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Approximation of linearizable mappings of (C,0)

through resonant diffeomorphisms

E. TODESCO – G. TURCHETTI

Riassunto: Dato un diffeomorfismo analitico linearizzabile F di (C, 0), caratte-
rizzato da un autovalore λ = eiω, ove ω/(2π) ∈ IR è un numero di Brjuno, si considera

una successione di diffeomorfismi F (q) che converge ad F . Gli autovalori di F (q) sono
e2iπp/q ove q ∈ IN e p è la parte intera di qω/(2π). I diffeomorfismi F (q) sono pertur-
bazioni di una forma normale che converge alla parte lineare di F per q → ∞.

La funzione Ψ(q) che coniuga F (q) alla sua forma normale è analizzata al primo
ordine perturbativo: si dimostra che è sommabile secondo Borel e analitica su settori.
Si dimostra inoltre che una sottosuccessione di Ψ(q) converge in un intorno dell’origine
alla funzione che coniuga F con la sua parte lineare.

Abstract: Given a linearizable analytic diffeomorphism F of (C, 0) with eigen-
value λ = eiω, where ω/(2π) ∈ IR is a Brjuno number, we consider a sequence of dif-

feomorphisms F (q) converging to F . The eigenvalues of F (q) are e2iπp/q where q ∈ IN
and p is the integer part of qω/(2π). The diffeomorphisms F (q) are perturbations of a
normal form converging to the linear part of F for q → ∞.

The conjugation function Ψ(q) of F (q) with its normal form is analysed at the first
perturbation order, and shown to be Borel summable and sectorially analytical. We
prove the convergence of a sub-sequence of Ψ(q) in a neighbourhood of the origin to the
function that conjugates F with its linear part.
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1 – Introduction

During the last decades, the analysis of the dynamical and geomet-

rical properties of resonant holomorphic mappings has been succesfully

accomplished [1]-[5]. Let us consider the set of all holomorphic mappings

of (C,0), whose linear part is z′ = λqz, with λq = exp(2πip/q): then, the

flower theorem [1] states that the dynamics of a map belonging to this

set is homeomorphic to the dynamics of its normal form

(1.1) y′ =
λqy

(1 + ykq)1/kq
y ∈ C ,

i.e. the motion takes place on 2kq petals (see fig. 1). Correspondingly, if

we consider the function Ψ that conjugates the resonant diffeomorphism

to its normal form (1.1), one has that the analytic structure of Ψ is given

by a collection of 2kq functions, analytic on sectors of aperture smaller

than 2π/q, which differ by terms that are exponentially small in the

distance from the origin [2], [3] ,[6], [7].

On the other hand, in the diophantine case (λ = exp(iω), with ω/2π

Brjuno number [8] ) the dynamics of the mappings in the neighbourhood

of the origin takes place on closed curves that are analytically diffeomor-

phic to circles [9]-[12]. Correspondingly, the conjugation function Ψ to the

normal form (i.e. the linear map) is analytic on a closed neighbourhood

of the origin.

The aim of this paper is to investigate the transition from resonant

orbits, which have the flower structure with 2kq petals, to nonresonant

orbits, which are diffeomorphic to circles. The considered model is a

sequence of analytic mappings F (q)(x) of (C,0)

(1.2) F (q)(x) =
λqx

(1 + xq)1/q
+ εf(x) x ∈ C

with resonant eigenvalues λq converging to a limit λ∞ = eiω, where ω/2π

is a Brjuno number. This dynamically nontrivial limit q → ∞ is examined

by proving that the sequence of the normalizing transformations Ψ(q)(x)

converges to the function that linearizes the limit map F ∞(x). The type

of convergence is specified in the followings. The present proof applies to

the homologic equation.
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Fig. 1. — Phase portrait of the interpolating flow (solid line) and of the first 1000
iterates (dots) relative to four different initial conditions of the normal form (1.1) with
kq = 3 (up) and kq = 8 (down).
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The geometric meaning is quite evident and can be read on the se-

quence of normal forms (1.1) (see fig. 1): as q increases the radial motion

on each of the q petals is slowing down and ceases in the limit where it

is a pure rotation; the conjugation Ψ(q)(x) becomes analytic via a mech-

anism that is clear in the Borel plane where the residues of the poles (at

the homologic level) lying on the 2q anti-Stokes lines [7] vanish. A key

point consists in choosing the sequence where the rationals pr/qr are the

truncations of the continued fraction of the Brjuno number ω/2π.

