
Rendiconti di Matematica, Serie VII
Volume 17, Roma (1997), 163-186

Nonlinear Dirichlet problems

in randomly perforated domains

M. BALZANO – A. CORBO ESPOSITO – G. PADERNI

Riassunto: Si studiano successioni di problemi variazionali in regioni perforate
in maniera aleatoria, con condizioni di Dirichlet al bordo. Utilizzando un metodo ca-
pacitario, si identifica il problema limite. Vengono formulate condizioni necessarie e
sufficienti per ottenere un problema limite deterministico.

Abstract: Sequences of nonlinear variational problems in random perturbed do-
mains with Dirichlet boundary conditions are investigated. By using a capacitary
method, the limit problem is characterized. Necessary and sufficient conditions to have
a deterministic limit problem are given.

1 – Introduction

The aim of this paper is to propose a general framework to study

the asymptotic behaviour, as h → +∞, of sequences of minimum prob-

lems in domains with randomly distributed holes and Dirichlet boundary

conditions of the form

(1.1) min
u∈H

1,p
0

(D\Eh)

∫

D\Eh

f(x, Du) dx +

∫

D\Eh

gu dx

where (Eh) is a sequence of closed random subsets of D ⊆ IRn, n ≥ 2.

Key Words and Phrases: γ-convergence – Capacity – Random set.
A.M.S. Classification: 49A50



164 M. BALZANO – A. CORBO ESPOSITO – G. PADERNI [2]

Our approach is similar to those ones already provided in [2], [3] and,

more recently, in [4] in order to analyze a broad class of linear Dirichlet

problems.

The present work, in a sense, may be considered the probabilistic

version of the paper of G. Dal Maso and A. Defranceschi [10]; so,

following the mentioned authors, we assume that the function f(x, ξ)

in (1.1) is measurable in x, convex and p-homogeneous in ξ, and that

c1|ξ|p ≤ f(x, ξ) ≤ c2|ξ|p

for constants 0 < c1 ≤ c2 < +∞, and 1 < p ≤ n.

Next, introducing, for every closed set B ⊆ D, the measure given by

(1.2) ∞E(B) =

{
0 if Cp(E ∩ B) = 0

+∞ if Cp(E ∩ B) > 0 .

where Cp(A) is the p-capacity of A, we can see that the minimum prob-

lem (1.1) is equivalent to

(1.3) min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p dMh +

∫

D

gu dx

for Mh = ∞Eh

Therefore, it is convenient to consider problems like (1.3) in the case

where (Mh) is a sequence of random measures, i.e. measurable functions

from a probability space into a set of measures, endowed with a suitable

topology.

In order to have at our disposal a good setting for the standard

methods of Probability Theory, we consider a peculiar sub-class, denoted

by M∗
p, of the set of all non-negative Borel measures on D vanishing on

all Borel sets with p-capacity zero. An example of measure belonging to

M∗
p is just the measure in (1.2).

Introducing on M∗
p the notion of γf -convergence (see Definition 2.4),

the class M∗
p becomes a (sequentially) compact metric space.

On this space we define the basic tool in our analisys, that is, the

nonlinear variational µ-capacity relative to f defined as

(1.4) C(f, µ, B) = min

{∫

D

f(x, Du) dx +

∫

B

|u − 1|p dµ; u ∈ H1,p
0 (D)

}
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for every Borel set B ⊆ D and µ ∈ M∗
p.

The probabilistic problem we shall consider can be formulated as

follow.

Let (Ω, Σ, P ) be a probability space. Consider a sequence (Mh) of

random measures, i.e. of measurable maps between (Ω,Σ) and M∗
p, en-

dowed with the minimal σ-algebra B(M∗
p) for which the maps C(f, ·, K)

are measurable for every compact subset K of D.

Associated with the measures Mh(ω), ω ∈ Ω, we consider minimum

problems like (1.3) and we want to analyze the asymptotic behaviour,

as h → +∞, of the minimum values mh(ω) and of the minimum points

Uh(ω) of these problems.

We find necessary and sufficient conditions on (Mh) for the conver-

gence in probability of the sequence of the random minima (mh) to a

constant m0 given by

(1.5) m0 = min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p dν +

∫

D

gu dx

where ν is a suitable measure of the class M∗
p.

These conditions are given in terms of the asymptotic behaviour of

the expectations of the random variables C(f, Mh(·), B) and of the co-

variances of the random variables C(f, Mh(·), A) and C(f, Mh(·), B) for

disjoint subsets A and B of D.

In the case where the functional appearing in (1.3) has a unique

minimum point Uh(ω) for every h ∈ IN, the same conditions guarantee

the convergence in probability of the sequence (Uh) to the minimum point

U0 of the problem (1.5).

When these conditions are satisfied, we obtain also a characterization

of the limit measure ν. In fact, in this case the expectations of the ca-

pacities C(f, Mh, B) converge weakly (in the sense of [14]) to a countably

subadditive set function α(B) (which turns to be equal to C(f, ν, B)) and

ν is the least measure such that ν ≥ α.

Many other authors have been investigated the asymptotic behaviour

of nonlinear problems in varying domains (see, for istance, [20], [21], [17],

[18], [22], [23], [24], [6], [13]).

