f in Ω × (0,∞) ,

u(x, 0)=u0(x),
∂u

∂t
(x, 0)=u1(x) in Ω ,

u = 0 on Γ × (0,∞) ,
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where: Ω is a bounded open subset of IRN , with a smooth boundary ∂Ω =

Γ, ∆ =
∑N

i=1 ∂2/∂x2
i , |∇u(x, t)|2 =

∑N
i=1 |∂u/∂xi|2, 0 < α ≤ 1, M(ρ)

is a positive continuous function on [0, ∞). Under further assumptions

(M ∈ C1 and 1/2 ≤ α ≤ 1), they also obtained the uniqueness.

Vasconcellos and Teixeira [21] considered the following nonlin-

ear damped hyperbolic problem:

(1.2)





∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u − ∆

∂u

∂t
+ F (u)=0 in Ω × (0,∞) ,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) in Ω ,

u = 0 on Γ × (0,∞) ,

where Ω, Γ, M are as above, while F (u) is a suitable nonlinear function.

They obtained some global existence and uniqueness theorems for strong

solutions. Such theorems still hold in the case where the damping term

in (1.2) is (−∆)α∂u/∂t (1/2 ≤ α ≤ 1) and when the equation in (1.2) is

inhomogeneous like the one in (1.1). The proofs in [16] and in [21] are

carried out in an abstract spaces framework, by using, as a main tool,

the finite dimensional Galerkin approximation. The exponential decay

of the energy is also obtained in both papers. When N = 1, problems

like (1.1) and (1.2) arise in the study of vibrations of an elastic string

(see, e.g., Carrier [7]) with damping.

As far as we know, an obstacle problem associated to the previous

Cauchy-Dirichlet ones has not been investigated yet. Let us consider the

following unilateral hyperbolic mixed problem:

(1.3)





a)
∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u − ∆

∂u

∂t
≥ 0 and u ≥ 0

a.e. in Ω × (0, T ) ,

b)

(
∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u − ∆

∂u

∂t

)
u = 0

a.e. in Ω × (0, T ) ,

c) u(·, 0) = u0 ≥ 0,

(
∂u

∂t
(·, 0) − u1

)
≥ 0,

(
∂u

∂t
(·, 0) − u1

)
u0 = 0

a.e. in Ω ,

d) u = 0 on Γ × (0, T ) ;
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here 0 < T < +∞; Ω, Γ, M are as above. The conditions (1.3) a)

and (1.3) b) together describe the following situation: the unilateral con-

straint is u(x, t) ≥ 0 and, when u(x, t) > 0, the model is governed by the

equation

∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u − ∆

∂u

∂t
= 0 a.e. in Ω × (0, T ) ,

while (1.3) c) accounts for the initial conditions accordingly with the

unilateral problem.

The aim of this paper is to establish the existence of weak solutions

(the definition will be given in the following section) to the obstacle prob-

lem (1.3), under the same assumptions on M , u0, u1, Ω taken in [21].

In the field of hyperbolic unilateral problems, the closest reference

to (1.3) is the paper [13] by Jarušek, Málex, Nečas and Šverák;

they proved the existence of weak solutions to the following hyperbolic

obstacle problem (where n denotes the outward normal unitary vector

to Γ):

(1.4)





∂2u

∂t2
− ∆u − ∆

∂u

∂t
≥ 0 and u ≥ 0 a.e. in Ω × (0, T ) ,

(
∂2u

∂t2
− ∆u − ∆

∂u

∂t

)
u = 0 a.e. in Ω × (0, T ) ,

u(·, 0) = u0 ≥ 0,

(
∂u

∂t
(·, 0) − u1

)
≥ 0,

(
∂u

∂t
(·, 0) − u1

)
u0 = 0

a.e. in Ω ,

∂

∂n

(
∂u

∂t
+ u

)
≥ 0, u ≥ 0,

(
∂

∂n

(
∂u

∂t
+ u

))
u = 0 on Γ × (0, T ) ,

an existence result was also established in the case of homogeneous Dirich-

let boundary conditions. This problem is a model for a viscous drum vi-

brating in the presence of an obstacle. Let us remark that (1.3) concerns

the same phenomenon, but the nonlinear model can be deduced under

less restrictive assumptions (also see Remark 3.2 below). In these models

the unknown u(x, t) denotes the (transversal) elongation of the point x

at the time t.