In order to analyse the limit, we consider the conjugation of F (q) to

a more general normal form U (q), called preliminary, that differs from

the normal form (1.1) in terms of order yq+2. The preliminary normal

form is expressed by a divergent power series that can be resummed to 2q

functions analytic on sectors of aperture smaller than 2π/q, centered in

the origin. In this way we considerably simplify the functional equation

that defines Ψ(q), and the analysis of the limit. The main result of this

paper is expressed in the following propositions, where both the formal

and the analytic properties of the conjugating function Ψ(q) and of the

preliminary normal form U (q) in its dependence on the parameter q are

analyzed.

Proposition 1. We consider the subsequence of pr, qr given by

the continued fraction expansion of ω [8]; if we expand the conjugating

function in a power series in the small parameter ε, Ψ(qr)(x) = x +

εψ(qr)(x) + O(ε2), then for r → ∞ the first order term ψ(qr) formally

converges to the solution of the homologic Siegel problem ψ(∞). Moreover,

the preliminary normal form U (qr) formally converges to the linear part

(i.e. ,to the normal form) of F (∞).

Proposition 2. For each qr, the function ψ(qr) can be split into two

parts: ψ(qr) = ψ
(qr)
I + ψ

(qr)
II ; the first one is analytic on a neighbourhood

of the origin and in the limit uniformly converges to the solution of the

homologic Siegel problem. The second part ψ
(qr)
II can be resummed to

2qr functions analytic on sectors Σjr (where jr = 1, . . . , 2qr) of aperture

smaller than 2π; even though each domain has a measure that tends to

zero for r → ∞, the union of these domains always includes an open

neighbourhood of the origin. In the limit r → ∞, each one of the 2qr

resummed functions converges to zero on the domain of analyticity.
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Proposition 3. Using the same subsequence pr, qr of Proposition 2,

the preliminary normal form U (qr) converges in a neighbourhood of the

origin to the linear part of F (∞) according to the same properties given

for the conjugating function ψ(qr).

The proof is based on the evaluation of the conjugating function

according to the resurgent methods of the Borel resummation [2], [5],

which are standards of the resonant holomorphic theory, and through a

direct estimate of ψ(q) in its representation of the Laplace transform.

The plan of the paper is the following: in section 2 we write down

the functional equation that defines Ψ(q) and U (q); in section 3 we recall

some properties of the Borel transform in Cq and we explicit the formal

solution. The convergence proof for both functions is given in section 4.

2 – Functional equation

We consider a sequence of mappings of (C, 0) that are small pertur-

bations of the resonant standard shift (1.1)

(2.1) F (q)(x) =
λqx

(1 + xq)1/q
+ εf(x) f(x) =

∞∑

i=2

fix
i ,

where f(x) is taken independent of q and analytic on the disc DR = {|x| ≤
R} with R < 1. The eigenvalue λq = exp(2πip/q) tends to λ∞ = exp(iω),

and satisfies the Cremer condition

(2.2) sup
r∈N

log qr+1

qr

< +∞ ,

where qr are the denominators of the approximations of ω given by the

continued fraction [1]. When q → ∞ the resonant map F (q) tends uni-

formly in DR to the mapping

(2.3) F (∞)(x) = λ∞x + εf(x) .

The orbits of F (∞)(x) in the neighbourhood of the origin are deformed

closed circles, and one can build a convergent transformation Ψ(∞) that
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conjugates the map to its linear part [9] y′ = λ∞y. If one expands the

transformation in a power series of ε, y = Ψ(∞)(x) = x + εψ(∞)(x) +

O(ε2), the first order term satisfies the homologic equation ψ(∞)(λ∞x) −
λ∞ψ(∞)(x) = −f(x) whose solution is

(2.4) ψ(∞)(x) =
+∞∑

i=2

fi

λ∞ − (λ∞)i
xi ;

using the Brjuno condition one can prove that ψ(∞) is analytic in a neigh-

bourhood of the origin.

