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Transversally CR foliations

E. BARLETTA - S. DRAGOMIR

RIASSUNTO: Si studiano foliazioni a struttura CR trasversa e la loro coomologia
di Kohn-Rossi trasversa. Per CR foliazioni non degeneri a struttura pseudohermitiana
trasversa si costruisce una connessione adattata che generalizza la connessione di Web-
ster di una CR foliazione per punti. Si ottiene un risultato di immergibilita locale per
CR foliazioni reali analitiche.

ABSTRACT: We study foliations with transverse CR structure and their transverse
Kohn-Rossi cohomology. For nondegenerate CR foliations with transverse pseudohermi-
tian structure we build an adapted connection which generalizes the Webster connection
of a CR foliation by points. We establish a local embeddability result for real analytic
CR foliations.

1 — Introduction

The purpose of the present paper is to study the geometry of I'{.z (N)-
foliations (with r = oo or r = w) where I'iz (V) is the pseudogroup of all
local CR automorphisms of class C" of a given (model) CR manifold N.
These are called CR foliations and CR manifolds correspond to the case
of the trivial CR foliation by points.
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Our motivation comes from the theory of complex (and Levi) folia-
tions on CR manifolds (cf. e.g. E.M. CHIRKA [5], p. 150). A complex fo-
liation F of a CR manifold (M, H(M)) (where H(M) is its Levi distribu-
tion) is one whose tangent bundle P is a complex subbundle of H (M) and
whose foliated charts restricted to plaques give biholomorphisms (there-
fore such foliations occur on degenerate CR manifolds). The quotient
H(M)/P carries a natural complex structure J and in cases of interest
(cf. our Theorem 6) J is parallel with respect to the Bott connection of
F, so that H = Eigen (i) (the eigenbundle of J corresponding to the
eigenvalue i = v/—1) is a transverse almost CR structure. Moreover H is
integrable (for any x € M there is an open neighborhood U and an ad-
missible frame {(,} of H on U, that is each (, is a transverse vector field
and [C,,(s] € H) in most examples at hand (cf. Section 6). To further
motivate our line of thought, let us recall (cf. [5], p. 155, or S.I. PINCHUK
S.I. TsycAaNov [14]) that a complex foliation F of complex dimension k
of a CR manifold M is CR-straightenable if there are a domain 2 c CF,
a CR manifold N, and a CR diffeomorphism ¢ : 2 x N — M so that
o(Qx{p})isaleaf of F, for any p € N. If F is CR-straightenable then the
transverse geometry of F is modelled on N, i.e. F is a I'gy (IV)-foliation.

In the end, it is worth mentioning that the notion of (transversally)
CR foliation is implicit in [5], p. 157. There, a CR foliation is a foliation F
of a CR manifold M so that, for any defining local submersion f : U — U’
(i.e. the leaves of Fy; are the fibres of f) the local quotient manifold U’
is a CR manifold, f is a CR map, and f, : H({U) — H(U’) is on-to. Such
F carries a transverse CR structure. Yet, on one hand I, (IV)-foliations
make sense on arbitrary C°>° manifolds (not just on CR manifolds); on the
other, the requirement that f : U — U’ be CR is somewhat misleading.
Indeed, this yields a “tangential” CR structure (so that each leaf becomes
a CR submanifold of M) thus prompting the choice of terminology (CR
foliations) in [5] (the transverse CR structure is not looked at there). Also
(at least in the CR codimension one case) the Levi form of M must have
a nontrivial kernel. Our point of view is, of course, that the tangential
CR structure of F is only incidental, and that E. Chirka’s approach to
CR foliations (requiring that the local quotient manifolds possess some
G-structure) is just the typical manner (cf. e.g. Proposition 2.6 in [13],
p. 51-52) of assigning a transverse G-structure to F.

Let N be a CR manifold. The group Autcgr (V) of all global CR auto-
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morphisms of N is a Lie transformation group (by a result of S.S. CHERN
and J. MOSER [4]). In Section 2 we discuss foliations defined by suspen-
sion of a homomorphism A : m(B, ;) — Autcr(/N) (these turn out to
be CR foliations (with nontrivial holonomy), cf. Theorem 3).

When the normal bundle of the given CR foliation has odd real rank
we develop a foliated analogue of S. WEBSTER’S (cf. [15]) pseudohermi-
tian geometry, cf. our Theorems 4 and 5. We introduce notions such as
transverse pseudohermitian structrure, transverse Levi form, and trans-
verse Webster metric gy, as well as notions of (transverse) nondegeneracy
and strict pseudoconvexity. In the nondegenerate case, the transverse
Webster metric gy is a transverse metric (in the sense of [13], p. 77) for F
and thus there is a bundle-like semi-Riemannian metric g on M inducing
gs. Our main result in this direction is that there is an adapted connection
V in the normal bundle of the given nondegenerate CR foliation F which
parallelizes both the transverse Levi form and the complex structure in
the transverse Levi distribution (V is unique under some assumption on
its torsion, cf. Theorem 10). In addition, V does not depend upon the
choice of bundle-like semi-Riemannian metric g (inducing the transverse
Webster metric) used in its construction. For the case of a CR foliation
by points V is the Webster connection (cf. [15]).

We show that any CR foliation comes equipped with a natural differ-
ential operator d, (a foliated analogue of the tangential Cauchy-Riemann
operator in complex analysis) acting on transverse (0, k)-forms. We look
at the cohomology of the resulting do-complex; for the case of a simple
CR foliation defined by a submersion this cohomology turns out to be
the Kohn-Rossi cohomology of the base CR manifold (cf. Theorems 7
and 8).

Let F be a CR foliation of type (n,k) of M and H its transverse
CR structure. We introduce a concept of embedding of (M, #). This is
essentially an immersion v : M — C¥ for some N > n -+ k which induces
a bundle monomorphism G of the normal bundle into 7(C"**) so that
G maps H into the holomorphic tangent bundle over C"**. Any real
analytic transverse CR structure is shown (cf. our Theorem 11) to be
locally embeddable.

The second named author is grateful for discussions with prof. J.M.
Lee (University of Washington) during April-June, 1993.
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2 — Transversally CR foliations

Let M be a C°° manifold and F a codimension ¢ foliation (¢ = 2n+k,
k > 1) of class C* of M thought of as (the collection of all connected
maximal integral manifolds of) an integrable subbundle P = T(F) C
T(M). Let Q = v(F) = T(M)/P be the normal (or transverse) bundle
of F. Let 7 : T(M) — @ be the natural bundle epimorphism. Let V° be
the Bott connection of (M, F).

Let H C Q®C be a complex subbundle, of complex rankn. Set H =
Re{H ® H} C Q. Throughout an overbar denotes complex conjugation.
Then H carries the complex structure J : H — H given by:

(1) Ja+a)=ila—a)

for any o € I'>°(H). Here i = /—1. The following notations are central
for the rest of the present paper. We call ‘H a transverse almost CR
structure (of transverse CR dimension n) if 1) HNH = {0}, 2) H is
parallel with respect to the Bott connection of F and 3) LxJ = 0 for any
X € I'*°(P). Lie derivatives are defined with respect to V°.

Let L(F) = L(M,F) C X(M) be the Lie subalgebra of all foliate vec-
tor fields (or infinitesimal automorphisms of F). Let ¢(F) = (M, F) C
I'(Q) be the Lie algebra of all transverse vector fields (i.e. s € £(F) iff
s = 7Y for some Y € L(F)). Let I'y(Q) consist of all s € I'°(Q) with
Lxs =0 for any X € I'*(P). Note that 'y (Q) = ¢(F) (so that the Lie
bracket [s,r] of any s,r € '} (Q) is well defined).

