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The initial value problem for a one-dimensional

Boltzmann equation with diffusive boundary conditions

S. CAPRINO

Riassunto: Si considera un’equazione di evoluzione di tipo Boltzmann unidimen-
sionale, con condizioni diffusive agli estremi di un intervallo, e si dimostra un risultato
di esistenza e unicità della soluzione.

Abstract: It is solved the initial-boundary value problem for a one-dimensional
model of the Boltzmann equation in a slab, with diffusive non constant boundary con-
ditions.

1 – Introduction

In this paper it is considered the initial value problem for a one-

dimensional model of the Boltzmann equation in a slab with diffusive

boundary conditions. More precisely one looks for a positive function

f = f(x, v, t), x ∈ [0, 1], v ∈ IR, t ∈ [0, T ], satisfying the following

initial boundary value problem (i.b.v.p.):

(1.1)

∂tf(x, v, t) + v∂xf(x, v, t) = Q(f, f)(x, v, t) :=∫

vv1<0

dv1S(|v − v1|){f(x,−v, t)f(x,−v1, t) − f(x, v, t)f(x, v1, t)}

Key Words and Phrases: Boltzmann equation – Diffusive boundary conditions –
Entropy inequality
A.M.S. Classification: 76P05 – 82C40
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with initial condition:

(1.2) f(x, v, 0) = f0(x, v) ≥ 0

and with the boundary conditions:

f(0, v, t) = −M0(v)

∫

w<0

wf(0, w, t)dw , v > 0 ,(1.3)

f(1, v, t) = M1(v)

∫

w>0

wf(1, w, t)dw , v < 0 .(1.4)

Here S = S(|v − v1|) is a suitable function such that:

S(|v − v1|) ≤ A|v − v1|α, α < 1, |v − v1| > 1(1.5)

S(|v − v1|) ≤ B|v − v1|, |v − v1| ≤ 1 ,(1.6)

while M0 and M1, the “maxwellians at the walls”, are given by:

M0(v) = 2β0e
−β0v2

, v > 0

M1(v) = 2β1e
−β1v2

, v < 0

Here A, B, β0 and β1 are positive constants.

The above equation can be interpreted as a simplified model for a

dilute gas in a kinetic regime in a slab, between two reservoirs in thermal

equilibrium at different temperatures. It has been introduced in [7], where

the authors exhibit an explicit steady solution.

In any attempt to study the Boltzmann equation and its solutions,

there is an evident first order difficulty, which can be sometimes bypassed

if one considers systems in one spatial dimension. Indeed, in proving

uniqueness results, one has in general to find out some Lipschitz conti-

nuity property for the time integral of Q in the L1-norm, which appears

to be the most natural norm in this setup. To do this, the quantities

under consideration have to be, at least, dimensionally correct. Roughly

speaking, since Q is quadratic in f , four integrals are needed. For the one

dimensional systems, this is in principle possible, since the time integral

can be turned into a space integral.
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We want to mention some of the numerous results in this framework.

[3] regards the initial value problem on the whole line, generalized to the

three dimensional velocities case in [1] and [4]. In the same context, in [5]

and [6] the authors prove some results on existence of solutions, together

with some energy and entropy bounds.

The intrinsic difficulty of the problem, induces the authors of all the

above mentioned papers to make rather heavy hypotheses on the collision

kernel S. The system I consider, having one dimensional velocities, is by

no doubt less interesting from a physical point of view. On the other hand,

the collision mechanism is fairly simplified, and this makes it possible to

obtain a complete result of existence and uniqueness of a strong solution,

with plausible assumptions on S.

Problem (1.1)-(1.4) is approached by adapting the method introduced

in [1] to this different setup. The equation is splitted into two parts, one

(“internal”) with bounded velocities and one (“external”) with large ones

and it is proven an existence and uniqueness result for the former and for

the latter separately. Unfortunately, in presence of stochastic boundaries,

the usual properties of the energy and the entropy are missing, but the

bounds given in [6] on these quantities come very useful to control the

density and to handle the large velocities.

The main result is stated in Theorem 2.1 in Section 2, where some

notation and preliminary observations are given, together with the above

mentioned estimates proven in [6]. The Sections 3 and 4 are devoted to

the proof of Theorem 2.1.