On the other hand, one can conjugate the resonant map F (q) to a

preliminary normal form at order one in ε, defined according to

(2.5)

U (q)(y) =
λqy

(1 + yq)1/q
+ ε

∞∑

k=1

fkq+1y
kq+1 + εu(q)(y)

u(q)(y) =
∞∑

j=q+2

ujy
j

through a transformation

(2.6) y = Ψ(q)(x) = x + εψ(q)(x) + O(ε2)

that contains only nonresonant terms

(2.7) ψ(q)(x) =
∞∑

j ,=kq+1,j=2

ψjx
j ≡

∗∑

j

ψjx
j .

The functional equation reads

(2.8)

f(x) + ψ(q)

(
λqx

(1 + xq)1/q

)
=

λq

(1 + xq)1+1/q
ψ(q)(x)+

+
∞∑

k=1

fkq+1x
kq+1 + u(x) .

We choose Ψ(q) to satisfy the functional equation

(2.9)
∗∑

j

fjx
j + ψ(q)

(
λqx

(1 + xq)1/q

)
− λqψ

(q)(x) = 0
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so that u(q) is given by

(2.10) u(q)(x) = λq

(
1 − 1

(1 + xq)1+1/q

)
ψ(q)(x) .

For the sake of simplicity of notation, throughout the next sections the
(q) will be omitted.

3 – Formal analysis

Proposition 1. Given the functional equation (2.9), the formal

solution of ψ is given by

(3.1)

ψ(x) =
1

λq

∗∑

j

fjx
j

∞∑

k=0

λk(j−1)
q

1

(1 + kxq)j/q
=

=
q∑

j=2

fj

λq − λj
q

xj + O(xq+2)

and therefore in the limit q → ∞, λq → λ∞, one formally recovers the

conjugation function of the homologic Siegel problem (2.4).

Proof. In order to write down the formal solution and, in the fol-

lowing sections, study the analytic properties of ψ, we perform the trans-

formation from C to Cq

(3.2) w = x−q x ∈ C w ∈ Cq

so that we can exploit the results relative to mappings tangent to the

identity [2−5]. We define

(3.3)

ψ(w) ≡ ψ(w−1/q) =
∗∑

i

ψiw
−i/q

f(w) ≡
∗∑

i

fiw
−i/q .

The functional equation (2.9) for ψ is transformed to the following form

(3.4) ψ(e−2πip(w + 1)) − λqψ(w) + f(w) = 0 .
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We remark that we have to take into account that e−2πip 6= 1: in fact,

this factor is responsible for the linear dynamics of the map, which on Cq

corresponds to jump p − 1 sheets each iteration.

We remind the reader of the following definitions and properties of

the Borel transform on Cq [13], [14].

Definition 1. Given a formal power series defined on Cq

(3.5) ĥ(w) =
+∞∑

i=1

hiw
−i/q w ∈ Cq ,

the formal Borel transform of h is given by

(3.6) hB(t) =
+∞∑

i=1

hi

(i/q − 1)!
ti/q−1 t ∈ Cq ,

where the factorial of a rational number is provided by the gamma func-

tion

(3.7) (i/q − 1)! ≡ Γ(i/q − 2) .

Definition 2. Let hB(t) be a power series defined on Cq, analytic

on a neighbourhood of the origin except singularities of the type 1/ti/q,

with i = 1, . . . , q − 1. Then if far from the origin the following estimate

holds:

(3.8) |hB(ρeiθ)| < A(θ) exp(B(θ)ρ) θ ∈ [0, 2πq] A(θ), B(θ) ∈ R+ ,

then we can define the Laplace transform of hB, carried along the direc-

tion θ

(3.9) hθ(w) =

∫ eiθ∞

0

e−twhB(t)dt w ∈ Cq .

Property 1. hθ(w) is analytic on the domain Re(eiθw) > B(θ).

Property 2. ∀θ ∈ [0, 2πq], hθ(w) has the same asymptotic expan-

sion of ĥ(w) in the neighbourhood of w = +∞.
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Property 3. If hB(t) has no singularities in t = ρeiθ, for ρ 6= 0,

θ ∈ [θ0, θ1] and |θ0−θ1| < π then hθ1
, hθ2

define a function that is analytic

on the union of the two domains Re(eiθ1w) > B(θ1), Re(eiθ2w) > B(θ2).

