A note on the cardinality of functionally Hausdorff spaces

A. FEDELI

RIASSUNTO: Lo scopo di questa nota è di fornire una nuova stima della cardinalità degli spazi funzionalmente di Hausdorff.

Abstract: The aim of this note is to give a new estimation of the cardinality of functionally Hausdorff spaces.

A space X is said to be functionally Hausdorff if whenever $x \neq y$ in X there is a continuous real valued function f defined on X such that f(x) = 0 and f(y) = 1.

In this paper we use a new cardinal function related to cellularity in order to obtain a bound on the cardinality of functionally Hausdorff spaces (see [1] and [10] for some cardinal inequalities obtained by means of cellularity-like cardinal functions).

We refer the reader to [2], [5], [9] for notations and terminology not explicitly given.

DEFINITION 1. Let A be a subset of a space X. The τ -closure of A, denoted by $\operatorname{cl}_{\tau}(A)$, is the set of all points $x \in X$ such that any cozero-set neighbourhood of x intersects A ([7],[8]). A is said to be τ -closed in X

KEY WORDS AND PHRASES: Cardinal inequality – Functionally Hausdorff space. A.M.S. Classification: 54A25

if $A = \operatorname{cl}_{\tau}(A)$. Clearly every zero-set in a space X is τ -closed in X. The $\tau\theta$ -closure of A, denoted by $\operatorname{cl}_{\tau\theta}(A)$, is the set of all points $x \in X$ such that $\operatorname{cl}_{\tau}(V) \cap A \neq \emptyset$ for every open neighbourhood V of x [3].

Observe that for every space X and every $A \subset X$ it follows that $\bar{A} \subset \operatorname{cl}_{\tau\theta}(A) \subset \operatorname{cl}_{\tau}(A)$. Moreover if X is completely regular then $\bar{A} = \operatorname{cl}_{\tau\theta}(A) = \operatorname{cl}_{\tau}(A)$ for every $A \subset X$.

DEFINITION 2. i) Let X be a topological space and let $p \in X$. We define $\chi(p, X) = \min\{|\mathcal{V}| : \mathcal{V} \text{ is a local base for } p\}$. The character of X is defined as follows : $\chi(X) = \sup\{\chi(p, X) : p \in X\} + \omega$.

(ii) Let X be a functionally Hausdorff space. $H\psi_{\tau}(X)$ is the smallest infinite cardinal κ such that it is possible to associate to every $x \in X$ a collection \mathcal{B}_x of open neighbourhoods of x, with $|\mathcal{B}_x| \leq \kappa$, in such a way that if $x \neq y$ then there are $U \in \mathcal{B}_x$ and $V \in \mathcal{B}_y$ with $\mathrm{cl}_{\tau}(U) \cap \mathrm{cl}_{\tau}(V) = \emptyset$.

Let X be a topological space. A cellular family in X is a collection of pairwise disjoint non-empty open sets in X. The cellularity of X is defined as follows: $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a cellular family in } X\} + \omega$. Observe that if $c(X) = \kappa$ and \mathcal{U} is an open collection in X then there is a subcollection \mathcal{V} of \mathcal{U} such that $|\mathcal{V}| \leq \kappa$ and $|\mathcal{U}| \subset \overline{|\mathcal{V}|}$. This observation led us to the following

DEFINITION 3. Let X be a topological space. $\tau c(X)$ is the smallest infinite cardinal κ such that for every open collection \mathcal{U} in X there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ such that $\bigcup \mathcal{U} \subset \operatorname{cl}_{\tau \theta}(\bigcup \{\operatorname{cl}_{\tau}(V) : V \in \mathcal{V}\})$.