A transverse almost CR structure H C @ ® C is termed integrable
if for any € M there is an open neighborhood U C M, z € U, and
there is a frame {(;,---,(,} of H on U so that {, € I'Y(Q ® C) and
[CasCs] € T°(H) for any 1 < o, < n. Such a (local) frame of H
is termed admissible. An integrable transverse almost CR structure is
referred to as a transverse CR structure on (M, F).

A T-foliation of codimension q and class C*™ on M consists of the
following data i) an open covering {U,};cr of M, ii) an additional C*
manifold N and a pseudogroup I' of local transformations of N, iii) for
each ¢ € I a C* submersion f; : U; — N, iv) for any i,57 € I (with
Ui =U;NU; # 0) an element v;; € T' so that f; = ~;; o f; on Uy;.
Cf. [8]. Let x € M and i € I with z € U; and set P, = Ker(d, f;). Then
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P C T(M) is a well defined (by iv)) integrable distribution so that any
I’-foliation gives rise to a foliation F of M.

Let N be a (2n + k)-dimensional C* manifold. Let T;o(N) be a
CR structure (of CR dimension n) on N, i.e. a complex subbundle (of
complex rank n) of the complexified tangent bundle T'(N) ® C so that:

(2) Tio(N)N Ty, (N) = {0}
and
(3) [T (Th,0(N)), T (Th0(N))] € I=(Th,0(N))

Here Ty 1(N) =Ty o(N). Let H(N) = Re{T1o(N) ®T51(N)} be the Levi
distribution. It carries the complex structure Jy : H(N) — H(N) given
by JN(Z + Z) = i(Z — Z) for any Z € Tyo(N). If (N, Tyo(N)) and
(N",T1o(N’")) are two CR manifolds then a C* map A : N — N’ is a
CR map if \.T1o(N) C T3 o(N’) (or equivalently A\,H(N) C H(N') and
Ao Jy = Jy o). A CR automorphism of N is a C* diffeomorphisms
and a CR map. Let I'd; (V) be the pseudogroup of all (local) CR auto-
morphisms of (N, T} (N)) (of class C*). Let F be a I'g; (INV)-foliation
of M. Then F is said to be a (transversally) CR foliation (of transverse
CR dimension n and transverse CR codimension k).

Let F be a CR foliation and = € U;. The differential d,. f; : T,,(M) —
Ty,(2)(IN) descends to a R-linear isomorphism F;, : Q, — T, ) (N) with
F,,om, =d,f;. Set:

H, = ETle(N)fi(I)

As ;; € I'Zz(N) one has in particular (v;;).H(N) = H(N) so that H, is
well defined. It carries the complex structure J, given by:

Jo = F 0 Jnfiw) © Fia

Once again, as v;; € 'z (IV), in particular (v;;).0Jy = Jyo(7;i)« so that
J, is well defined. Then H is referred as the transverse Levi distribution
of (M, F). We may state the following:

THEOREM 1. Let (N,T1o(N)) be a CR manifold of class C*> and
type (n, k). Let F be a CR foliation of M whose transverse geometry is
modelled on (N,T1o(N)). Let H be the transverse Levi distribution of F.
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Eztend J to H® C by C-linearity and set H = Eigen (i). Then H is a
transverse CR structure of transverse CR dimension n (and F; . (H.) =
T10(N)j, (@) for any x € U;).

One may look at transverse (almost) CR structures as transverse
G-structures, as well. Let F be a codimension ¢ foliation of M. Let:

Bp = Br(M, F)

be the (total space of the) principal GL(q, R)-bundle of transverse frames
(cf. [13], p. 44). Let 0% € T°(T*(B+) ® R?) be the fundamental 1-form
on B (cf. (2.11) in [13], p. 45) and set:

Pr={XeT(B}): X |0;=X]do; =0}

If G € GL(q,R) is a Lie subgroup then a principal G-subbundle E C B
is a transverse G-structure if:

(4) P, CT.(E)

for any z € E. The distribution P; is known to be integrable (cf. Propo-
sition 2.4 in [13], p. 47) so that it gives rise to a foliation F;}. of B} (the
lifted foliation, cf. [13]) each leaf of which is a Galois covering of some
leaf of F. Then the geometric meaning of (4) is that F is a union of
leaves of Fr.. We call E locally flat if for any x € M there is a foliated

coordinate chart (U, y*, -+ ,y9, x', -, 2P) at x so that o7(U) C E. Here
or : U — B is the natural field of transverse frames:
0

or(z) = (=, {(Wa—yj)x}lsjstz)

Let H be a transverse almost CR structure of type (n, k) and (H,.J) the
corresponding transverse Levi distribution. Let E, consist of all R-linear
isomorphisms z : R? — @, with z(e,) € H, and J,z(e,) = 2z(€atn)-
Here ¢ = 2n+ k while {e,, €qyn,€;12,} denotes the canonical linear basis
in R? (with 1 <a<n,1<j<k) Lt G C GL(¢q,R) consist of all
nonsingular matrices of the form:

95 Q5 wu

)

5 g5 v
0 0 w!

<0
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THEOREM 2. FE is a transverse G-structure. If E is locally flat then
H is integrable.

We end this section by looking at an example of CR foliation. Let
B, T be two compact connected manifolds and h : (B, zo) — Diff(T)
a group homomorphism. Here (B, xo) is the first homotopy group of
B (with base point 2, € B) and Diff(T") denotes the group of all global
diffeomorphisms of T'. Set G = h(m(B, x()). We may state the following:

THEOREM 3. Let F be a CR foliation (whose transverse geometry
is modelled on the CR manifold (N, T} o(N)) of the C>= manifold M. If
F is defined by suspension of h : m (B,xy) — Diff(T') then T is a CR
manifold of type (n,k) and G a group of global CR automorphisms of T'.
Conversely, if Autcr(T) is the group of global CR automorphisms of a
CR manifold (T,T1(T)) then the foliation F defined by suspension of
h:m(B,xzo) = Autcr(T) is a CR foliation.

Let p: B — B be the universal cover of B. Set M = B x T. There
is a natural action of (B, xq) on M given by:

for any & € B, y € T and [] € m(B, ). Let:
p:M—)M/m(B,xo)

be the canonical projection. Let F be the (simple) foliation of M whose
leaves are the fibres of:

pa: M =T,  pod,y)=vy.

The asumption on (M, F) in Theorem 3 amounts to M = M /7,(B, )
and F = p*F (that is F is the pullback of F by p, cf. [9] and [13], p. 28).
Then:

T(F)z = (dap) " T(F)piay

for any & € M. Consequently dzp descends to an isomorphism:

]:[5J . V(F)i — I/(.F)p(i) .
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Let H be the transverse Levi distribution of F and J its complex struc-
ture. Set: .
H; =117 Hy(p)

Jz =TI;" o o) © 1Lz .

Then (H,.J) makes F into a (transversally) CR foliation. This may be
seen in yet another way. Let {U;, f;,v;i}ijer be the data defining F (as
a I'gi (N)-foliation, for some given model CR manifold N). We may
assume w.l.o.g. that U; = p(V; x T) where V; = p~(V;) for some simply
connected open subset V; C B. Let U, = V, x T and define ﬂ : f]7 — N
by f; = fi o p. Then the data {U;, f;,7;; }i.jes determines F (that is F is
a ' (N)-foliation of M).
The differential d;p, descends to an isomorphism:

for any & = (&,y) € M. Let y € T and % € p; *(y). Set by definition:

As H is invariant under sliding along the leaves of F (and py'(y) is a
leaf of F) it follows that H(T'), is well defined (i.e. its definition does not
depend upon the choice of Z € p,*(y)). Similar considerations apply to
the complex structure Jr, given by:

JT7y = Ai o j;C o A;l
for any y € T and some Z € p,'(y). Thus T becomes a CR manifold
(and H(T) is its Levi distribution).