The proofs of these statements are analogous to the case of C. Prop-

erties 1-3 show that given an asymptotic expansion ĥ whose Borel trans-

form satisfies the conditions of definition 2 (this happens, for instance,

if the ĥ coefficients are dominated by a factorial), one can reconstruct a

function analytic on sectors. Finally, we give the analogous of the prop-

erty [h(w + 1)]B = e−thB(t) for the case of Cq.

Property 4.

(3.10) [h(e−2πip(w + 1))]B = e2πipe−thB(e2πipt) .

The proof is straightforward and consists in expanding in Taylor series

both sides of (3.10) and reordering the homogeneous polynomials.

Using the above properties, we make the Borel transform of the func-

tional equation (3.4), obtaining

(3.11) e2πipe−tψB(e2πipt) − λqψB(t) + fB(t) = 0 .

In order to explicit ψB we substitute t with e2πipt and multiply by e2πip

e−t/λq:

(3.12)
e−2t

λq

e4πipψB(e4πipt)−e−te2πipψB(e2πipt)+
e−t

λq

e2πipfB(e2πipt) = 0 ,

so that we can substitute in (3.11) and obtain

(3.13)
e−2t

λq

e4πipψB(e4πipt) − λqψB(t) + fB(t) +
e−t

λq

e2πipfB(e2πipt) = 0 .

We apply this procedure q times, ending up with

(3.14)
e−qt

(λq)q−1
e2πipqψB(e2πipqt)−λqψB(t) +

q−1∑

k=0

e−kt

(λq)k
e2πipkfB(e2πipkt)=0
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and since in Cq e2πipq = 1, we can give the following explicit expression

for ψB

(3.15) λq(e
−qt − 1)ψB(t) = −

q−1∑

k=0

e−kt

(λq)k
e2πipkfB(e2πipkt) .

We expand the r.h.s. of (3.15), using the definition of fB (3.6); since fB is

analytic in a neighbourhood of the origin, we can perform the summation

over k ending up with

(3.16)

q−1∑

k=0

e−kt

(λq)k

∗∑

j

fj

(j/q − 1)!
(λq)

kjtj/q−1 =

= (1 − e−qt)
∗∑

j

fj

(j/q − 1)!

tj/q−1

1 − e−tλj−1
q

;

therefore ψB reads

(3.17) ψB(t) =
1

λq

∗∑

j

fj

(j/q − 1)!

tj/q−1

1 − e−tλj−1
q

.

The expression (3.17) allows the computation of the coefficients of ψ

by applying the Laplace transform:

(3.18)

ψθ(w) =

∫ eiθ∞

0

e−twψB(t)dt =

=
1

λq

∫ eiθ∞

0

e−tw
∗∑

j

fj

(j/q − 1)!

tj/q−1

1 − e−tλj−1
q

dt ;

exchanging the integral with the series and performing the integration we

obtain

(3.19) ψθ(w) =
1

λq

∗∑

j

fj

∞∑

k=0

λk(j−1)
q

1

(w + k)j/q

so that on the plane x = w−1/q one recovers the expression (3.1). This

completes the proof of Proposition 1.
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4 – Convergence proof

Proposition 2. Let ω satisfy the Cremer condition (2.2). We

consider the subsequence qr, pr that approximate ω according to the al-

gorithm of the continued fraction. For each qr, the function ψ(qr) can be

split into two parts: ψ(qr) = ψ
(qr)
I + ψ

(qr)
II ; the first one is analytic on a

neighbourhood of the origin and in the limit uniformly converges to the

solution of the homologic Siegel problem. The second part ψ
(qr)
II can be

resummed to 2q functions analytic on sectors Σjr (where j = 1, . . . , 2q)

of aperture smaller than 2π; even though each domain has a measure that

tends to zero for r → ∞, the union of these domains always include an

open neighbourhood of the origin. In the limit r → ∞, each one of the 2q

resummed functions converges to zero on the domain of analyticity.