The results in [13] are obtained by using, in particular, an approx-

imation by a special penalty operator and a compactness lemma. We
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adapt here the procedure used in [13] with some modifications, due to

the presence of the nonlinear function M .

We can put the problem (1.3) in the form of a variational inequality

of hyperbolic type, with unilateral constraints on the unknown function

u. Hyperbolic variational inequalities have been extensively investigated

in the case where the unilateral constraints concern the time derivative

of the unknown function (see, e.g., [5], [6], [15]); on the other hand, some

results are known in the case where the constraints are imposed on the

unknown function: we mention, e.g., [1], [2], [8], [18], [4].

The paper is structured as follows. The next section deals with the

notation, the assumptions, the weak formulation of the problem (1.3),

the statement of the existence result (Theorem 2.1) and of the main

(abstract) result of [21], together with the corresponding abstract setting.

In the Section 3, we carry out the proof of Theorem 2.1 in some steps:

penalization method, a priori estimates, passage to the limit. Finally, we

point out some direct extensions of our result and some open problems

related to (1.3).

2 – Weak formulation. Statement of the main result

Let Ω be an open bounded subset of IRN , with a boundary ∂Ω = Γ

of class C2. Let T be given, such that 0 < T < +∞. Let moreover M be

a function such that:

(2.1) M ∈ C1([0,+∞); IR) and M(ρ) ≥ m0 > 0, ∀ρ ∈ [0,+∞).

In the sequel we will denote u′ = ∂u/∂t, u′′ = ∂2u/∂t2 and ‖ · ‖ =

‖∇u‖L2(Ω).

Definition 2.1. Let us suppose that u0 ∈ H2(Ω) ∩ H1
0 (Ω) and

u1 ∈ H1
0 (Ω). We say that the pair (u(x, t), y(x)) is a weak solution to the

problem (1.3), if it satisfies the following conditions:

(2.2)

a) u ∈ L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)),

b) u′ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ,

c) y ∈ L2(Ω) ,

d) u ≥ 0 a.e. in Ω × (0, T ) ,
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(2.3)

∫ T

0

∫

Ω

[
M(‖u‖2)∇u · ∇(v−u)+∇u′∇(v − u)−u′(v′ − u′)

]
dx dt+

+

∫

Ω

[
y(x)

(
v(x, T ) − u(x, T )

) − u1(x)
(
v(x, 0) − u0(x)

)]
dx ≥ 0 ,

∀v ∈ K ,

where

(2.4)
K = {v|v ∈ L2(0, T ;H1

0 (Ω)), v′ ∈ L2(0, T ;L2(Ω))

and v ≥ 0 a.e. in Ω × (0, T )} .

Remark 2.1. The weak formulation (2.3) has been obtained from

the “strong” formulation (1.3) in the following way: multiply the first

inequality in (1.3) a) by v ∈ K, consider (1.3) b), integrate on Ω and

from 0 to T , using the Green formula, the integration by parts, and the

conditions in (1.3) c), d), and finally put u′(x, T ) = y(x). On the other

hand, it can be seen that if u(x, t), given in the Definition 2.1, is smooth

enough, then it satisfies (1.3).

Now we give the statement of our main result; the proof will be

carried out in the next section.

Theorem 2.1. Let the previous assumptions on Ω and M hold. Let

u0 ∈ H2(Ω) ∩ H1
0 (Ω) and u1 ∈ H1

0 (Ω) be given, with u0 ≥ 0 a.e. in Ω.