Let g = h([y]) € G. Consider L, : T — T given by L,(y) = g~ '(y).
Then:

(5) b2 0 R[’y} = Lg O P2

where R|,, : M — M is the right translation with [y] € m (B, z). If

V]
X € T(F);z = Ker(dzps) then (by (5)) we obtain:

(dz.y) p2) © (dzRp5)) X =0
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that is T'(F) is m1 (B, x¢)-invariant. Thus d; R}, descends to an isomor-
phism:

B@h] : V(./_")»z — V(-F)i~[7] .

Furthermore:
(dyLg) 0 Az = Ag.fy) © B [y
and:
Iz = Ilz.15) 0 By
yield:

(dyLy)H(T), = H(T)g*

Y-
It may be shown similarly that (L,). comutes with Jr. Thus L, €
Autcr(T), Q.E.D.

Given a CR foliation F defined by suspension of the homomorphism
h:m(B,z9) = Autcr(T) one may attempt (in analogy with the case of
Riemannian foliations, cf. [13], p. 97-99) to describe the closure of the leaf
L passing through a point of the fibre p~*(x) & T, under the assumption
that Autcg(7') is compact.

3 — Transverse pseudohermitian geometry

Let (N,T10(N)) be an orientable CR manifold of hypersurface type
(i.e. k =1). Set B, = {w € T;(N) : Ker(w) 2 H(N),} for any p € N.
This gives a real line bundle £ C T*(N). As N is orientable and H(N)
is oriented by its complex structure Jy it follows that F admits nowhere
zero globally defined sections 0y € I'*°(E) each of which is referred to as
a pseudohermitian structure on (N, Ty o(N)). Cf. [15]. The Levi form Gn
is given by:

for any X,Y € I'°(H(N)). Then (N, T} 0(N)) is nondegenerate if Gy is
nondegenerate for some choice of pseudohermitian structure on N (and
thus for all).

The basic ideas of pseudohermitian geometry carry over to the con-
text of CR foliations, as follows. Let (F, H,J) be a CR foliation (whose
transverse geometry is modelled on the CR manifold N (of hypersurface
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type)). On each U; one may consider the 1-form 6r; given by 07, = f0y.
Next, define 0; € I'*(Q*) by 0;, o m, = (0r,), for any z € U;. Clearly
H, = Ker(0;,) for any = € U;. Let j € I with Uj; #0. As v;; € gz (V)
it follows in particular that v;; is a contact transformation. Therefore:

(7) 9j = (>\ji © fi)ei

(on Uj;) for some nowhere vanishing C*° functions Aj; : f;(U;;) — R. To
investigate the properties of (U, 6;) we only need to look at the case of a
simple foliation (defined by a submersion). We may state:

THEOREM 4. Let f : M — N be a C*> submersion with con-
nected fibres from a C* manifold M on-to an orientable CR manifold
(N, T10(N)) (of hypersurface type) on which a pseudohermitian structure
On has been fixed. Let F be the foliation of M tangent to the wvertical
bundle of f. Let 07 = f*Ox and 0 € T(Q*) given by @ omw = Or. Then
Lx8 =0 for any X € I°(P), i.e. 0 € T'F(Q*). Assume that (N, T o(N))
is nondegenerate and set &, = F, ' ({n,px)) where x is the characteristic
direction of dfy and F, : Qp — Ty (N) is given by F, om, = d,f for
any x € M. Then £ € 'Y (Q) and:

(8) 6O =1, €ldgf=0

Throughout 'Y (A*Q*) consists of all w € T'°(A*Q*) with Lxw = 0
for any X € I'™°(P).

Recall that a CR automorphism A : N — N is isopseudohermitian if
N0y = Oy. Clearly, if F is a I'-foliation of M where I' C I'Z; (V) is the
subpseudogroup of all (local) isopseudohermitian (with respect to a fixed
pseudohermitian structure 6 on N) CR automorphisms of N, then the
(local) sections 6; glue up to a global section § € I'y (Q*). We are led to
the following general considerations. Let (F, H,J) be a CR foliation (of
transverse CR codimension k£ = 1). A globally defined nowhere vanishing
section 0§ € I'y(Q*) is a transverse pseudohermitian structure ift H =
Ker(f). By Theorem 4 any simple foliation given by a C° submersion
on-to a CR hypersurface IV carries a transverse pseudohermitian structure
(induced by a fixed pseudohermitian structure on N).
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Let Q% (F) = Q%(M,F) be the Q%(F)-module of basic k-forms,
where Q% (F) =Q% (M, F) is the ring of all basic C* functions \: M — R.

Let F be a CR foliation and # a transverse pseudohermitian structure.
Let 07 = 0o be the corresponding basic 1-form. Set D = Ker(fr). Then
H = D/P. Next, set:

K, ={aeQ; :Ker(a) D H,}

for any x € M. This furnishes a real line subbundle K C Q* and any
transverse pseudohermitian structure may be viewed as a (globally de-
fined nowhere zero) section in K. Thus, if 0 is another transverse pseu-
dohermitian structure then § = A for some nowhere vanishing basic
function A on M.

With each w € T (A*Q*) we associate a differential k-form wr = ®jw
on M given by:

wr(Yy, - Y =w(nYy, - 7Yy)
for any Yi,--- .Y, € X. The map ®;, yields a R-linear isomorphism:
I3 (AQ") ~ Qp(F).
We shall need the differential operator:
dg =@} 0do®;, : TH(A*FQ") — I (A*'Q).

Let F be a CR foliation and 6 a transverse pseudohermitian structure.
The transverse Levi form Gy is defined by:

(9) Go(s,r) = (dgb)(s, Jr)
for any s, € I'°°(H). Then Gy = AGy. We need the following:

LEMMA 1. For any o, € T™(H):

(10) (dob)(a, B) = (dof)(@, B) = 0.

That is Go (as a real (0,2)-tensor field) is symmetric and Go(Js, Jr) =
Gy(s,r) for any s,r € T°(H).
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A CR foliation (F,H) is nondegenerate if G, is nondegenerate for
some transverse pseudohermitian structure 6 (and thus for all). Any
simple foliation given by a C'* submersion on-to a nondegenerate CR
manifold (of hypersurface type) is itself nondegenerate. We establish the
following;:

THEOREM 5.  For any transversally orientable nondegenerate CR
foliation (F,H) on which a transverse pseudohermitian structure has been
fized, there is a globally defined nowhere vanishing section £ € I'*°(Q) so
that £ 10 = 1 and £ | dof = 0. Such £ is unique and invariant under
sliding along the leaves.

Let Null(dg#) be the null space bundle of dg6, i.e. z € Null(dg0), iff
z € Q, and z | (dgf), = 0. Then rankg Null(dyf) = 1 by the nondegen-
eracy of dof on H. Note that:

(11) Null(dgf) ~ Q/H

(a vector bundle isomorphism). To check (11) it suffices to show that
the map z — z + H,, z € Null(dg#),, is a bundle monomorphism. This
follows from Null(dqf) N H = {0}.