- REMARK 4. i) Note that $H\psi_{\tau}$ is defined for functionally Hausdorff spaces only. In fact a space X is functionally Hausdorff if and only if for every $x, y \in X$, $x \neq y$, there are open sets U and V in X such that $x \in U$, $y \in V$ and $\operatorname{cl}_{\tau}(U) \cap \operatorname{cl}_{\tau}(V) = \emptyset$.
- ii) The Hausdorff pseudo-character $H\psi(X)$ of a T_2 -space is defined as the smallest infinite cardinal κ such that for every $x \in X$, there is a collection \mathcal{B}_x of open neighbourhoods of x with $|\mathcal{B}_x| \leq \kappa$ such that if $x \neq y$, there exist $U \in \mathcal{B}_x$ and $V \in \mathcal{B}_y$ with $U \cap V = \emptyset$ [6]. It is clear that $H\psi(X) \leq H\psi_{\tau}(X)$ for every functionally Hausdorff space X and that $H\psi(X) = H\psi_{\tau}(X)$ for every Tychonoff space X.
- iii) Observe that $H\psi_{\tau}(X) \leq \chi(X)$ for every functionally Hausdorff space X: let $\chi(X) = \kappa$ and for every $x \in X$ let \mathcal{B}_x be a local base for x such that $|\mathcal{B}_x| \leq \kappa$. Let us show that if $x \neq y$ then there are $U \in \mathcal{B}_x$ and

 $V \in \mathcal{B}_y$ such that $\operatorname{cl}_{\tau}(U) \cap \operatorname{cl}_{\tau}(V) = \emptyset$. Since X is functionally Hausdorff there is a continuous function $f: X \to R$ such that f(x) = 0 and f(x) = 1. Choose $U \in \mathcal{B}_x$ and $V \in \mathcal{B}_y$ in such a way that $U \subset f^{-1}((-\frac{1}{3}, \frac{1}{3}))$ and $V \subset f^{-1}((\frac{2}{3}, \frac{4}{3}))$. Since $f^{-1}([-\frac{1}{3}, \frac{1}{3}])$ and $f^{-1}([\frac{2}{3}, \frac{4}{3}])$ are zero-sets in X it follows that $\operatorname{cl}_{\tau}(U) \cap \operatorname{cl}_{\tau}(V) \subset f^{-1}([-\frac{1}{3}, \frac{1}{3}]) \cap f^{-1}([\frac{2}{3}, \frac{4}{3}]) = \emptyset$. Therefore $H\psi_{\tau}(X) \leq \kappa$.

THEOREM 5. If X is functionally Hausdorff then $|X| \leq 2^{\tau c(X)H\psi_{\tau}(X)}$.

PROOF. Let $\tau c(X)H\psi_{\tau}(X) = \kappa$ and for every $x \in X$ let \mathcal{B}_x be a family of open neighbourhoods of x such that $|\mathcal{B}_x| \leq \kappa$ and if $x \neq y$ there are $U \in \mathcal{B}_x$ and $V \in \mathcal{B}_y$ with $\mathrm{cl}_{\tau}(U) \cap \mathrm{cl}_{\tau}(V) = \emptyset$.

Construct a sequence $\{S_{\alpha} : \alpha < \kappa^{+}\}\$ of subsets of X and a sequence $\{\mathcal{G}_{\alpha} : 0 < \alpha < \kappa^{+}\}\$ of open collections in X such that

- (i) $|S_{\alpha}| \leq 2^{\kappa}, \ \alpha < \kappa^{+};$
- (ii) $\mathcal{G}_{\alpha} = \{B : \exists x \in \bigcup_{\beta < \alpha} S_{\beta} \land B \in \mathcal{B}_{x}\}, 0 < \alpha < \kappa^{+};$
- (iii) If $\{U_{\gamma} : \gamma < \kappa\}$ is a family of subsets of X and each U_{γ} is the union of τ -closures of $\leq \kappa$ elements of \mathcal{G}_{α} and $\bigcup_{\gamma < \kappa} \operatorname{cl}_{\tau\theta}(U_{\gamma}) \neq X$ then $S_{\alpha} \setminus \bigcup_{\gamma < \kappa} \operatorname{cl}_{\tau\theta}(U_{\gamma}) \neq \emptyset$.