Then there exists a weak solution (u(x, t), y(x)) of the problem (1.3), in

the sense of the Definition 2.1 above.

For the sake of completeness, we recall the precise statement of Theo-

rem 2.1 of [21] (see Proposition 2.1 below); towards this aim we also have

to introduce the abstract setting and some assumptions given in [21].

Let H be a real separable Hilbert space with inner product denoted

by (·|·) and norm | · |H . We consider a linear operator A in H, with the

following properties:

(2.5) The domain of A, D(A), is dense in H,

A is a self-adjoint operator and there exists a constant C0 > 0 such that

(2.6) (Au|u) ≥ C0|u|2H , ∀u ∈ H .
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The Hilbert space V = D(A1/2), with norm denoted by ‖v‖V = |A1/2v|H ,

for v in V , is compactly embeded on H. The inner product in V is

denoted by [·|·].
We consider a continuous mapping F : V → H satisfying:

(2.7)

∀c > 0 ∃αc such that

|F (u) − F (v)|H ≤ αc‖u − v‖V ,

if u, v ∈ V and ‖u‖2
V + ‖v‖2

V ≤ c .

There exist constants k0 > 0 , µ > 0 such that

(2.8)

∫ t

0

(
F (u(s)), u′(s)

)
ds ≥ −k0‖u(0)‖µ

V ,

∀t > 0 , ∀u ∈ C1([0, ∞);V ) .

For every (u, v) ∈ D(A) × V we have

F (u(·)) ∈ V ,(2.9)

∀c > 0 ∃βc such that

|[F (u(·))|v]| ≤ βc|Au|H ‖v‖V , if ‖u‖V ≤ c ,(2.10)

∀c > 0 ∃γc such that

‖F (u(·))‖V ≤ γc , if |Au|H ≤ c .(2.11)

Now we are able to give the precise statement of the main result of [21].

Proposition 2.1. Let (2.1) and (2.5-11) hold. If (u0, u1) ∈ D(A)×
V and ∀T > 0, there exists a unique u : [0, T ] → H such that:

u ∈ C0([0, T ];D(A)) ∩ C1([0, T ];V ) ,(2.12)

∀t ∈ [0, T ],
(
u(t), u′(t), F (u(t))

) ∈ D(A) × D(A) × V ,(2.13)

u′ + Au ∈ C1([0, T ];H) and (u′ + Au)′ = u′′ + Au′ ,(2.14)

u′′ ∈ L2(0, T ;H) ,(2.15)
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and u satisfies

(2.16)

{
u′′(t) + M(‖u(t)‖2

V )Au(t) + F (u(t)) + Au′(t)=0 in H , ∀t > 0 ,

u(0) = u0 , u′(0) = u1 .

3 – Proof of Theorem 2.1

As we have already pointed out in the Introduction, the proof of

Theorem 2.1 consists of the following steps: 1) penalization method; 2)

a priori estimates; 3) passage to the limit.

1) We approximate our weak unilateral problem by a countable family

of penalized equations (see (3.1) below) together with initial and bound-

ary conditions (see (3.2) and (3.3) below). We establish an existence and

uniqueness result for each penalized mixed problem (see Proposition 3.1

below), by applying Proposition 2.1.

2) We get some a priori estimates, concerning the boundedness of

the solution uk of the problem (3.1)-(3.2)-(3.3) in some suitable spaces,

independently of the penalization parameter k.

3) From the boundedness established in the step 2), we deduce some

weak and strong convergences; by using a compactness result given in [13],

we get some further strong convergences, which allow us to complete the

passage to the limit as k → +∞. The limit
(
u(x, t), y(x)

)
, obtained with

this procedure, satisfies (2.2) and (2.3), and hence it is a weak solution

of the problem (1.3), in the sense of the Definition 2.1.