Proof. We write ψ(x) as the Laplace transform of ψB(t), separating

out the part that in the limit tends to solution of the Siegel homologic

problem from the remainder:

(4.1)

ψB(t) = ψB,I(t) + ψB,II(t) =
∗∑

j

fj

(j/qr − 1)!

tj/qr−1

λqr − (λqr)
j
+

+
∗∑

j

fj

(j/qr − 1)!

(λqr)
jtj/qr−1

λqr − (λqr)
j

e−t − 1

λqr − e−t(λqr)
j
;

therefore we define

(4.2)

ψθ,I(x) ≡
∫ eiθ∞

0

e−t/xqr
∗∑

j

fj

(j/qr − 1)!

tj/qr−1

λqr − (λqr)
j
dt =

=
∗∑

j≥2

fj

λqr − (λqr)
j
xj

(4.3)

ψθ,II(x) ≡
∫ eiθ∞

0

e−t/xqr ×

×
∗∑

j

fj

(j/qr − 1)!

(λqr)
jtj/qr−1

λqr − (λqr)
j

e−t − 1

λqr − e−t(λqr)
j
dt .
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We first analyze the behaviour of ψθ,I , can be rewritten according to

ψθ,I(x) = S1(x) + S2(x) + S3(x) + S4(x) =

=
∞∑

j=2

fj

λ∞ − (λ∞)j
xj −

∑

j≥qr+1

fj

λ∞ − (λ∞)j
xj+(4.4)

+
qr∑

j=2

(λqr)
j − (λ∞)j − λqr + λ∞

[λ∞ − (λ∞)j][λqr − (λqr)
j]

fjx
j +

∗∑

j≥qr+1

fj

λqr − (λqr)
j
xj .

if ω satisfies the Cremer condition

(4.5) sup
r∈N

log qr+1

qr

< ∞ ,

then S1(x) is absolutely convergent on DR, and therefore S2(x) converges

to zero on the same domain. In order to estimate S3 we first observe that

(4.6) |λqr − (λqr)
j|−1 =

∣∣∣∣2 sin

(
π

(j − 1)p

qr

)∣∣∣∣
−1

≤ qr

4
;

since the continued fraction expansion of ω satisfy

(4.7)

∣∣∣∣ω − pr

qr

∣∣∣∣ ≤ 1

qrqr+1

≤ 1

(qr)2
,

one has

(4.8) |(λqr)
j − (λ∞)j| + |λqr − λ∞| ≤ 4 sinπj

∣∣∣∣ω − pr

qr

∣∣∣∣ ≤ 4πj

(qr)2
.

If x ∈ DR one can prove that

(4.9) |S3(x)| ≤ π

qr

qr∑

j=2

jRj

λ∞ − (λ∞)j
= O

(
1

qr

)
→ 0 .
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Finally, S4 is estimated according to

(4.10) |S4(x)| ≤ qr

4

∞∑

qr+1

jRj ≤ qr

4
Rqr+1 qr + 2

(1 − R)2
= O((qr)

2Rqr) → 0 .

This proves that ψθ,I uniformly converges to a function analytic on a close

neighbourhood of the origin.

In order to complete the proof of proposition 2 one has to show that

the remainder ψθ,II converges to zero in the limit r → ∞. The function

ψθ,II is the Laplace transform of ψB,II , [see (4.1) and (4.3) ], which is

defined on Cq, and has 2q lines of singularities located on the axes iR+,

−iR− in each of the q sheets. This provokes the appearance of 2q anti-

Stokes lines in the analytic structure of the resummed function ψθ,II ,

namely one has that {ψθ,II}θ∈[0,2π[ is a collection of 2q functions analytic

on sectors of aperture smaller than 2π/q. Each one of the 2q functions

has the same asymptotic expansion around the origin: in fact they all are

formal solutions of the functional equation (2.9). The 2q determinations

of ψθ,II differ by terms that are exponentially small in the distance to

the origin, namely proportional to e−1/x. We will show that in the limit

qr → ∞ all the 2q determination of ψθ,II vanish.