As @ is orientable and H oriented by its complex structure it follows
that QQ/H admits a globally defined nowhere zero section S (M is assumed
to be connected). Next there is v € I'°(Q) so that S(z) = v(z) + H, for
any x € M. Set A\ = 6(v) € Q°%(M). Then X is nowhere zero. Indeed,
if A(z) = 0 for some z € M then v(z) € Ker(0,) = H,, i.e. S(x) =0,
a contradiction. Set s = (1/A)y. By (11) there is £ € I'°(Null(dg0)) so
that {(x) + H, = s(x) + H,. Consequently {(z) — s(z) € H, = Ker(0,),
ie. 0(§) = 0(s) = 1. To prove the last statement in Theorem 5, note
that £x0 = 0 and 0(¢) = 1 yield 0 = (Lx0)§ = X (05) — 0(LxE) that is
Lx& € I'°(H) for any X € I'°(P). Next, for any s € I'°(H) we have
0 = (Lxdgf)(E5) = X(deB)(E,5)) — (dgO)(Lxé, ) — (dgh)(E, Lxs) s0
that (by the nondegeneracy of dgf on H) we get:

(12) LxE=0

for any X € I'>°(P), i.e. £ € I'F(Q).
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The transverse vector field £ in Theorem 5 is referred to as the char-
acteristic direction of (F,H, ). Note that:

(13) Q=HoRE.

By taking into account (13) we may extend the transverse Levi form Gy to
a semi-Riemannian holonomy invariant bundle metric gy in Q) by setting
go(s,1m) = Go(s,7), go(s,&) = 0 and gy(£,€) = 1, for any s,r € I'™°(H).
The holonomy invariance of gy follows from: i) the fact that H is parallel
(with respect to the Bott connection of F), ii) Lxdgf = 0 for any X €
I'*°(P), and from (12). Then gy is referred to as the transverse Webster
metric of (M, (F,H,6)).

The transverse Levi form may be viewed as a Hermitian form on
H ® C, i.e. let Ly be given by:

LG(Q7B) = _i(dQQ)(avﬁ)
La(%ﬁ) = LQ(E,B) =0
Le(aaﬁ) = LO(O"B)

for any a,8 € I'°(H). Then L, and the C-linear extension of Gy
(to H ® C) coincide. A CR foliation (F,H) is strictly pseudoconvex if
(Lg)z(0,@) > 0 for any o € H, — {0}, z € M, and some transverse pseu-
dohermitian structure 6. If this is the case then (F,gp) is a Riemannian
foliation.

Let (F,H) be a nondegenerate CR foliation carrying the transverse
pseudohermitian structure 0. Let {(,} C '} (H) be an admissible frame
of Hon U C M. Set h,z = Lg(Ca, (5) where (z = (,. Then h,:U—=C
are basic functions. Let A,(z) be the eigenvalues of [h z(z)], € U.
As [h,5] is Hermitian each A, is R-valued and C*° thus Ly has constant
index on U (hence Gy is a semi-Riemannian bundle metric in H). Assume
the Levi form Ly to have signature (r,s). Consider the Hermitian form:

T n
(z,w), = szwj - Z 25W;
=1

j=r+1

where n =r + s and z,w € C". Let:

U(r,s) ={A € GL(n,C) : (Az, Aw), = (z,w),,Vz,w € C"}
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Let G € GL(q,R) consist of all matrices of the form:

95 95 0
—Qg gg 0
0 0 1

with [g§ +iQ§] € U(r,s). Here ¢ = 2n +1. Let F,, consist of all z € E,

with z(eg,41) = &(x) and gy(2(€n), 2(€5)) = €adap, go(z(€a), 2(€51n)) = 0.
Here £ is the characteristic direction of (F,6). Alsoe, =1if 1 <a <r
and e, = —1ifr+1<a <r+s. Then Ey is a transverse G-structure.

4 — Degenerate CR manifolds

Let (M,T1o(M)) and (N,T:(N)) be two CR manifolds (of hyper-
surface type) of CR dimensions N = n + k and n, respectively. Let
f:M — N be a CR submersion (i.e. a C*° submersion and a CR map).

PROPOSITION 1. (M, Ty o(M)) is degenerate.

PROOF.

STEP 1. Let 8,; and @5 be choices of pseudohermitian structures on
M and N, respectively. Then f*0y = A0y for some nowhere vanishing
A e QOM).

If w is a differential form on M, we adopt the notation Sing(w) =
{x € M : w, = 0}. Let z € Sing(f*0n). Then Oy ) o (d.f) = 0.
On the other hand d,f : T,(M) — Tj,)(N) is on-to. Thus T}, (N) C
Ker(On,f(x)) = H(N) (), a contradiction. Thus:

(14) Sing(f*0n) = 0.
Let X € H(M). Then (as f is a CR map) f.X € H(N). Hence:
(fOn)X =0n(f.X) =0

that is X € Ker(f*0y). Let z € M and d = dimg Ker(f*0y),. Then
2N <d<2N+1. If d =2N + 1 then x € Sing(f*fy), a contradiction.
It remains that d = 2N, that is:

(15) H(M) = Ker(f*0y).
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By (14)-(15) it follows that f*fy is a pseudohermitian structure on M
(and Step 1 is proved).

STEP 2. The Levi form G, is degenerate on the vertical bundle
P = Ker(f.).

Let X € P. By Step 1 we have:
1. 1
so that P C H(M). Then Step 2 follows from the calculation:

Gr(X,Y) = (d0x)(X, JaY) = d(% FOn) (X, JnY) =

= ((a) A 70 + 300w ) (X TY) =
1

)\(deN)(f*X, feduY) =0.

Proposition 1 is proved. By our Theorems 1 and 4 the vertical bun-
dle P = Ker(f.) of f is the tangent bundle of a CR foliation F of M
whose transverse geometry is that of V. Also F is nondegenerate if so is
(N,T10(N)). Its transverse Levi distribution is given by H = H(M)/P.
One may say loosely that by passing to the quotient H (M )/P one ’factors
out’ the degeneracy.

In general, let (M, T} o(M)) be a CR manifold (of hypersurface type)
of CR dimension n + k. Given a pseudohermitian structure 6, set:

Py.,={ve HM),: (d0y),(v,w) =0, Ywe HM),}

for any © € M. Then Py, is involutive and Jy,-invariant (cf. e.g. [7]). Thus
(by applying both the Frobenius and Newlander-Nirenberg theorems) if
dimg Py, = 2k = const. then M carries a foliation F by complex k-
manifolds (with T'(F) = Py). This is referred to as the Levi foliation of
M. Set H=H(M)/Py C Q. If X € I'>*(Py) and s € I'°(H) then:

0= (d0)(X,Y) = 30, ([X, Y]
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(for some Yy € I'°(H(M)) with 7Y, = s) yields [ X, Y;] € I'°(H(M)) and
thus:

V%s =n[X,Y,] € I™(H)
i.e. H is parallel with respect to the Bott connection of F. Define J :
H — H by setting:
(16) Js =nJyYs

for any s € I'°(H). As Jy descends to a complex structure in Py, we
may extend it (by C-linearity) to Py ® C and let P,;° = Eigen(i) be
the eigenbundle corresponding to the eigenvalue <. Similarly, extend J to
H ® C and set H = Eigen(i).

PROPOSITION 2. H =Ty o(M)/P;}°

PROOF. Let 0 € Hand Y, € H(M)®C with 7Y, = 0. Then Jo = io
yields:

(17) Y, =iV, =7

for some Z € Py, ® C. By applying Jy, to (17) one gets Jy = —iZ, that
is Z € PY' (we set Py = Py;°). Let us define W € H(M)®C by setting:

1

(18) W=Y,+5(Z-2).
Then W € Ty o(M) and (by (18)) 7W = o, i.e. o € Ty o(M)/Py;".
As Py |0y = 0 there is a unique 6 € I'™°(Q*) so that § o m = ).