3.1 – Penalization method

Let us take any integer k ≥ 1. We approximate our unilateral prob-

lem by the following penalized one:

u′′
k − M(‖uk‖2)∆uk − ∆u′

k − ku−
k = 0 in Ω × (0, T ),(3.1)

uk(·, 0) = u0, u′
k(·, 0) = u1 in Ω ,(3.2)

uk = 0 on Γ × (0, T ) ,(3.3)

where ξ− = max{−ξ, 0}.
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Now we want to apply the abstract result of the Proposition 2.1,

in order to obtain the existence and the uniqueness of solutions to the

mixed problem (3.1)-(3.2)-(3.3), for every fixed k (see Proposition 3.1

below). The application is as follows. Take H = L2(Ω), V = H1
0 (Ω),

A = −∆, and, hence, D(A) = H2(Ω) ∩ H1
0 (Ω). Clearly (2.6) is satisfied.

Finally, we have to take F (uk) = −ku−
k ; we remark at once that such

F (·) is a continuous mapping from H1
0 (Ω) in L2(Ω). It remains to show

that −ku−
k satisfies (2.7-11) for every fixed k. Firstly, thanks to the

Lipschitz continuity of (ξ)− with respect to ξ and to a straightforward

application of the Green formula in (2.6) (or considering some results

concerning equivalent norms in H1
0 (Ω)), we have that (2.7) holds with

αc = C0 (and hence αc is actually independent of c). Analogously, (2.8)

holds with, e.g., µ = 2 and k0 = kC0/2, taking into account the identity

−u−
k u′

k = 1/2[(u−
k )2]′. If uk ∈ H2(Ω) ∩ H1

0 (Ω) clearly −ku−
k ∈ H1

0 (Ω) and

hence (2.9) holds. The use of the following inequality

∃c̃ such that ‖u‖H1
0
(Ω) ≤ c̃‖∆u‖L2(Ω)

(which can be obtained, e.g., applying the Green formula and the Hölder

inequality) allows to prove (2.10) and (2.11) directly.

So, Proposition 2.1 yields, in particular, the following:

Proposition 3.1. Under the previous assumptions on Ω and M , if

u0 ∈ H2(Ω)∩H1
0 (Ω) and u1 ∈ H1

0 (Ω), then, ∀k ≥ 1, there exists a unique

uk, such that:

uk ∈ C0([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)) ,(3.4)

∀t ∈ [0, T ],
(
u′

k(·, t), u−
k (·, t)) ∈ (

H2(Ω) ∩ H1
0 (Ω)

) × H1
0 (Ω) ,(3.5)

(u′
k − ∆uk)

′ = u′′
k − ∆u′

k ∈ C0([0, T ];L2(Ω)),(3.6)

u′′
k ∈ L2(0, T ;L2(Ω)),(3.7)

and uk satisfies (3.1)-(3.2)-(3.3).
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3.2 – A priori estimates

I) We multiply the equation (3.1) by u′
k, and we integrate on Ω and

from 0 to t (t ≤ T ); defining M̂(λ) =
∫ λ

0 M(ρ) dρ, ∀λ ≥ 0, after some

calculations we obtain:

(3.8)

1

2

∫

Ω

|u′
k(x, t)|2 dx +

1

2
M̂

(∫

Ω

|∇uk(x, t)|2 dx

)
+

+

∫ t

0

∫

Ω

|∇u′
k(x, τ)|2 dx dτ +

k

2

∫

Ω

[uk(x, t)−]2 dx ≤

≤ 1

2

∫

Ω

|u1|2 dx +
1

2
M̂

( ∫

Ω

|∇u0|2 dx
)

+
k

2

∫

Ω

[u−
0 ]2 dx ,

∀t ∈ [0, T ].