Firstly, we have to estimate the denominator |λqr − e−t(λqr)
j| on a

line t = ρeiθ: one obtains

(4.11) |λqr − e−ρeiθ

(λqr)
j|−1 ≤ c(θ)

|1 − (λqr)
j−1| t ∈ [0,+∞]

where c(θ) is a positive constant, which diverges for θ → ±π
2
.

For θ ∈] − π/2, π/2[ the numerator of the integrand is limited, and

therefore according to property 1 the Laplace integration defines a func-

tion ψθ,II(x) that is analytic on the plane Rex−qr > 0 intersected with the

convergence domain DR of F (qr). For θ ∈]π/2, 3π/2[ the numerator is ex-

ponentially growing with constant B(θ) = | cos(θ)| (see 3.8) and therefore

the integration defines a function that is analytic on the circle of diameter

1/| cos θ| which passes through the origin and xqr = −1 intersecated with

DR. All the ψθ,II(x) with θ ∈]−π/2, π/2[ are analytically prolongable to

the same function, analytic on the domain DR/{xqr ∈ R, xqr < 0} (see

Property 3). Similarly, if θ ∈]π/2, 3π/2[ the ψθ,II(x) are prolongable to a

function that is analytic on DR/{xqr ∈ R, xqr > 0 or xqr < −1}.
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In order to prove the convergence of ψ
(qr)
θ,II(x) in the limit r → ∞ we

first explicitly consider the case of ψ0,II(x), which converges to 0 on the

domain {x/Re x−qr ≥ R−qr > 1}. Since

(4.12)

|ψ0,II(x)| ≤
∫ +∞

0

|e−t/xqr |×

×
∗∑

j

|fj|
(j/qr − 1)!

1 − e−t

|λqr − e−t(λqr)
j|

tj/qr−1

|λqr − (λqr)
j|dt ,

using (4.11) and exchanging the integral with the series (which is abso-

lutely convergent), one obtains

(4.13)

|ψ0,II(x)| ≤ c(0)
∗∑

j

1

|1 − (λqr)
j−1|2

1

(j/qr − 1)!
×

×
∫ +∞

0

e−t Re x−qr
tj/qr−1(1 − e−t)dt .

Using the estimate 1 − e−t ≤ t and performing the integration, we have

(4.14) |ψ0,II(x)| ≤ c(0)qr

16

∗∑

j

j(Re x−qr)−j/qr−1 .

Therefore the convergence of ψ0,II(x) to 0 on the domain {x/Re x−qr ≥
R−qr > 1} can be proved: in fact one has

(4.15) |ψ0,II(x)| ≤ c(0)qr

16
Rqr

∗∑

j

jRj = O(qrR
qr) → 0 .

The computations for θ ∈] − π/2, π/2[ and θ ∈]π/2, 3π/2[ can be

carried out similarily, and lead to the convergence of ψ
(qr)
θ,II(x) → 0 on

the domain {x/Re(eiθx−qr) ≥ R−qr > 1}. Indeed, considering the union

of all the domains of convergence one obtains a closed neighbourhood of

the origin, and therefore the proof of Proposition 2 is completed. The

difference between the determinations given by θ ∈] − π/2, π/2[ and θ ∈
]π/2, 3π/2[ is related to the values of the residues of the Borel transform

of ψ.
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Finally, we consider the convergence of the preliminary normal form

U (qr); the proof is straightforward since according to the functional equa-

tion (2.9) u is proportional to ψ.

Proposition 3. Using the same subsequence pr, qr of Proposition 2,

the preliminary normal form U (qr) converges in a neighbourhood of the

origin to the linear part of F (∞) according to the same properties given

for the conjugating function ψ(qr).

Proof. The definition of U (qr) reads:

(4.16) U (qr)(y) =
λqry

(1 + yqr)1/qr
+ ε

∞∑

k=1

fkqr+1y
kqr+1 + εu(y)

the resonant standard shift plus the resonant part of f trivially converge

to U (∞) = λ∞y on DR; u is given by the second part of (2.9):

(4.17) u(x) = λqr

(
1

(1 + xqr)1+1/qr
− 1

)
ψ(qr)(x).

Since (1 + xqr)−1−1/qr − 1 uniformly converges to 0 on DR, then U (qr)

converges to U (∞) with the same properties of the convergence of ψ
(qr)
II to

zero.
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