We have:

THEOREM 6.  Assume LxJy = 0 and LxOy = 0 for any X €
I'>°(Py). Then i) H is a transverse almost CR structure, and ii) 6 is a
transverse pseudohermitian structure.



[17] Transversally CR foliations 67

REMARK 1. 1) The Lie derivative LxJy is well defined because
[(X,Y] e I*(H(M)) for any X € I'°(Py) and Y € I'*(H(M)).
2) Dueto (Lx0n)Y = X(0nY)—0u([X,Y]) =0forany Y € I'°(H(M)),
the hypothesis Lx 03 = 0 in Theorem 6 may be weakened to

FJﬁXg]V[ - 0

for some complement F' of H(M) in T'(M).

3) Recall that any CR-straightenable complex foliation is a CR foliation.
Thus (by a result of [14]) if M is realized in CV*! then a sufficient con-
dition for the integrability of H in Theorem 6 is that the Gauss map
r € Mw— Py, € G(k,N+1)is a CR map. Here G(k, N + 1) denotes
the (complex) Grassmann manifold of all complex k-subspaces of CVF1,

To prove Theorem 6 let s € I'°(H). Then:
Yo —JuY, =V

for some V' € I'™°(Py;). Thus [X, V] € I'°(Py) and we may conduct the
calculation:

(LxJ)s = 7{[X, Y] — Ju[X, Yi]} = (L Jar)Ys = 0

Clearly H = Ker(@) Also EXQ =0 iff ‘CXQJVI = 0, QED

REMARK 2. 1) Let f : M — N be a CR submersion and P = Ker(f.).
Then:

(19) P C Py

Note that d,f : H(M), — H(N)) is on-to. Indeed, let v € H(N)(y).
As f is a submersion, there is u € T,,(M) so that (d,f)u = v. Then:

0=0n5()(0) = On @) (da f)u = ([ On)a () = M2)Onr2 (1)
yields w € H(M),, Q.E.D. Let X € Py;. Then f.X € H(N) and:

(d0n)(f. X, H(N)) = (dOn)(f. X, [H(M)) =
= (dX A O + A0y ) (X, H(M)) = 0.
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Consequently:
f*PM g PN

Assume (N, T} o(N)) to be nondegenerate. Then Py = {0}. Hence Py, C
Ker(f.) = P. Thus, if N is nondegenerate, then (by (19)) P is the Levi
foliation of M.

2) In practice, the hypothesis of our Theorem 6 often hold good. For
instance, let (N, T3 0(N)) be a nondegenerate CR manifold (of hypersur-
face type). The product manifold M = N x C* carries the complex
foliation F whose leaves are {y} x CF, y € N. It is easy to see that M
is a CR manifold and F its Levi foliation. Indeed, if x = (y,{) € M let
¢¢: N — M and ¢, : C¥ — M given by ¢¢(y) = 1,(¢) = z. Then:

(dyde)T1o(N)y & (deth, ) TH(CH)e,  (y,¢) € M

is a CR structure on M (and ¢, is a CR immersion). Also, the natural
projection f : M — N is a CR submersion and F is tangent to Py =
Ker(f.). Then (by Theorem 1) F is a CR foliation of M. In particular
(LxJn)Y = (LxJ)rY = 0 for any X € Py and Y € T(M). Next,
let 0y, = f*Oy (where 6y is a pseudohermitian structure on N) and
0 € I'(Q*) given by # o = ). Then (by Theorem 4) (Lx0y)Y =
(Lx0)mY = 0. Clearly F is a CR-straightenable complex foliation of M.

A realized CR manifold is a real submanifold M c C¥*! whose CR
structure is given by T} (M) = TH(CN*H)N[T(M)®C]. A CR manifold
is realizable if it is CR diffeomorphic to a realized one. Assume that
the Levi form of M has a nontrivial kernel P,; of constant dimension
and the transverse Levi form is positive definite (i.e. one may factor
out the degeneracy toward a strictly pseudoconvex transverse structure).
The (local) embeddability problem for degenerate CR manifolds is open
(in the C™ category). However, in the light of our Theorem 11 it is
tempting to conjecture that “foliated” versions of known embeddability
results (e.g. any strictly pseudoconvex CR manifold M is locally realizable
if M is compact (cf. [3]) or if M is noncompact yet of CR dimension > 3
(cf. [12] and [1])) should hold for strictly pseudoconvex transverse CR
structures (occurring on degenerate CR manifolds).
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5 — The transverse CR complex

Let (F,H) be a CR foliation. We consider the differential operator:
Do TS(AYH') — DS (AFYH)

defined by the following considerations. Let w € F%?(Akﬁ*) and a; €

'*(H), 1 <j<k+1 LetY;, € I'*(T'(M)® C) so that 7Y; = «;,
1 <j <k+1. Finally, set:

k+1

(EQ"‘))(O‘M e ’akJrl) = Z(—l)j+1§/j(w(a1’ T vdﬁ to vak+1))+
(20) =1
+ Z (—1)1+JW(7TD/1',Y}],O(1,"' a@iv"' 7&j7"' 7ak+1)

1<i<j<k+1

The definition (20) does not depend upon the choice of representatives
Y; of o;.

THEOREM 7. Let (F,H) be a CR foliation of M. Then:

9, ——x, O

(21) OL(F) ® C S TRH) ST (NH) 2% - .
s a cochain complex, i.e.

This follows from (20) and the integrability property of H. We refer
to (21) as the transverse Cauchy-Riemann complex of (M, F,H).

Let F be nondegenerate. Let 6 be a transverse pseudohermitian
structure. Let & be the corresponding characteristic direction. Then
each n € I'¥(A*Q* ® C) with H |7 = 0 and £ | n = 0 may be regarded
as an element of I'sy(A¥H*), and conversely. Then 7 (respectively ®;n)
is referred to as a transverse (0, k)-form (respectively as a basic (0,k)-
form) on M. In this pseudohermitian setting the complex (21) may be
redefined by declaring dgn to be the unique transverse (0,k + 1)-form
which coincides with dgn on H ® -+ ® H (k + 1 factors). By taking
into account Proposition 3.11 in [10], vol. I, p. 36, it follows that the
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two definitions of dy are equivalent. Let Hg@ (F) = HgQ (M, F) be the
cohomology groups of the complex (21). These are referred to as the
transverse Kohn-Rossi cohomology groups of (M, F,H).

THEOREM 8. Let F be the simple CR foliation on M defined by a
C>™ submersion f : M — N on-to a nondegenerate CR manifold N (of
hypersurface type). Then the transverse Kohn-Rossi cohomology groups

of (M,F) are isomorphic to the Kohn-Rossi cohomology groups of the
base manifold N .

Let 0y be a fixed pseudohermitian structure on NV and £y the char-
acteristic direction of (N,fy). Let o be a (0,k)-form on N, i.e. a €

[>*(A*T*(N)® C), T o(N) | a =0, and &y | @ = 0. Pullbacks of forms
on N via f are basic. Thus f*a € Q% (F) ® C. Set ¥), = &, and:

Qf = \I/kf*()é
If o € T°(H) then f.Y, € I'°(T1o(N)) (for some Y, € X (M) with
Y, = o) and:
ooy =V f"[(f.Ys) ] a] = 0.
Similarly f.Y: = &y o f yields:

Elay =W f [(f.Ye) | o] = i f*(én Ja) =0

where ¢ € I'}(Q) is the characteristic direction of (M, F,0) and f o =
[*0n. Thus ay € I (AMH"). Assume that dya = 0 where:

On : T (A*T 1 (N)*) — T=(AFT,  (N))
is the tangential Cauchy-Riemann operator of (N, 7] ¢(/N)). Note that:
dgay = (da); .