Recall that u0 ≥ 0 and remark that M̂(λ) ≥ m0λ; thanks to the assump-

tions on u0, u1 and M , from (3.8) we deduce that there exists a positive

constant c1, c1 = c1(u0, u1, M), but c1 independent of k, such that:

∫

Ω

|∇uk(x, t)|2 dx ≤ c1, ∀t ∈ [0, T ] ;(3.9)

∫

Ω

|u′
k(x, t)|2 dx ≤ c1, ∀t ∈ [0, T ] ;(3.10)

∫ t

0

∫

Ω

|∇u′
k(x, τ)|2 dx dτ ≤ c1, ∀t ∈ [0, T ] ;(3.11)

k

∫

Ω

[uk(x, t)−]2 dx ≤ c1, ∀t ∈ [0, T ] .(3.12)

II) We multiply the equation (3.1) by −∆uk; we integrate on Ω and

from 0 to t (t ≤ T ); after some calculations we obtain:

(3.13)

∫ t

0

∫

Ω

M(‖uk‖2)|∆uk(x, τ)|2 dx dτ +
1

2

∫

Ω

|∆uk(x, t)|2 dx+

− k

∫ t

0

∫

Ω

∇(
uk(x, τ)−) · ∇uk(x, τ) dx dτ =

=
1

2

∫

Ω

|∆u0|2 dx +

∫

Ω

[u′
k(x, t)∆uk(x, t) − u1∆u0] dx+

+

∫ t

0

∫

Ω

|∇u′
k(x, τ)|2 dx dτ, ∀t ∈ [0, T ]. .
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Since − ∫
Ω ∇(u−

k ) · ∇uk dx =
∫
Ω ∇(u−

k ) · ∇(u−
k ) dx, and thanks to (3.10),

(3.11), and to the assumptions on u0, u1 and M , from (3.13) we de-

duce that there exists a positive constant c2, c2 = c2(u0, u1, M), but c2

independent of k, such that:

(3.14)

∫

Ω

|∆uk(x, t)|2 dx ≤ c2, ∀t ∈ [0, T ] .

III) Our goal is to establish the boundedness of {u′′
k} in a suitable

space; our strategy is to look for the boundedness of {ku−
k }, and then to

use the equation (3.1).

Let us consider the equation (3.1); since the conclusions of Proposi-

tion 3.1 hold, in particular (3.6), we have:

(3.15)

0 ≤
∫ t

0

∫

Ω

kuk(x, τ)− dx dτ =

∫

Ω

[
u′

k(x, t) − u1+

−
∫ t

0

M(‖uk‖2)∆uk(x, τ) dτ − ∆uk(x, t) + ∆u0

]
dx ,

∀t ∈ [0, T ] .

Thanks to (3.10), (3.9), (3.14), and to the assumptions on u0, u1 and

M , from (3.15) we deduce that there exists a positive constant c3, c3 =

c3(u0, u1, M), but c3 independent of k, such that:

(3.16)

∫ t

0

∫

Ω

|kuk(x, t)−| dx dτ ≤ c3, ∀t ∈ [0, T ] .

Let us go back to the equation (3.1); we can deduce the boundedness

of {u′′
k} from the just established boundedness of the other terms: if we

take s > N/2, thanks to (3.9), (3.14), (3.11), (3.16) and to the continuity

of M , we have that:

(3.17) {u′′
k}k≥1 is bounded in L1(0, T ;H−s(Ω)) ,

where, of course, H−s(Ω) =
(
Hs

0(Ω)
)∗

, and since L1(Ω) ↪→ H−s(Ω), when

s > N/2.
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3.3 – Passage to the limit

Thanks to (3.9), (3.14), (3.10), (3.11), we can extract from {uk}k≥1

a subsequence, still denoted by {uk}, such that, as k → +∞:

uk → u weakly star in L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)) ;(3.18)

u′
k → u′ weakly star in L∞(0, T ;L2(Ω))

and weakly in L2(0, T ;H1
0 (Ω));(3.19)

u′
k(x, T ) → y(x) weakly in L2(Ω);(3.20)

uk(x, T ) → u(x, T ) weakly in H1
0 (Ω).(3.21)

By using a classical compactness argument, from (3.18) and (3.19) we

have that

(3.22) uk → u strongly in L2(0, T ;H1
0 (Ω)) ;

thanks to (3.22) and to (2.1), we also have that:

(3.23) M(‖uk‖2) → M(‖u‖2) strongly in L2(0, T ) .