The construction is done by transfinite induction. Set $S_0 = \emptyset$. Let $0 < \alpha < \kappa^+$ and assume that S_β has been constructed for every $\beta < \alpha$. Note that \mathcal{G}_α is defined by (ii) and $|\mathcal{G}_\alpha| \leq 2^\kappa$. For every collection $\{U_\gamma : \gamma < \kappa\}$ of subsets of X, each of which is the union of τ -closures of $\leq \kappa$ elements of \mathcal{G}_α and $\bigcup \{\operatorname{cl}_{\tau\theta}(U_\gamma) : \gamma < \kappa\} \neq X$, choose a point in $X \setminus \bigcup \{\operatorname{cl}_{\tau\theta}(U_\gamma) : \gamma < \kappa\}$, and let S_α be the set so obtained. Obviously S_α satisfies the above conditions. Now the construction of the sequence $\{S_\alpha : \alpha < \kappa^+\}$ is complete.

Let $S = \bigcup_{\alpha < \kappa^+} S_{\alpha}$, it is enough to show that S = X. Assume not and take a $p \in X \setminus S$. Let $\mathcal{B}_p = \{B_{\gamma} : \gamma < \kappa\}$ and for every $\gamma < \kappa$ let $\mathcal{W}_{\gamma} = \{B : B \in \mathcal{B}_x, x \in S, \operatorname{cl}_{\tau}(B) \cap \operatorname{cl}_{\tau}(B_{\gamma}) = \emptyset\}$. Observe that for every $x \in S$ there is a $\gamma < \kappa$ such that $x \in \bigcup \mathcal{W}_{\gamma}$. Since $\tau c(X) \leq \kappa$ it follows that there is a $\mathcal{V}_{\gamma} \in [\mathcal{W}_{\gamma}]^{\leq \kappa}$ such that $\bigcup \mathcal{W}_{\gamma} \subset \operatorname{cl}_{\tau\theta}(\bigcup \{\operatorname{cl}_{\tau}(V) : V \in \mathcal{V}_{\gamma}\})$ for every $\gamma < \kappa$. Since $\operatorname{cl}_{\tau}(B_{\gamma}) \cap \bigcup \{\operatorname{cl}_{\tau}(V) : V \in \mathcal{V}_{\gamma}\} = \emptyset$ it follows that $p \notin \operatorname{cl}_{\tau\theta}(\bigcup \{\operatorname{cl}_{\tau}(V) : V \in \mathcal{V}_{\gamma}\})$ for every $\gamma < \kappa$.

Now for each $\gamma < \kappa$ let $U_{\gamma} = \bigcup \{ \operatorname{cl}_{\tau}(V) : V \in \mathcal{V}_{\gamma} \}$, and choose $\alpha < \kappa^{+}$ such that $\mathcal{V}_{\gamma} \subset \mathcal{G}_{\alpha}$ for every $\gamma < \kappa$. Then $\bigcup_{\gamma < \kappa} \operatorname{cl}_{\tau\theta}(U_{\gamma}) \neq X$ and $S_{\alpha} \subset S \subset \bigcup_{\gamma < \kappa} \bigcup \mathcal{W}_{\gamma} \subset \bigcup_{\gamma < \kappa} \operatorname{cl}_{\tau\theta}(U_{\gamma})$, a contradiction.

REMARK 6. A strong cellular family is a family \mathcal{U} of non-empty open subsets of a space X such that $\operatorname{cl}_{\tau}(U) \cap V = \emptyset$ or $U \cap \operatorname{cl}_{\tau}(V) = \emptyset$ for any pair U, V of distinct members of \mathcal{U} . The strong cellularity of a space X, denoted by $\operatorname{sc}(X)$, is defined as $\sup\{|\mathcal{U}|: \mathcal{U} \text{ is a strong cellular family of } X\} + \omega$ [4]. Clearly $\operatorname{sc}(X) \leq c(X)$ for any space X. Moreover if X is a space such that $\operatorname{sc}(X) = \kappa$ and \mathcal{V} is a collection of open subsets of X then by prop. 2 in [4] it follows that there is a $\mathcal{W} \subset \mathcal{V}$ such that $|\mathcal{W}| \leq \kappa$ and $|\mathcal{V}| \subset \operatorname{cl}_{\tau\theta}(|\mathcal{V}|)$. Therefore $\tau c(X) \leq \operatorname{sc}(X)$ for any space X.