Recently, the case of Dirichlet problems in perforated domains with

monotone operators has been analyzed in [11], [12], [5].
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All the results of the present paper can be extended with some diffi-

cult technical changes to the case of monotone operators A : H1,p
0 (D) →

H−1,q(D), with 1 < p < +∞, 1
p

+ 1
q

= 1. We have planned to give these

results in a forthcoming paper.

The present paper can be considered a self-contained exposition in

the simple case when A is the subdifferential of the functional F (u) =∫
D f(x, Du) dx defined on H1,p

0 , where f(x, ξ) satisfies the conditions (2.1)

and (2.2).

2 – Notation and background material

Let D be a bounded open subset of IRn, n ≥ 2 and p be a real constant

such that 1 < p < ∞.

We denote by U the family of all open sets U ⊆ D and by K the

family of all compact sets K ⊆ D. Moreover, we indicate by B the σ-field

of all Borel subsets of D.

For every K ∈ K, we define the p-capacity of K with respect to D by

Cp(K) = inf

{∫

D

|Dϕ|p dx : ϕ ∈ C∞
0 (D), ϕ ≥ 1 on K

}
.

The definition is extended to the sets U ∈ U by

Cp(U) = sup {Cp(K); K ⊆ U, K ∈ K}

and to arbitrary sets E ⊆ D by

Cp(E) = inf {Cp(U); U ⊇ E, U ∈ U} .

The following proposition summarizes some well-known properties of

the p-capacity (see [15]).

Proposition 2.1. The p-capacity Cp satisfies the following prop-

erties:

(a) Cp(∅) = 0;

(b) Cp is increasing, i.e. Cp(E1) ≤ Cp(E2) whenever E1 ⊆ E2 ⊂ D;
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(c) if (Eh) is an increasing sequence of subsets of D and E =
⋃

h Eh,

then

Cp(E) = sup
h

Cp(Eh) ;

(d) if (Eh) is a sequence of subsets of D and E ⊆ ⋃
h Eh, then

Cp(E) ≤
∑

h

Cp(Eh) ;

(e) Cp is a strongly subadditive set function, i.e.

Cp(E1 ∪ E2) + Cp(E1 ∩ E2) ≤ Cp(E1) + Cp(E2) ∀E1, E2 ⊆ D .

Let E be a subset of D. If a property P (x) holds for all x ∈ E,

except for a subset N ⊆ E with Cp(N) = 0, then we say that P (x)

holds p-quasi everywhere on E (p-q.e.) or for p-quasi every x ∈ E (for

p-q.e. x ∈ E). A set A ⊆ D is said to be p-quasi open (respectively

p-quasi closed, p-quasi compact) in D if for every ε > 0 there exists an

open (respectively closed, compact) set U ⊆ D such that Cp(U2A) < ε,

where 2 denotes the symmetric difference (the topological notions are in

the relative topology of D).

It is well-known that A is p-quasi open if and only if D\A is p-quasi

closed and that any countable union or finite intersection of p-quasi open

sets is p-quasi open.

In a similar way we give the notion of a p-quasi Borel subset of D

and denote by B0 the σ-field of all p-quasi Borel subsets of D.

A function f : D → IR is said to be p-quasi continuous in D if for

every ε > 0 there exists a set E ⊆ D with Cp(D\E) < ε such that the

restriction of f to E is continuous on E.

The notion of p-quasi upper and p-quasi lower semicontinuity are

defined in a similar way.

For every set E ⊆ D we denote by 1E the characteristic function of

E, defined by 1E(x) = 1 if x ∈ E, and 1E(x) = 0 if x ∈ D\E.

It easy to check that a set E ⊆ D is p-quasi open (respectively p-

quasi closed) in D if and only if 1E is p-quasi lower (respectively p-quasi

upper) semicontinuous in D.
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It can be proved that a function f : D → IR is p-quasi lower (re-

spectively p-quasi upper) semicontinuous if and only if the sets {x ∈ D :

f(x) > t} (respectively {x ∈ D : f(x) ≥ t}), are p-quasi open (respec-

tively p-quasi closed) for every t ∈ IR (see [16]).

We denote by H1,p(D) the Sobolev space of all functions in Lp(D)

with first order distributional derivatives in Lp(D) and by H1,p
0 (D) the

closure of C∞
0 (D) in H1,p(D).

For every x ∈ IRn and r > 0 we set

Br(x) = {y ∈ IRn : |x − y| < r} ,

and for every Borel set B ⊂ IRn we denote by |B| its Lebesgue measure.

It is well-known that for every function u ∈ H1,p(D) the limit

lim
r→0+

1

|Br(x)|

∫

Br(x)

u(y)dy

exists and is finite p-quasi everywhere in D.

We assume the following convention about the pointwise value of a

function u ∈ H1,p(D): for every x ∈ D we require that

lim inf
r→0+

1

|Br(x)|

∫

Br(x)

u(y)dy ≤ u(x) ≤ lim sup
r→0+

1

|Br(x)|

∫

Br(x)

u(y)dy .

So, the pointwise value u(x) is determinated p-q.e. on D and the

function u is p-quasi continuous in D (see [15]).

It can be shown that

Cp(E) = min

{∫

D

|Du|p : u ∈ H1,p
0 (D) , u ≥ 1 p-q.e. on E

}

for every subset E ⊆ D.