2 – The statement of the theorem

The collision operator Q enjoys the following properties, which will

be useful in the sequel of the paper:

(2.1)

∫

v>0

Q(f, f)(x, v, t)dv =

∫

v<0

Q(f, f)(x, v, t)dv = 0 .

(2.1) imply the local conservation of the density of particles travelling

with positive and negative velocity respectively. Moreover it ensures the

conservation of the mass. Indeed, defining the flux at the walls:

(2.2) J±(α, t) =

∫

v≷0

dv|v|f(α, v, t) α = 0, 1
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it is, by the definition of the maxwellians M0 and M1,

(2.3) J+(α, t) − J−(α, t) = 0, α = 0, 1

so that, at least at a formal level, defining

(2.4) M(t) =

∫
f(x, v, t)dx dv

it follows M(t) = M(0).

Equation (1.1) can be written in a mild form:

(2.5) f(x, v, t) = g(x, v, t) +

∫ t

a(x,v,t)

Q(f, f)(x − v(t − s), v, s)ds

where, if v > 0:

(2.6-1) g(x, v, t) = f0(x − vt, v)χ
(
t <

x

v

)
+ f

(
0, v, t − x

v

)
χ

(
t >

x

v

)

(2.7-1) a(x, v, t) = max
{
0, t − x

v

}

and if v < 0:

(2.6-2)

g(x, v, t) = f0(x − vt, v)χ
(
t <

1 − x

|v|
)
+

+ f
(
1, v, t − 1 − x

|v|
)
χ

(
t >

1 − x

|v|
)

(2.7-2) a(x, v, t) = max
{
0, t − 1 − x

|v|
}

.

From now on χ will stand for the characteristic function of its argument.

Equation (2.5) has to be complemented with the boundary condi-

tions (1.3) and (1.4).

In what follows it will be convenient to introduce the notation, for

any x, v, t such that 0 ≤ x + vt ≤ 1:

(2.8) f ,(x, v, t) = f(x + vt, v, t) .



[5] The initial value problem for a one-dimensional etc. 191

Then equation (2.5) becomes:

(2.9) f ,(x, v, t) = g,(x, v, t) +

∫ t

A(x,v)

Q(f, f),(x, v, s)ds

where A(x, v) = a,(x, v, t), that is, if v > 0:

(2.10) A(x, v) = max
{
0,−x

v

}

and if v < 0:

(2.11) A(x, v) = max
{
0,

x − 1

|v|
}

.

We introduce the usual quantities:

E(t) =
1

2

∫
f(x, v, t)v2dx dv ,(2.12)

H(t) =

∫
(f log f)(x, v, t)dx dv ,(2.13)

the energy and the entropy of the system respectively. The result in [6]

we want to quote, concerning these quantities, is the following:

Lemma 2.1. If f is a sufficiently smooth solution of (1.1)-(1.4) on

[0, T ], then under the assumptions 1.5-1.6 there are positive constants γi

and ηi, i = 1, 2 depending only on the initial datum such that: E(t) ≤
γ1e

γ2t and H(t) ≤ η1e
η2t for any t ∈ [0, T ], with γ1 = γ1(M(0), E(0)) and

η1 = η1(M(0), E(0), H(0)).

The aim of this paper is to prove the following theorem.

Theorem 2.1. Assume that M(0), E(0), H(0) are finite. Then,

for any T > 0, there exists a unique solution in L∞([0, T ], L+
1 ) to the

problem (2.5) with the boundary conditions (1.3) (1.4). Moreover the mass

is preserved and the energy and the entropy stay bounded. In addition

Q(f, f),(x, v, ·) ∈ L1([0, T ]) for a.a. (x, v).
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Remark. Notice that in L1 the boundary conditions have not an

obvious meaning and one must give a sense to the fluxes J(0, t) and

J(1, t). Indeed, since Q(f, f), ∈ L1([0, T ]) for a.a. (x, v), f , is absolutely

continuous in t for a.a. (x, v). As a consequence f(α, v, t), α = 0, 1, is

defined by continuity for a.a. (v, t), which implies that the fluxes are well

defined for a.a. t > 0.