A consequence of theorem 2 is the following

Corollary 7. [4] If X is functionally Hausdorff then $|X| \leq 2^{\operatorname{sc}(X)\chi(X)}$.

REMARK 8. i) Observe that the inequality in theorem 5 can be sharper than the one given in Corollary 7. Let τ be the euclidean topology on R and let X be R with the topology $\sigma = \{V \setminus A : V \in \tau, A \subset R \text{ and } |A| \leq \omega\}$. Observe that X is a functionally Hausdorff space with $\tau c(X)H\psi_{\tau}(X) = \aleph_0$. Moreover $\chi(X) = 2^{\aleph_0}$, in fact let $x \in R$ and let $\mathcal{V}_x = \{V_{\alpha} \setminus A_{\alpha}\}_{\alpha < \kappa}$ be a collection of open neighbourhoods of x in X such that $\kappa < 2^{\aleph_0}$. Let $G_n = (x - \frac{1}{n}, x + \frac{1}{n})$ for every positive integer n, and for every $\alpha \in \kappa$ choose $n(\alpha) \in N$ in such a way that $G_{n(\alpha)} \subset V_{\alpha}$. Now, for every n, take $x_n \in G_n \setminus \bigcup_{\alpha < \kappa} A_{\alpha}$ such that $x_n \neq x$. $R \setminus \{x_n : n \in N\}$ is an open neighbourhood of x which does not contain any element of \mathcal{V}_x (if there is some α for which $V_{\alpha} \setminus A_{\alpha} \subset R \setminus \{x_n : n \in N\}$ then $x_{n(\alpha)} \in R \setminus \{x_n : n \in N\}$, a contradiction). So \mathcal{V}_x is not a local base for x. Therefore $|X| = 2^{\tau c(X)H\psi_{\tau}(X)} < 2^{\operatorname{sc}(X)\chi(X)}$.

ii) In [6] it is shown that $|X| \leq 2^{c(X)H\psi(X)}$ for every Hausdorff space X. It is worth noting that the functionally Hausdorff space X described in [4] is such that $|X| = 2^{\aleph_0}$, $H\psi(X) = H\psi_{\tau}(X) = \chi(X) = \tau c(X) = \mathrm{sc}(X) = \omega$ and $c(X) = 2^{\aleph_0}$. So $|X| = 2^{\tau c(X)H\psi_{\tau}(X)} < 2^{c(X)H\psi(X)}$.

The author wishes to thank the referee for some helpful comments which improved the exposition of the paper.

REFERENCES

- [1] A. Bella: More on cellular extent and related cardinal functions, Boll. Un. Mat. Ital. (7), 3-A (1989), 61-68.
- [2] R. ENGELKING: General topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [3] A. FEDELI: Two cardinal inequalities for functionally Hausdorff spaces, Comment. Math. Univ. Carolinae, **35-2** (1994), 365-369.
- [4] A. FEDELI S. WATSON: On strong cellularity, Boll. Un. Mat. Ital. (7), 10-A (1996), 673-677.
- [5] R. Hodel: Cardinal function I, in: Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan (Editors) (North Holland, Amsterdam) (1984), 1-61.
- [6] R. Hodel: Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc., 111 (1991), 567-575.
- [7] T. ISHII: On the Tychonoff functor and w-compactness, Topology Appl., 11 (1980), 175-187.
- [8] T. ISHII: The Tychonoff functor and related topics, in: Topics in General Topology (K. MORITA and J. NAGATA (Editors)) (North Holland, Amsterdam) (1989), 203-243.
- [9] I. Juhàsz: Cardinal functions in topology ten years later, Mathematical Centre Tracts, 123 Amsterdam, (1980).
- [10] J. SCHRÖDER: Urysohn cellularity and Urysohn spread, Math. Japonicae, 38 (1993), 1129-1133.

Lavoro pervenuto alla redazione il 27 febbraio 1996 modificato il 31 luglio 1996 ed accettato per la pubblicazione il 26 settembre 1996. Bozze licenziate il 16 novembre 1996