A nonnegative countably additive set function µ defined on B and

with value in [0,+∞] such that µ(∅) = 0 is called a Borel measure on D.

A Borel measure which assigns finite value to every compact subset of D

is called a Radon measure.

Definition 2.2. We denote by M∗
p the class of all Borel measure µ

on D such that
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(a) µ(B) = 0 for every B ∈ B with Cp(B) = 0.

(b) µ(B) = inf{µ(U) : U p-quasi open, B ⊆ U} for every B ∈ B.

The set M∗
p has been introduced in [10]; for p=2 it coincides with

the set M∗
0, which has been extensively studied in [8].

We recall that the measures of the class M∗
p are not required to be

regular nor σ-finite. For istance, the measure introduced in the definition

below, belong to the class M∗
p.

Definition 2.3. For every p-quasi closed E ⊆ D we denote by ∞E

the Borel measure defined by

∞E(B) =

{
0 if Cp(E ∩ B) = 0

+∞ if Cp(E ∩ B) > 0

for every B ∈ B.

Let us fix a function f : D × IRn → IR and two constants 0 < c1 ≤
c2 < +∞ which satisfy the following conditions:

f(x, ξ) is Lebesgue measurable in x, convex and(2.1)

p-homogeneus in ξ ;

c1|ξ|p ≤ f(x, ξ) ≤ c2|ξ|p for every (x, ξ) ∈ D × IRn .(2.2)

We introduce a variational notion of convergence for sequences (µh)

in M∗
p.

With every µ ∈ M∗
p we associate the following functional Fµ defined

on Lp(D)

Fµ(u) =





∫

D

f(x, Du(x)) +

∫

D

|u|pdµ if u ∈ H1,p
0 (D) ;

+∞ if u ∈ Lp(D), u !∈ H1,p
0 (D) .

Since µ(B) = 0 for every B ∈ B with Cp(B) = 0, the functional Fµ

is lower semicontinuous in Lp(D).

The following definition of γf -convergence for measures (µh) in M∗
p

is given in terms of the Γ-convergence (see [7]) of the corresponding func-

tionals Fµh
.
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Definition 2.4. Let (µh) be a sequence in M∗
p and let µ ∈ M∗

p; we

say that (µh) γf -converges to µ if the following conditions are satisfied:

a) for every u ∈ H1,p
0 (D) and for every sequence (uh) in H1,p

0 (D) con-

verging to u in Lp(D) we have

Fµ(u) ≤ lim inf
h→∞

Fµh
(uh) ;

b) for every u ∈ H1,p
0 (D), there exists a sequence (uh) in H1,p

0 (D) con-

verging to u in Lp(D) such that:

Fµ(u) ≥ lim sup
h→∞

Fµh
(uh) .

Remark 2.5. There exists a metrizable topology on M∗
p which in-

duces the γf -convergence (see [10], Theorem 3.5). It will be called the

topology of γf -convergence. All topological notions we shall consider on

M∗
p are relative to this topology. The class of measures M∗

p is sequentially

compact with respect to this topology (see [10], Theorem 3.3).

Definition 2.6. For every µ in M∗
p, and g ∈ Lq(D), 1

p
+ 1

q
= 1, we

denote by m(µ, g) and U(µ, g) respectively the minimum value and the

the set of the minimum points of the problem

min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p dµ +

∫

D

gu dx .

The main motivation of γf -convergence is given by the following the-

orem (see [10], Theorem 4.5).

Theorem 2.7. Let 1 < p ≤ n. Let (µh) be a sequence in M∗
p which

γf -converges to µ ∈ M∗
p. Then for every g ∈ Lq(D), 1

p
+ 1

q
= 1, the

following properties hold:

a) lim
h→∞

m(µh, g) = m(µ, g);

b) for every neighbourhood A of U(µ, g) in Lp(D) there exists k ∈ IN

such that U(µh, g) ⊆ A for every h ≥ k.
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Remark 2.8. Whenever in Definition 2.6 the function f(x, ξ) in (2.1)

and (2.2) is such that the map U(·, g) : M∗
p → Lp(D) is single valued,

then U(·, g) is continuous, i.e. if (µh) γf -converges to µ in M∗
p then

lim
h→∞

U(µh, g) = U(µ, g) in Lp(D)

for every g ∈ Lq(D), with 1
p

+ 1
q

= 1.

For every set E ⊆ D, the capacity of E in D, relative to f , satisfy-

ing (2.1), (2.2), is defined by

C(f, E) = min

{∫

D

f(x, Du) dx; u ∈ H1,p
0 (D), u ≥ 1 p-q.e. on E

}
.(2.3)

Moreover, for every µ ∈ M∗
p and for every B ∈ B the µ-capacity of

B in D, relative to f , is defined by

C(f, µ, B) = min

{∫

D

f(x, Du) dx +

∫

B

|u − 1|p dµ; u ∈ H1,p
0 (D)

}
.(2.4)

The minimum in (2.3) (respectively in (2.4))is attained by the lower

semicontinuity of the functional in the weak topology of H1,p
0 (D).

Remark 2.9. If µ = ∞E (see Definition 2.3), with E p-quasi closed

in D, then

C(f,∞E, B) = C(f, E ∩ B)

for every B ∈ B.