Thus:

(gQaf)(o'l" e ’0k+1) = (aNO‘)(f*YUU T 7f*Yo'k+1) =0
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for any o; € T°°(H). Let Hy%(N) be the Kohn-Rossi cohomology groups
(of the tangential Cauchy-Riemann complex of N, cf. J.J. KonN [11],
p. 83). Define ¢ : HY%(N) — HgQ (F) by setting ¢([a]) = [af]. To see

that ¢([a]) is well defined let o/ = a+3dy/3 for some BE€ T (A5 1 (N)*).
Then o} = a; + U f*OnB = ay + 0gfB. Already o — «; is on-to
(indeed f*a = ®pw with w € TF(AYH) may be solved for a as fol-
lows. Set a(Zy,---,Zy) = w(nYy, - ,7Yy) for any Z; € I'°(T51(N))
and some Y; € X(M) ® C with f.Y; = Z;. Then a(Zy,--- ,Z;) is well
defined because X | ®yw = 0 for each X € I'°(P)). To check that ¢ is
a monomorphism assume that a; = dgn for some n € Ty (A*1H ). As
QEY(F) = T (A*1T*(N)) there is a unique v € T (A*1T*(N)® C) so
that f*y = ®,_,n and therefore v is a (0, k — 1)-form on N and o = dy",
Q.E.D.

In analogy with the study of the basic cohomology of foliated mani-
folds, and encouraged by the substantial progress there (cf. e.g. A. EL-
Kacivr and G. HECTOR [6]) one may raise several questions related to
the cohomology of the complex (21) (e.g. existence of spectral sequences
abutting on HgQ (F), finitude and vanishing theorems, etc.). However, we
expect a lack of relationship between HgQ (F) and the basic cohomology
of (M,F) (as a foliated counterpart of the - not sufficiently understood
as yet - lack of relationship between the Kohn-Rossi and De Rham coho-
mologies of a CR manifold).

Let (M,T10(M)) be a CR manifold and CR(M) the set of all CR
functions on M (i.e. A € CR(M) iff 9y, A = 0). We establish the following:

THEOREM 9. Let (M, Ty o(M)) be a CR manifold whose Levi form
has a nontrivial kernel Py, with dimg Py, = 2k, x € M, and let F
be the foliation of M by complexr k-manifolds tangent to Py. Assume
that LxJy = 0, for any X € T'°(Py), and that H is integrable. Then
each \ € HgQ (F) is a basic CR function on M. Also, there is a natural

injection of H%Q (F) into the first Kohn-Rossi cohomology group of M.

As Lx Jy = 0 it follows (by Theorem 6) that # is a transverse almost
CR structure. Next H is assumed to be integrable, so that F is a CR
foliation. Let A € Q% (F)®C with oA = 0. As (by (20)) O\ = (OgA\)om
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it follows that:

Hy (F) = [Q5(F) ® C] N CR(M)

Next, let n be a transverse (0, 1)-form with dgn = 0. Let 7j be given by
(in view of Proposition 2):

(Z) =n(rZ)

for any Z € Ty, (M). Then (0y7)(Z,W) = (9gn)(nZ,7W) for any
Z,W € Ty,(M). The map H} LF) = Hyp(M) defined by [n] — [7] is

one-to-one. Indeed, if [7] = 0 there is \ € QO(M) ® C so that 7 = dy ).
For any X € Py ; we see that 0 = X | 7 = X () so that A is basic. Finally

The authors hope that a theory of CR foliations may lead to a better
understanding of degenerate CR manifolds.

6 — The transverse Webster connection

Let (F,H) be a nondegenerate CR foliation endowed with the trans-
verse pseudohermitian structure 6. Let £ be the characteristic direction
of (F,0). Let H be the transverse Levi distribution. Let us extend its
complex structure J : H — H to a bundle morphism J : @ — @ by
requesting J&€ = 0. If gy is the transverse Webster metric set:

90,7V, Z) = go(mY, 7 2)

for any Y, Z € X(M). Let g be a semi-Riemannian (i.e. nondegenerate
and of constant index) metric on M. Assume g is nondegenerate on P.
Then T(M) = P & P+ where P+ is the orthogonal complement of P in
T(M) with respect to g. Let o, : @ — P+ be the natural isomorphism.
Then 7(o,s) = s for any s € ). Also g induces a bundle metric gg in @
given by go(s,r) = g(0ys,0,r) for any s,r € . Then g is referred to as
bundle-like if g¢ is holonmy invariant (i.e. Lxgg = 0 for any X € I'*(P)).
Also gr (Y, Z) = go(nY,nZ) is the associated transverse metric of g. By
slightly generalizing Proposition 3.3 in [13], p. 80, we see that there is a
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bundle-like semi-Riemannian metric g on M whose associated transverse
metric is precisely gg r. Indeed, let h be just any Riemannian metric on
M and P, the orthogonal complement of P in T'(M) with respect to h.
If Y € X(M) then Yp and Yp, denote respectively its components with
respect to the direct sum decomposition T'(M) = P® P,,. Then we define
g by setting:

(23) 9gY,Z)=h(Yp,Zp) + gor(Yp,, Zp,)

for any Y, Z € X(M). If Ly has signature (r,s), r + s = n, then g, has
signature (2r+1, s). Hence g (given by (23)) has signature (2r+p+1, 2s)
where p = dimg P,, © € M.

Let V be a connection in Q — M and Ty its torsion tensor field
(ie. Tv(Y,Z) = VynZ =NV znY —n[Y,Z] for any Y, Z € X(M)). If V
is adapted (i.e. Vx = V& for any X € I'>°(P)) then we define Tor and
7:Q — @ by setting:

Tor(s,t) = Ty (Y, V)
7(s) = Tor(&, s)

for any s,t € I'°(Q) and some Y,,Y; € X(M) with 7Y, = s, 7Y, = t. It is
easy to check that Tor(s, t) is well defined. Indeed, for any X, X’ € I'>°(P)
we have Ty (X, X’) = 0 due to the integrability of P and Ty (Y, X) =0
because V is adapted. We may state

THEOREM 10.  Let (F,H) be a nondegenerate CR foliation and
0 a fized transverse pseudohermitian structure. Then there is a unique
adapted connection V in Q satisfying the following azioms:
i) H is parallel with respect to V
ii) VJ =0, Vg =0
i) 7J + J7 =0
iv) Va, B € T°(H) : Tor(a, B) = 0, Tor(a, B) = 2iLy(c, B)E.

Let g be a bundle-like semi-Riemannian metric on M whose asso-
ciated transverse metric is gy 7. To establish uniqueness, let V be an
adapted connection in @ obeying to i)-iv). By i) and V.J = 0 it follows
that:

VxI®(H) CT™(H), VxI*(H)CTI>(H)
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for any X € X(M). Let p, : Q®C — H and p_ : Q ® C — H be the
natural projections associated with the direct sum decomposition:

QRC=HoH®CE.

By iv) we have:
Tor(@, B) = —2iLe(B, @)
or:
VUQE/B - Vcrgﬂa - 7T[o-gav O-gﬁ] = _2ZL0(B75)£

which yields:
(24) V‘Tgaﬁ = p+7T[O'ga, Ugm
for any «, 8 € I'°(H). Let w be given by:

w = —dQ0 .

The axiom Vg = 0 may be written:

X(go(s;1)) = 9o(Vxs,71) + go(s, Vxr)
for any X € T(M), s,r € Q. In particular for s = £ one has:
(25) (Vx0)r = go(Vx&, 7).