Now we recall a quite general compactness result proved in [13] (see

Theorem 3.1).

Proposition 3.2. Let B0 ↪→↪→ B ↪→ B1 be Banach spaces, with

B0 reflexive and separable. Let 1 < p < ∞, 1 ≤ q < ∞. Then:

(3.24) W ≡ {w|w ∈ Lp(0, T ;B0), w′ ∈ Lq(0, T ;B1)} ↪→↪→ Lp(0, T ;B),

where ↪→↪→ denotes compact embedding.

We apply Proposition 3.2 in the case where: B0 = H1
0 (Ω), B = L2(Ω),

B1 = H−s(Ω), p = 2, q = 1; thanks to (3.19) and (3.17), we get that:

(3.25) u′
k → u′ strongly in L2(0, T ;L2(Ω));
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from (3.25) we also have that

(3.26)
uk(·, t) → u(·, t) strongly in L2(Ω), ∀t ∈ [0, T ]

(in particular: uk(x, T ) → u(x, T ) strongly in L2(Ω)) .

Now we multiply the penalized equation (3.1) by v − uk, with v ∈ K

(see (2.4)); we integrate on Ω and from 0 to T . Since v− = 0 a.e. in

Ω × (0, T ), we have that:

(3.27)
0 ≤

∫ T

0

∫

Ω

ku−
k (v − uk) dx dt =

∫ T

0

×

×
∫

Ω

[
u′′

k(v − uk) − M(‖uk‖2)∆uk(v − uk) − ∆u′
k(v − uk)

]
dx dt .

We take the lim inf, as k → +∞, in (3.27); after some calculations, taking

into account the properties of uk, we obtain:

lim inf
k→+∞

{ ∫ T

0

∫

Ω

[|u′
k|2 − u′

kv
′+

+ M(‖uk‖2)∇uk · ∇v − M(‖uk‖2)∇uk · ∇uk+
(3.28)

+ ∇u′
k · ∇v

]
dx dt+

+

∫

Ω

[
u′

k(x, T )
(
v(x, T ) − uk(x, T )

) − u1

(
v(x, 0) − u0

)]
dx

}
≥

≥ lim inf
k→+∞

∫

Ω

[1

2
|∇uk(x, T )|2 − 1

2
|∇u0|2

]
dx .

Thanks to (3.25), (3.23), (3.18), (3.22), (3.19), (3.20), (3.26), the left

hand side of (3.28) (is, in fact, a limit, and it) is equal to

∫ T

0

∫

Ω

[|u′|2 − u′v′ + M(‖u‖2)∇u · ∇v − M(‖u‖2)∇u · ∇u+

(3.29) + ∇u′ · ∇v
]
dx dt+

+

∫

Ω

[
y(x)

(
v(x, T ) − u(x, T )

) − u1

(
v(x, 0) − u0

)]
dx ;

as for the right hand side of (3.28), we remark that, thanks to (3.21),

(3.30) lim inf
k→+∞

∫

Ω

1

2
|∇uk(x, T )|2 dx ≥

∫

Ω

1

2
|∇u(x, T )|2 dx .
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Now, taking into account (3.29), (3.30), from (3.28) we deduce that:

∫ T

0

∫

Ω

[|u′|2 − u′v′ + M(‖u‖2)∇u · ∇v − M(‖u‖2)∇u · ∇u+

+ ∇u′ · ∇v
] × dx dt+

+

∫

Ω

[
y(x)

(
v(x, T ) − u(x, T )

) − u1

(
v(x, 0) − u0

)]
dx ≥

(3.31)

≥
∫

Ω

[
1

2
|∇u(x, T )|2 − 1

2
|∇u0|2

]
dx =

∫ T

0

∫

Ω

∇u′ · ∇u dx dt ;

from (3.31) we can easily obtain (2.3).