The following proposition collects the main properties of the µ-ca-

pacity, relative to f , for an arbitrary µ ∈ M∗
p.

The proof of the proposition is analogous to the proofs of Theo-

rem 2.9, Theorem 3.5 and Theorem 3.7 in [8].

Proposition 2.10. For every µ ∈ M∗
p the set function C(f, µ, ·) :

B → [0, +∞] satisfies the following properties:

a) C(f, µ, ∅) = 0;

b) C(f, µ, B1) ≤ C(f, µ, B2) whenever B1, B2 ∈ B, B1 ⊆ B2;

c) if (Bh) is an increasing sequence in B and B =
⋃

h Bh, then

C(f, µ, B) = sup
h

C(f, µ, Bh) ;
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d) if (Bh) is a sequence of Borel sets of B and B ⊆ ⋃
h Bh, then

C(f, µ, B) ≤
∑

h

C(f, µ, Bh) ;

e) C(f, µ, B1 ∪ B2) + C(f, µ, B1 ∩ B2) ≤ C(f, µ, B1) + C(f, µ, B2) for

every B1, B2 ∈ B;

f) C(f, µ, B) ≤ µ(B) for every B ∈ B;

g) C(f, µ, B) ≤ C(f, B) ≤ c2 Cp(B) for every B ∈ B;

h) C(f, µ, K) = inf{C(f, µ, U); K ⊆ U, U ∈ U} for every K ∈ K;

i) C(f, µ, B) = sup{C(f, µ, K); K ⊆ B, K ∈ K} for every B ∈ B.

The following theorem states that for an arbitrary µ ∈ M∗
p, 1 < p ≤

n, the measure µ is the least superadditive set function which is greater

than or equal to C(f, µ, ·) on B (see [9], Theorem 4.2).

Theorem 2.11. Suppose that 1 < p ≤ n and let µ ∈ M∗
p. Then for

every B ∈ B we have

µ(B) = sup
∑

i∈I

C(f, µ, Bi)

where the supremum is taken over all finite Borel partitions (Bi)i∈I of B.

From Theorem 2.11, taking into account Lemma 4.2 in [8], it easy

to obtain the following useful formula to reconstruct a measure µ ∈ M∗
p

from the corresponding µ- capacity relative to f .

Theorem 2.12. Let 1 < p ≤ n and let µ ∈ M∗
p. Then for every

B ∈ B we have

µ(B) = lim
h→∞

∑

i∈ZZn

C(f, µ, B ∩ Ri
h) ,

where Ri
h denotes the cube

Ri
h =

n∏

k=1

]
ik
2h

,
ik + 1

2h

]

for every h ∈ IN and for every i = (i1, . . . , in).
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The following theorem states a relationship between the γf -converge-

nce of a sequence of measures (µh) and the behaviour of the corresponding

µ-capacities relative to f . The theorem is an easy consequence of Theo-

rem 5.1 and Theorem 5.8 in [10], together with Theorem 6.3 in [8] adapted

to our case.

Proposition 2.13. Let 1 < p ≤ n. Let (µh) a sequence in M∗
p and

µ ∈ M∗
p.

Then (µh) γf converges to µ in M∗
p if and only if the inequalities

a) C(f, µ, U) ≤ lim inf
h→∞

C(f, µh, U)

and

b) C(f, µ, K) ≥ lim sup
h→∞

C(f, µh, K)

hold for every K ∈ K and for every U ∈ U .

Remark 2.14. In view of Proposition 2.13 it follows that a sub base

for the topology induced by γf -convergence on M∗
p, is given by the sets

of the form {µ ∈ M∗
p : C(f, µ, U) > t} and {µ ∈ M∗

p : C(f, µ, K) < s}
with t, s ∈ IR+, U ∈ U and K ∈ K.

We denote by B(M∗
p) the Borel σ-field of M∗

p endowed with the

topology of γf -convergence.

By Proposition 2.13 and Remark 2.14 we can get further measurabil-

ity properties of the µ-capacity relative to f (see Proposition 2.3 in [2]).

Proposition 2.15. The family B(M∗
p) is the smallest σ-algebra

for which the function C(f, ·, U) : M∗
p → [0, +∞] is measurable for

every U ∈ U (respectively the function C(f, ·, K) : M∗
p → [0,+∞] is

measurable for every K ∈ K).

From the previous proposition we have the following consequence.

Corollary 2.16. Let (Λ,Σ, P ) be a measure space and let m :

Λ → M∗
p be a function. The following statements are equivalent:

a) m is Σ-B(M∗
p) measurable;

b) C(f, m(·), U) is Σ-measurable, for every U ∈ U ;

c) C(f, m(·), K) is Σ-measurable, for every K ∈ K.
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We can also to say something about measurability of the function

C(f, ·, B) with B ∈ B.

Let us denote by B̂(M∗
p) the σ-field of all subsets of M∗

p which are

Q measurable for every probability measure Q on (M∗
p,B(M∗

p)).

The following result can be obtained by suitable minor changes in

the proof of Proposition 2.4 in [2].

Proposition 2.17. For every B ∈ B the function C(f, ·, B) is

B̂(M∗
p)-measurable.

At the end of this section we recall some probabilistic notions which

we shall use in the sequel.