If r € H then (25) gives go(Vx&,7) =0 or m1gVx€ =0 (where 7y : Q —
H is the natural projection associated with (13)). Similarly, if r = ¢
then (25) becomes 0(Vx§) = 0. Therefore:

(26) VE=0.

Note that:

(27) Vw=10

as a consequence of ii) and w(a, B) = —igs(a, B). Let us take the complex

conjugate of (24) and use (27) so that to obtain:

(28) W(Veyaf,7) = (040)(w(B,7)) — w(B, p-m[oge, 047])
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for any «, 8,y € H. Set:
5(g) = 04(8) -
Next, define T, by setting:
1

Tsig) = =57 o (Ls)d)-
Then (by (26)):
(29) Vs(g)T = ﬁs(g)T' + T(T‘) .
By ii) and (29) we have:

0= (Vs J)r = VsgJr — JVsgr =
=7[S(g),0,Jr] +7(Jr) — Jn[S(g),0,r] — JT(r) =
= LggJr — JLsgyr + (1J — J1)r

so that (by iii)):
(30) 7= Ts(g) -
Summing up (by (24), (26), and (28)-(30)) we have:

VoaB = pimlo,a,oy8]

VO' [0 = «

(31) a3 5(9)
Vs@ghB = LsgB+TsB
Ve =0

where U,z(g) € H is defined by:

w(Uap(9),7) = (0,0)(w(B,7)) = w(B, p-m[oga,0,7])

The uniqueness statement in Theorem 10 is completely proved. To es-
tablish existence, let g be a bundle-like semi-Riemannian metric on M
inducing the transverse Webster metric in Q). Let V : I'™°(T(M) ® C) x
I'*(Q ®C) — I'™(Q ® C) be defined by (31) together with:

vaga = vagaﬂ
(32) vogag = Vagaﬁ

Vs@h = Vsgb

™|
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and:
VX - Vg(

for any o,8 € H, X € P. Before going any further, note that the
definition (31) does not depend upon the choice of g. Indeed, if ¢ is
another bundle-like semi-Riemannian metric inducing gy then there is a
natural bundle morphism:

€e=¢€qg:Q—P

given by €, ,/(s) = 04(s) — 04(s) for any s € Q. Then:

1
TsgnB=Tsg)B + §J{VS(J/3)§ - Vg(f)Jﬁ - JV8(5)§ + JVS(g)B} .

Using V°J = 0 (as H is a transverse CR structure) and £ € T'¥(Q) we
obtain:

(33) Ts(g)B = Ts(e) 8
for any 8 € H. At this point we may use:

[e(@),e(B)l e P C
VigaeH

and the first identity in (31) to conduct the following calculation:
Vo ab = Voaf + Ve B = pi7lo@,0,8] + Vig B = pimlog@, op8].
Next, using V% = 0 one may derive:
Uap(9') = Uap(9) + Vin)B
so that (by the second identity in (31)):
Vo,aB = VayaB + VB = Unplg).
Finally:

V@B = Vs B+ Ve = Ls@B+Ts)B+ Vs = Ls)B+Ts@B-
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Taking into account (33) we adopt the notation Ty = Ts(,). Note that:

(34) JP=—T+08E¢.
Also:
(35) Ls(g0 =0

as a consequence of:

(Ls@0)r = S(g)(0r) — 0(n[S(9), og7]) = 2(dgb) (&, 7) = 0.

It is straightforward that:

(36) Jo(Lsgd)+ (LsgyJ)oJ =0
(37) Lsgé =0, O(Lsgr) =0
for any r € H. Next (36) yields:

(38) JT: +TeJ = 0.

Let 8 € H. We have (by (36) and (38)):

J(Lsg)B+TeB) = Lsg) I B — (Lsg))B + JTe =
= LI B+ (Lsg)J)T*B + JTe =
= Ls(g) B+ JTeB — J(Lsig))) I8 = i(Lsg B+ TeB)

that is:
(39) BeEH = LsyB+TLeEH
We may conduct the following calculation:
0= (dg0)(&,8,7) = —(dow)(§, 8,7) =
= 3 {SWEM)+

+ (048)(w(7.€)) + (047 (w(&, B)) — w(n[S(g), 048], 7)+
- w<7r[0—gﬁa 0—97]7&-) - w(Tf[UV, S(g)}v 6)} =

=~ {S(9)(@(5,7)) ~ w(LsB,7) + @ (Lsio)T,B))
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which yields:
(40) Lsgpw =0.
Next, the following calculation:
WATer, 1)+ (r, Tet) = (LT T0) + (7, (Lo T)0)} =
= (L)1) ~ (Lsig) (I, 1)
leads (by (40)) to:
(41) w(Ter,t) +w(r,Tet) =0
for any r,t € (). Finally:
(dow)(a, 8,7) =0
yields:

(030)(w(B,7)) + (048)(w (¥, @) + w7, Tloga, 04 6])+

(42) + w(a, p_mlo,B,0,7]) +w(B, p-mlos7,0.a]) =0

for any a, 8,7 € H. At this point one may check the axioms. Firstly
(by (31)-(32)):

TOI“(O&,B) = VagaB - VUQEO‘ —lo,a, O-QB] =

= p—ﬂ[agCV’Ug_] - p-&-ﬂ'[agﬁv 040 — W[Ugavagm =

— O(mloya, UgB])é = 2(dQ9)(aaB)f = 2iLy(c, B)E

LEMMA 2.
a,f e H= ro,a,0,0] € H
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As Tor(a, B) = Uap(g9) —Upa(g) — 7oy, 0,0] it follows (by Lemma 2)
that Tor(«, 8) € H. Then (by (42)) we have w(Tor(ca, 8),7) = 0 and ax-
iom iv) is checked. Using (31) we have Tor(§, o) = Vgya—n[S(g), 040] =
Tea. Noting also that:

(43) TE=0

we may conclude that:

(44) Tor(&,r) = Ter

for any r € Q. Then (38) yields iii) in Theorem 10. Finally:

(vagaw)(B’V) = (O'gO[)(OJ(B,T)) - w(vogaﬁ’v) - W(ﬁ, vagai) =
=(040)(w(B,7)) = w(Uas(9),7) — w(B, p-mloga, 047]) =0

and:

(Vsw)(8,7) = S(9)(w(B,7)) — w(Vs(y)8,7) — w(B; Vs(e)7) =
= S(g)(w(B,7))+
—w(Lsg)B +TeB,7) — w(B, Lso)T + Te7) =
= (Ls(gw)(B,7) — {w(TeB,7) + w(B, Tey)} =0

(by (40)-(41)) yield Vw= 0(which together with V& =0 implies Vg, = 0).

It is known that with the Webster connection of a nondegenerate CR
manifold M (of CR dimension n) one may associate the pseudoconformal
curvature tensor S§ - (cf. (3.8) in [15], p. 35) and S§,; = 0 iff M is
locally CR equivalent to the sphere S*"*! C C"*! (cf. [4]). In view of our

Theorem 10 it is tempting to look for a foliated analogue of this result.

7 — Embedding transverse CR structures

Let M be a m-dimensional C*° manifold, m = 2n + k + p, and
(F,H) a CR foliation of M of codimension ¢ = 2n+ k and transverse CR
dimension n. An embedding of (M, H) is a C'* immersion:

w:(gl)'” 7gn+k7fl7"' afr):M—>CN
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with N =n+ k+r, r > p, so that the following conditions are satisfied:
i) g, € O(F) 0 C,
ii) gg; =0,1<j<n+k.
Set g = (g1, yGnsr) : M — C"*. As each g; is basic the differential
d.g induces a map G, : Q, — Ty)(C™""). Finally, we request:
iii) for any x € M, G, is one-to-one.
The embedding 1) is generic if r = p. A pair (M, H) for which an embed-
ding 1 exists is termed embeddable.
Let ¢ : M — C¥ be an embedding of (M,H). Then:

(45) G, (Hw) C Tl’O(CnJrk)g(fr) .