From (3.18), (3.19), (3.20) we have, respectively, (2.2) a), (2.2) b),

(2.2) c); in order to obtain (2.2) d), by (3.12), (3.22) and the Fatou

Lemma, we have that:

(3.32) 0 = lim inf
k→+∞

∫ T

0

∫

Ω

[uk(x, t)−]2 dx dt ≥
∫ T

0

∫

Ω

[u(x, t)−]2 dx dt ;

hence the proof of Theorem 2.1 is complete.

Remark 3.1. Let us consider the following obstacle problem:

(3.33)





∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u − ∆

∂u

∂t
≤ 0 and u ≤ 0

a.e. in Ω × (0, T ) ,

(
∂2u

∂t2
− M (

∫
Ω |∇u(x, t)|2 dx) ∆u − ∆

∂u

∂t

)
u = 0

a.e. in Ω × (0, T ) ,

u(·, 0) = u0 ≤ 0,

(
∂u

∂t
(·, 0) − u1

)
≤ 0,

(
∂u

∂t
(·, 0) − u1

)
u0 = 0

a.e. in Ω ,

u = 0 on Γ × (0, T ) ;

clearly, with some obvious changes in the preceding proof and in the weak

formulation, we can obtain an existence result for weak solutions to the

problem (3.33), like the one in Theorem 2.1. In the same way, we can
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also obtain an analogous result, when the main unilateral constraint is

expressed by u ≥ c1(x) or u ≤ c2(x) (where c1(x) ≤ 0 or c2(x) ≥ 0 is

suitably regular in Ω, e.g. belongs to H2(Ω)), and the other unilateral

conditions are modified accordingly.

Moreover, we observe that our existence result still holds in other

inhomogeneous cases, i.e. when a (suitably regular) datum f(x, t) also

appears in (1.3) a) and in (1.3) b).

Remark 3.2. As we have already remarked in the Introduction,

equations like the ones in (1.1) and (1.2) are modifications —via the

addition of a damping term— of the following equation:

(3.34)
∂2u

∂t2
− M

(∫

Ω

|∇u(x, t)|2 dx

)
∆u = 0,

which was proposed by Kirchhoff (see, e.g., [19]) in order to describe the

small, transversal vibrations of an elastic string and it can be deduced

under the assumption that Hooke’s law holds and that the stress can be

approximated by its x-average. Cauchy and mixed problems associated

to (3.34) have been extensively studied by many authors in various set-

tings: we mention, among the other references, [3], [9], [19], [11], [17].

Since the presence of the damping term was crucial to obtain the strong

convergence of {u′
k}, of course, the method used in the proof of The-

orem 2.1 doesn’t apply to variational inequalities associated to equa-

tion (3.34), when the unilateral constraints concern the unknown func-

tion. However, obstacle problems, related to (3.34), could be considered,

if the unilateral constraints concern the time derivative of the unknown

function or if they concern the behaviour of the unknown function on the

boundary, as done by Kim[14] for the wave equation.

On the other hand, a memory term, instead of the damping, is consid-

ered in [20] and in [10], for problems like (1.1), and in [12], for an obstacle

problem like (1.4); then an interesting matter would be to investigate the

existence of (weak) solutions to an obstacle problem like (1.3), when a

memory term (as in [20] and in [10]) takes the place of the damping.
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Notes Math., 109 (1984), 1-26.

[4] A.N. Artyushin: Variational inequalities for the wave equation with a constraint
on the solution, Soviet. Math. Dokl., 41 (1990), 320-322.

[5] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces,
Noordhoff, Leiden, 1976.
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