By P(M∗
p) we denote the space of all probability measures defined on

B(M∗
p), i.e. an element Q ∈ P(M∗

p) is a non negative countably additive

set function defined on B(M∗
p) with Q(M∗

p) = 1. On P(M∗
p) we consider

the following definition of weak convergence.

Definition 2.18. We say that a sequence (Qh) of measures in

P(M∗
p) weakly converges to a measure Q ∈ P(M∗

p) if

lim
h→∞

∫

M∗
p

g dQh =

∫

M∗
p

g dQ

for every continuous function g : M∗
p → IR.

Taking into account Remark 2.5, the following proposition holds

(see [19]).

Proposition 2.19. For every sequence (Qh) of measures in P(M∗
p)

there exists a subsequence (Qhk
) weakly convergent in P(M∗

p).

Let Q ∈ P(M∗
p). For every B(M∗

p)-measurable real valued function

X we define the expectation of X in the probability space (M∗
p,B(M∗

p), Q)

by

EQ[X] =

∫

M∗
p

X(µ) dQ(µ) .

Let X, Y be two real valued functions in L2(M∗
p, Q). Then the co-

variance of X and Y is defined by

CovQ[X, Y ] = EQ[XY ] − EQ[X]EQ[Y ] .
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The variance of X is defined by

VarQ[X] = CovQ[X,X] .

3 – The main result

In this section we give the main result of this paper: sufficient con-

ditions for the convergence of a sequence (Qh) of measures on M∗
p of the

class P(M∗
p) to a measure δν ∈ P(M∗

p) of the form

(3.1) δν(E) =

{
0 if ν !∈ E ,

1 if ν ∈ E ,

for every E ∈ B(M∗
p), where ν is a finite Borel measure on D of the class

M∗
p.

We will show that the conditions are expressed in terms of the asymp-

totic behaviour, as h → ∞, of the functions C(f, ·, B), B ∈ B, considered

as random variables on the probability space (M∗
p,B(M∗

p), Qh).

Before to state our main result we put some definition.

Let (Qh) be a sequence in P(M∗
p). For every U ∈ U we define

α′(U) = lim inf
h→∞

EQh
[C(f, ·, U)]

α′′(U) = lim sup
h→∞

EQh
[C(f, ·, U)]

where EQh
denotes the expectation in the probability space (M∗

p, B(M∗
p),

Qh).

Next we consider the inner regularizations β′ and β′′ of the set func-

tions α′ and α′′, defined for every U ∈ U by

(3.2)

{
β′(U) = sup{α′(V ) : V ∈ U , V ⊂⊂ U} ,

β′′(U) = sup{α′′(V ) : V ∈ U , V ⊂⊂ U} .

Then we extend the definitions of β′ and β′′ to the Borel sets B ∈ B
by:

(3.3)

{
β′(B) = inf{β′(U) : U ∈ U , U ⊇ B} ,

β′′(B) = inf{β′′(U) : U ∈ U , U ⊇ B} .
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Finally, we denote by ν ′ and ν ′′ the least superadditive set functions

on B greater than or equal to β′ and β′′, respectively.

Our main result is the following.

Theorem 3.1. Let 1 < p ≤ n. Let (Qh) be a sequence of measures

on M∗
p of the class P(M∗

p).

Assume that

i) ν ′(B) = ν ′′(B) < +∞ for every B ∈ B and call ν(B) the common

value of ν ′(B) and ν ′′(B);

ii) for every U1, U2 ∈ U with U 1 ∩ U 2 = ∅

lim
h→∞

CovQh
[C(f, ·, U1), C(f, ·, U2)] = 0 .

Then

a) ν is finite Borel measure on B of the class M∗
p;

b) (Qh) converges weakly to the probability measure δν defined in (3.1);

c) β′(B) = β′′(B) = C(f, ν, B).

Remark 3.2. Let αh : U → IR be an increasing set function de-

fined by

αh(U) = EQh
[C(f, ·, U)]

and let α : U → IR be an increasing set function defined by

α(U) = C(f, ν, U) .

Then the condition c) of Theorem 3.1 is equivalent to say that (αh)

converges weakly to α in the sense of [14] (with respect to the pair (U ,K)).

The proof of Theorem 3.1 can be deduced, by means minor changes,

from the proof of Theorem 3.1 in [2].

We only recall it is a consequence of Proposition 3.3 below, which

provide sufficient conditions in order that a probability measure Q ∈
P(M∗

p) be equal to the Dirac measure defined in (3.1).

Proposition 3.3. Let 1 < p ≤ n. Let Q be a probability measure

on M∗
p of the class P(M∗

p).

Define

α(U) = EQ[C(f, ·, U)]
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for every U ∈ U and

α(B) = inf{α(U) ; U ⊇ B , U ∈ U}

for every B ∈ B.

Assume that:

i) there exists a Radon measure β on B such that α ≤ β on B;

ii) CovQ[C(f, ·, U1), C(f, ·, U2)] = 0 for every pair U1, U2 ∈ U such that

U 1 ∩ U 2 = ∅.
Let ν be the least superadditive set function on B such that ν ≥ α on

B. Then

t1) ν is a Borel measure on B of the class M∗
p;

t2) Q = δν.

Proof. The proof may be obtained by adapting that one of Lem-

ma 3.3 in [2]. For the reader convenience we repeat here the proof in our

case.