Here T"°(C™**) denotes the holomorphic tangent bundle of C"**. To
prove (45) let {¢,} be an admissible frame and 7T, some foliate complex
vector fields with 77T, = {,. Then (by ii)) in the definition of ¢)) we have
Tx(g;) = 0 where Ty = T,. Let (¢',---,¢"**) be the natural complex
coordinates on C"**. Finally:

Galalz) = (dog)T5(x) =

0
= Ta(gj)ﬁ—g'j +

— 8 S n+k
Ta(gj)a—zj € Tlo(c * )g(w)'

If additionally ¢ = 2n + 1 then:
(46) Gx,Hx = To’l(cn+l)g($) N Gx(Qx & C)

for any x € M. Indeed, let d be the complex dimension of the right
hand term in (46). Then (by (45)) n < d < n+1. If d = n+ 1 then
TH(C™) ) € Go(Q, ® C) and (by taking complex conjugates) one
gets a contradiction. Thus d = n, Q.E.D.

We call (M, H) locally embeddable if for any = € M there is an open
neighborhood U of z in M and an embedding ¢ : U — CV of (U, Hy),
where H denotes the portion of H over U. We may state the following:

THEOREM 11. Let M be a m-dimensional real analytic manifold,
m = 2n+k+p, and (N,T19(N)) a real analytic CR manifold of type
(n,k). Let F be a I'¢g(N)-foliation of M of codimension ¢ = 2n + k
and H its (real analytic) transverse CR structure. Then (M, H) is locally
embeddable.
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Near zq € M, H is generated by n real analytic sections (, € T'%(H)
so that [(,, (5] € ¥(H). Using a real analytic foliated coordinate system
(y', - ,yd,xt, -+ 2P) for M, we may assume that M is an open subset
of RI"P containing the origin and that {, = 7L, for some real analytic
foliate vector field L, in T(R?™") @ C. We write:

:zq: 8 1<a<n
= 81/] -

for some C* functions a,; : R“? — C. As both L, and 9/dy’ are
foliate, a,; are basic, i.e. a,; = aq;(y). Since {(g}i1<a<n are linearly
independent and {7(9/0y")}1<j<, a frame of @, the matrix [a,;(0)] has
complex rank n. By reordering the coordinates if needed, we may assume
the nxn block A = [a.g] is nonsingular in a neighborhood U of 0 € R?*?.
Set y = (t,u), t € R", u € R""*. By multiplying the coefficients of {(z}
with A~ we obtain another admissible frame of H (over U) of the form
(s = nL, where:

a n+k a
L, ata+z)“”tu 1<a<n

for some C* functions A,; : U — C (depending only on y = (¢,u)). The
Lie product [L,, Lg] has no (9/9t*)-component. Also:

[¢a: G5l = Z Casls

(because {(,} is admissible) so that:
(47) [CE: CE] =0, 1 <a, B <n.

Let ¢ € C", w € C"** and z € CP be the complexifications of t € R",
u € R"™ and z € RP, respectively (so that t = Re({), u = Re(w)
and © = Re(z)). By replacing ¢t and u by ¢ and w in the power series
expansion of \,; (about 0) we get functions \,; : C2*** — C which are
holomorphic in a neighborhood U of 0 € C2*** and A, (t,u) = A, (t, u).

Define:
a n+k

L, aCa—i-Z)\aJ C,w Hwﬂ 1<a<n.
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Note that:

My W O Oy

(48) o () = (), el () = T (1)

(because A,;(¢,w) are holomorphic in ¢ and w). At this point (47)-(48)
and the identity theorem for holomorphic functions yield:

[Lo, Lg] =0
on U C C?** Therefore we may apply Lemma 1 in A. BOGGESS, 2],
p. 56, to conclude that there is a holomorphic map (Wi, -, W) :
C" x C"™* — C"** (defined on a possibly smaller neighborhood U of
0 € C?") so that:

LaWj :O
W;(0,w) =w;, (0,w)eU.

Similarly (i.e. again by Lemma 1 in [2], p. 56, for the operators:
~ p o
La as o
+ Sz:; Hos s

with p,s = 0) there is a holomorphic function (Vi,---, V.4, fl, e ,fp) :
C" x C"t*k x CP — C"t* x CP so that:

e

LaV; =0, ofs =0
‘/j(oaw7z):wj7 fs(O,w,z):zS.

Let p be the projection (g,w,z) — ((,w) and set g; = Wjop for 1 <
Jj <n+k. Next consider ¥ = (G1,- - , Gn+k, f1,- -+ , fp) and define the C¥
map ,l/} = (917 © y Ontk f17 U 7fp) by Setting:

’ll}(t’ u’ 'CU) = w(t7 u’ x)

for (t,u,r) € R® x R"** x RP. Note that L,g; = f;gj =0onUNR"x
R"™). Also g; are basic. Moreover 9(0,u,x) = ¥(0,u,z) = (u,z). Let
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us show that 1 is a generic embedding. As L,g; = 0 yields dgg; = 0 one
should only check that dyy has real rank2n 4+ k + p. Set v = X 4 Y.
Note that (u,z) = ¥(0,u,x) = X(0,u,z) + 1Y (0, u, ) yields:

%w:<wxmmm uMﬂ>‘
OY/0t)(0) 0

Also, the imaginary parts of L,g; = 0 and L, f, = 0 may be written in
the following matrix form:

1904 In-‘rk "
agm=—<0 )amn«»

where Im A = [Im(\,;)]. Next (by HNH = {0}) {¢; — (o 16 — G}

are linearly independent (over C) and therefore:

1 g 9
27( a—Ca) = ; Im()\aj)w%

shows that (Im A)(0) has rankn. Set ¢ = (g1, ,gnix). Similarly, to
show that rank(dyg) = 2n+k set g = U +4V. Then ¢(0,u,z) = u yields:

(U L 0
o _<(8V/8t)(0) 0 o)

and the imaginary part of L,g; = 0 may be written:

oV .
S = —(m X)'(0)

so that rank(0V/0t)(0) = n, Q.E.D.

To give an example of embedded transverse CR structure, let N C
C"*! be a nondegenerate real hypersurface and M = N x C**! with the
natural complex foliation F. Let H be the transverse CR structure of F.
Then:

=91, s gnt1, fr, o far) 1 M — CPHIHEE
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given by gj(Z,C) = 2/ and fa(27<) =" fk+a(z7<) =0for1<j<n+1
and 1 < a <k, is a generic embedding of (M, H). Indeed, let {T,} be a
(local) frame of T3 o(N). Thus {T,,0/9¢*} is a (local) frame of T3 o(M).
The coordinate functions 27 are holomorphic so that zle € CR(N) and
hence g; are CR functions on M. For each leaf S = {2z} x C* of F we have
(g;);s = const. so that g; € Q% (F). Then (by Theorem 9) dqg; = 0. If E
is a vector bundle over C* let g* F be the pullback of E by g : M — C™+1,
g(z,¢) = 2. Finally, we need to check that G : Q — ¢*T(C""!) is a bundle
monomorphism. To this end let G,s = 0. There is Y = (V, W) so that
.Y =sand V € T,(N), W € T,(C*). Then V = (d,9)Y = Gs = 0 so
that Y = (0, W) € Py, Q.ED.
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