First of all, we notice that the function α is countably subadditive

on U (hence on B) by the countable subadditivity of C(f, µ, ·) (Propo-

sition 2.10 (d)). Moreover, by Lemma 4.1 of [8], we deduce that ν is

a Borel measure. The measure ν is also in M∗
p because it is a Radon

measure and ν(B) = 0 whenever Cp(B) = 0 by (h) of Proposition 2.10.

This proves (t1).

Let us denote by Z(·, B) the random variable on the probability space

(M∗
p,B(M∗

p), Q) defined by

Z(µ, B) = µ(B)

for every B ∈ B.

We note that, by Theorem 2.12, for every µ ∈ M∗
p and for every

B ∈ B,

Z(µ, B) = lim
h→∞

∑

i∈ZZn

C(f, µ, B ∩ Ri
h)

where Ri
h denotes the cube defined in Theorem 1.12.

Our aim is to show that the random variable Z(·, B) is constant Q-

almost everywhere. In view of Lemma 3.1 in [2], we have only to prove
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that

(3.4) lim
h→∞

VarQ

[ ∑

i∈ZZn

C(f, ·,B ∩ Ri
h)

]
= 0 .

By properties h) and i) of Proposition 2.10 we can extend the relation ii)

to each pair of disjoint sets A, B ∈ B and check that

α(B) = EQ[C(f, ·, B)]

for every B ∈ B.

Therefore, to get (3.4) it is enough to prove

(3.5) lim
h→∞

∑

i∈ZZn

VarQ[C(f, ·,B ∩ Ri
h] = 0

for every B ∈ B.

For every h ∈ IN, taking into account property (g) of Proposition 2.10,

we have

(3.6)

∑

i∈ZZd

VarQ[C(f, ·,B ∩ Ri
h)] =

∑

i∈ZZd

{EQ[C(f, ·,B ∩ Ri
h)

2]+

− (EQ[C(f, ·, B ∩ Ri
h)])2} ≤

∑

i∈ZZd

EQ[C(f, ·, B ∩ Ri
h)2] ≤ c2×

×
∑

i∈ZZd

Cp(B ∩ Ri
h)EQ[C(f, ·, B ∩ Ri

h)] ≤ c2khβ(B)

where we have set

kh = sup
i∈ZZn

Cp(B ∩ Ri
h) .

We observe that kh → 0 as h → ∞ (because the dimension n is greater

than or equal to p). So, taking the limit as h → ∞ in (3.6) we get (3.5)

and this proves that Z(·, B) is a constant random variable. Now, let us

compute the expectation of Z(·, B). Since the sequence (
∑

i∈ZZd C(f, ·, B∩
Ri

h))h∈IN is increasing, we get

EQ[Z(·, B)] = lim
h→∞

EQ

[ ∑

i∈ZZd

C(f, ·, B∩Ri
h)

]
= lim

h→∞

∑

i∈ZZd

α(B∩Ri
h) = ν(B)
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for every B ∈ B where the last equality is proved in [8], Lemma 4.2.

So, for every Borel set B in D there exists a subset MB of M∗
p with

Q(MB) = 1 such that Z(µ, B) = ν(B) for every µ ∈ MB.

Finally, by means standard density arguments (see for istance the

proof of Lemma 3.3 in [2]) we can deduce that there exists a subset M
of M∗

p such that Q(M) = 1 and Z(µ, B) = ν(B) for every µ ∈ M and

for every B ∈ B. This completes the the proof of (t2).

Remark 3.4. It is not difficult to show that the conditions i) and ii)

of Theorem 3.1 are also necessary. The proof of this can be obtained by

using the same arguments of Remark 3.2 in [2].

4 – Nonlinear Dirichlet problems in randomly perforated

domains

We apply the result obtained in the previous section to analyze the

asymptotic behaviour of sequences of nonlinear variational problems in

randomly perforated domains of the form

(4.1) min
u∈H

1,p
0

(D\Eh)

∫

D\Eh

f(x, Du) dx +

∫

D\Eh

gu dx

where Eh is a sequence of suitable random closed subsets of D and g ∈
Lq(D) with 1

p
+ 1

q
= 1 and 1 < p ≤ n.

Let (Ω,Σ, P ) be a probability space.

Definition 4.1. Let 1 < p ≤ n. A random measure of the class

M∗
p is any measurable function M : Ω → M∗

p, where M∗
p is equipped

with the Borel σ-field B(M∗
p) generated by the topology induced by the

γf -convergence.

Remark 4.2. We recall that necessary and sufficient conditions for

the measurability of a function M : Ω → M∗
p are given in Corollary 2.16.

Let M be a random measure of the class M∗
p and let Q be the prob-

ability measure on (M∗
p,B(M∗

p)) defined by

Q(E) = P{M−1(E)}

for every E ∈ B(M∗
p). Q is called “the distribution law of M”.
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Let (Mh) be a sequence of random measures of the class M∗
p and

M a random measure of the class M∗
p. Let (Qh) be the sequence of the

distribution laws of (Mh) and let Q be the distribution law of M .

Definition 4.3. We say that (Mh) converges in law to the random

measure M of the class M∗
p if and only if the sequence of distribution

laws (Qh) converges weakly in P(M∗
p) to the distribution law Q.

We denote by E and by Cov respectively the expectation and the

covariance of a random variable on Ω with respect to the measure P .

Let Q be the distribution law of a random measure M of the class

M∗
p. It is easy to see that

(4.2) EQ[C(f, ·, U)] = E[C(f, M(·), U)]

for every U ∈ U and

(4.3) CovQ[C(f, ·, U1), C(f, ·, U2)] = Cov[C(f, M(·), U1), C(f, M(·), U2)]

for every pair U1, U2 ∈ U .

Let us define the set functions

(4.4)





α′(U) = lim inf
h→∞

E[C(f, Mh(·), U)]

α′′(U) = lim sup
h→∞

E[C(f, Mh(·), U)]

for every U ∈ U .

We shall denote by β′ and β′′ the inner regularizations of α′ and α′′

as defined in (3.2) and (3.3), respectively.

The functions ν ′ and ν ′′ will be the least superadditive set functions

on B greater than or equal to β′ and β′′, respectively.

Remark 4.4. Equalities (4.2), (4.3) and (4.4) allow us to reformulate

the hypotheses of Theorem 3.1 in terms of expectations and covariances

of the random variables C(f, Mh(·), U). By Defintion 4.3 the thesis of

Theorem 3.1 can be restated by saying that the sequence of random

measures (Mh) of the class M∗
p, converges in law to a random measure

M such that M(ω) = ν for P -almost every ω ∈ Ω (i.e. to the constant

random measure M = ν).
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Remark 4.5. Since M∗
p is a metric space (let dγf any metric on M∗

p

which induces γf -convergence) the convergence in law of the sequence

(Mh) toward the constant random measure M is equivalent to the con-

vergence in probability. Thus, by Remark 4.4, we can deduce that if the

assumption of Theorem 3.1 hold, then the sequence (Mh) converges in

probability to the measure ν in M∗
p, that is, for every ε > 0

lim
h→∞

P{ω ∈ Ω : dγf (Mh(ω), ν) > ε} = 0

Next theorem states a relationship between the result obtained in the

previous section and the convergence of the minimum values of functional

associate with the random measure Mh of the class M∗
p.

Theorem 4.6. Let (Mh) be a sequence of random measures of the

class M∗
p, 1 < p ≤ n. Let α′ and α′′ be the set functions defined in (4.4)

and let ν ′ and ν ′′ be the least superadditive set functions on B greater than

or equal to β′ and β′′ (respectively the inner regularizations of α′ and α′′,

see (3.2) and (3.3)).

Assume that

i) ν ′(B) = ν ′′(B) < ∞ for every B ∈ B
and denote by ν(B) the common value of ν ′(B) and ν ′′(B) for every

B ∈ B;

ii) for every U1, U2 ∈ U , such that U 1 ∩ U 2 = ∅

lim
h→∞

Cov[C(f, Mh(·), U1), C(f, Mh(·), U2)] = 0 .

Let mh(ω) = m(Mh(ω), g) be, for every ω ∈ Ω, h ∈ IN and g ∈ Lq(D),

with 1
p

+ 1
q

= 1, the minimum values defined as

mh(ω) = min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p dMh +

∫

D

gu dx

for any g ∈ Lq(D) with 1
p

+ 1
q

= 1.

Then (mh) converges in probability, as h → ∞, to m0 that is, for

every ε > 0

lim
h→∞

P{ω ∈ Ω , |mh(ω) − m0| > ε} = 0 ,
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where m0 is given by

m0 = m(ν, g) = min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p dν +

∫

D

gu dx .

Proof. By Theorem 2.7 the function m(·, g) : M∗
p → IR of Defini-

tion 2.6 is continuous. Since M∗
p is compact (see Remark 2.5), m(·, g) is

uniformly continuous too. Hence, for every ε > 0 and h ∈ IN there exists

δε > 0 such that

P{ω ∈ Ω : |mh(ω) − m0| ≥ ε} ≤ P{ω ∈ Ω : dγf (Mh(ω), ν) ≥ δε}

So, the assertion follows from Theorem 3.1 together with Remark 4.5.

Corollary 4.7. Suppose that the hypotheses of Theorem 4.6 are

satisfied. Moreover, assume that the function f(x, ξ) in (2.1) and (2.2)

is such that the map U(·, g) : M∗
p → Lp(D) of Definition 2.6 is single

valued, with g ∈ Lq(D), 1
p

+ 1
q

= 1.

Then, if Uh(ω) = U(Mh(ω), g), for every ω ∈ Ω denotes the unique

minimum point in H1,p
0 (D) of the functional

∫

D

f(x, Du) dx +

∫

D

|u|p dMh(ω) +

∫

D

gu dx ,

we have, for every ε > 0,

lim
h→∞

P
{
ω ∈ Ω : ‖Uh(ω) − U0‖Lp(D) > ε

}
= 0 ,

where U0 is the unique minimum point in H1,p
0 (D) of the functional

∫

D

f(x, Du) dx +

∫

D

|u|p dν +

∫

D

gu dx .
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Proof. It is enough to notice that in this case, by Remark 2.8, the

function U(·, g) : M∗
p → Lp(D) is continuous and to apply the same

argument used in the previous Theorem 4.6.

In order to consider nonlinear variational problems in domains with

random holes like (4.1), we shall see that we have only to choose peculiar

sequences (Mh) of random measures of the class M∗
p in (4.6).

Let E(D) be the family of all closed sets contained in D.

Definition 4.8. A function E : Ω → E(D) is called a p-random

set, 1 < p ≤ n, if the function M : Ω → M∗
p defined by M(ω) = ∞E(ω)

for each ω ∈ Ω is Σ-measurable, where ∞E(ω)is the measure in M∗
p as in

Definition 2.3.

Remark 4.9. Let E : Ω → E(D) be a function. By Corollary 2.16

and by the equality C(f,∞A, B) = C(f, B ∩ A) (see Remark 2.9), the

following conditions are equivalent:

a) E is a p-random set;

b) C(f, E(·) ∩ U) is Σ-measurable for every U ∈ U ;

c) C(f, E(·) ∩ K) is Σ-measurable for every K ∈ K.

Let us take a sequence (Eh) of p-random sets. Let (Mh) be the se-

quence of random measures of the class M∗
p so defined: Mh(ω) = ∞Eh(ω)

for each ω ∈ Ω.

We shall analize the asymptotic behaviour of the minimum problems

of the form

(4.5) min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p d∞Eh
+

∫

D

gu dx

for any g ∈ Lq(D), 1
p

+ 1
q

= 1.

For every h ∈ IN and ω ∈ Ω the minimum problem (4.5) is equivalent

to the minimum problem

min
u∈H

1,p
0

(D)

∫

D\Eh(ω)

f(x, Du) dx +

∫

D\Eh(ω)

gu dx

in the sense that both problems have the same minimum values and the

same minimum points, if we identify each u ∈ H1,p
0 (D\Eh(ω)) with the

function of H1,p
0 (D) obtained by the usual extension u = 0 on Eh(ω).
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In fact, for a function u ∈ H1,p
0 (D) the condition u = 0 p-q.e. on B is

equivalent to u ∈ H1,p
0 (D\B) for every closed set B ⊆ D (see [1]).

Next results are a straightforward consequence of Theorem 4.6 and

Corollary 4.7.

Theorem 4.10. Let (Eh) be a sequence of p-random sets, with

1 < p ≤ n. Let α′ and α′′ be the set functions defined in (4.4) where

Mh = ∞Eh
, and let ν ′ and ν ′′ be the least superadditive set functions on

B greater than or equal to β′ and β′′, i.e. the set functions defined in (3.2)

and (3.3).

Assume that

i) ν ′(B) = ν ′′(B) < ∞ for every B ∈ B and denote by ν(B) the common

value of ν ′(B) and ν ′′(B) for every B ∈ B;

ii) for every U1, U2 ∈ U with U 1 ∩ U 2 = ∅

lim
h→∞

Cov[C(f, Eh ∩ U1), C(f, Eh ∩ U2)] = 0 .

Let

mh(ω) = min
u∈H

1,p
0

(D\Eh(ω))

∫

D\Eh(ω)

f(x, Du) dx +

∫

D\Eh(ω)

gu dx

for any g ∈ Lq(D), with 1
p

+ 1
q

= 1 and ω ∈ Ω.

Then (mh) converges in probability, as h → ∞, to

m0 = min
u∈H

1,p
0

(D)

∫

D

f(x, Du) dx +

∫

D

|u|p dν +

∫

D

gu dx .

Corollary 4.11. Suppose that the hypotheses of Theorem 4.10 are

satisfied. Moreover, assume that the function f(x, ξ) in (2.1) and (2.2)

is such that the map U(·, g) : M∗
p → Lp(D) of Definition 2.6 is single

valued.

Then, if Uh(ω) denotes the unique minimum in H1,p
0 (D\Eh(ω)) of

the functional

∫

D\Eh(ω)

f(x, Du) dx +

∫

D\Eh(ω)

gu dx
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for every ω ∈ Ω, we have

lim
h→∞

P{ω ∈ Ω : ‖Uh(ω) − U0‖Lp(D) > ε} = 0

for any ε > 0, where U0 is the minimum point in H1,p
0 (D) of the functional

∫

D

f(x, Du) dx +

∫

D

|u|p dν +

∫

D

gu dx .

REFERENCES

[1] T. Bagby: Quasi topologies and rational approximation, J. Funct. Anal., 10
(1972), 259-268.

[2] M. Balzano: Random Relaxed Dirichlet Problems, Annali Mat. Pura Appl. (IV),
153 (1988), 133-174.

[3] M. Balzano – G. Paderni: Dirichlet problems in domains bounded by thin layers
with random thickness, J. Math. pures et appl., 69 (1990), 335-367.

[4] M. Balzano – L. Notarantonio: On the asymptotic behaviour of Dirichlet
problems in a Riemannian manifold less small random holes, submitted to Rend.
Sem. Mat. Univ. Padova Preprint Dip. Me.Mo.Mat., Roma, 1995.

[5] J. Casado Diaz: The homogenization problem in perforated domains for mono-
tone operators, to appear.

[6] J. Casado Diaz – A. Garroni: Asymptotic behaviour of nonlinear elliptic system
on varying domains, to appear.

[7] G. Dal Maso: An Introduction to Γ-convergence, Birkhäuser, 1993.
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