To prove this theorem the i.b.v.p. (1.1) is splitted into two parts

as in [1]: a bounded velocities problem and a large velocities one. More

precisely, for a fixed V > 0 which has to be determined later on, I consider

the following “internal” problem:

(2.14) ∂tfi(x, v) + v∂xfi(x, v) = Q(fi, fi)

with initial condition:

(2.15) fi(x, v, 0) = fi,0(x, v) = f0(x, v)χ(|v| ≤ V )

and boundary conditions:

fi(0, v, t) = M i
0(v)J−

i (0, t) , v > 0 ,(2.16)

fi(1, v, t) = M i
1(v)J+

i (1, t) , v < 0 ,(2.17)

where:

M i
α(v) = Mα(v)χ(|v| ≤ V ), α = 0, 1(2.18)

J±
i (α, t) =

∫

v≷0

dv|v|fi(α, v, t) .(2.19)

In addition I consider the “external” problem:

(2.20) ∂tfe(x, v) + v∂xfe(x, v) = 2Q(fi, fe) + Q(fe, fe)

with the initial condition:

(2.21) fe(x, v, 0) = fe,0(x, v) = f0(x, v)χ(|v| > V )
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and boundary conditions:

fe(0, v, t) = M e
0 (v)J−(0, t) + M i

0(v)J−
e (0, t) v > 0(2.22)

fe(1, v, t) = M e
1 (v)J+(1, t) + M i

1(v)J+
e (1, t) v < 0(2.23)

where:

M e
α(v) = Mα(v)χ(|v| > V ) α = 0, 1(2.24)

J±
e (α, t) =

∫

v≷0

dv|v|fe(α, v, t).(2.25)

and

(2.26) J±(α, t) = J±
i (α, t) + J±

e (α, t) .

Q(f, h) denotes the symmetrized collision operator, namely:

(2.27)
Q(f, h)(v) =

1

2

∫
dv1χ(vv1 < 0)S(|v − v1|)

[f(−v)g(−v1) + g(−v)f(−v1) − f(v)g(v1) − f(v1)g(v)]

A solution of system (1.1) is obviously given by f = fi + fe so that,

to prove Theorem 1.1, one has to prove the existence and uniqueness

of fi and fe. Notice that fi is expected to be positive and to satisfy

the condition fi(x, v, t) = 0 if |v| > V while fe is possibly not positive.

Moreover the mass is no more preserved for the two systems. Indeed it is

J+
i (0, t) ≤ J−

i (0, t)(2.28)

J−
i (1, t) ≤ J+

i (1, t)(2.29)

since:

(2.30)

∫

v≷0

dv|v|M i
α(v) ≤ 1 . α = 0, 1

and analogously, but with opposite inequalities for the external prob-

lem. In Sections 2 and 3 the problems 2.14 and 2.20 respectively will be

approached.
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3 – The bounded velocity problem

The problem (2.14-17) has a mild version analogous to that given

in (2.5) for the complete equation, that is:

(3.1) fi(x, v, t) = gi(x, v, t) +

∫ t

a(x,v,t)

Q(fi, fi)(x − v(t − s), v, s)ds

where gi is given by equations (2.6) with f and f0 replaced by fi and by

f0,i, and equivalently:

(3.2) f ,
i (x, v, t) = g,

i (x, v, t) +

∫ t

A(x,v)

Q(fi, fi)
,(x, v, s)ds.

Call Mi(t), Ei(t) and Hi(t) the mass, energy and entropy relative to fi.

In this section it will be proven the following theorem:

Theorem 3.1. Assume that Mi(0), Ei(0) and Hi(0) are finite.

Then, for any V > 0 and T > 0, there exists a unique solution in

L∞([0, T ];L1) to the problem (3.1). Moreover the mass is preserved and

the entropy and the energy stay bounded. In addition

Q(fi, fi)
,(x, v, ·) ∈ L1([0, T ])

for a.a. (x, v).

Proof. The proof of the above theorem proceeds through the fol-

lowing two steps:

(a) Suppose ‖f0,i‖L1
< 1

64C0
(where C0 = max{A, B, 1} with A and

B the constants appearing in (1.5), (1.6)) and T ∗ ≤ 1
V

. Then there exists

a unique solution to the problem (3.1) over the time interval [0, T ∗].

(b) There exists a unique solution to the problem (3.1) for any initial

datum and any fixed interval of time [0, T ].

Since in this section it is considered only the bounded velocity prob-

lem, the subscript “i” will be omitted for the sake of simplicity. Moreover

C will denote any constant.
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Proof of (a). For any function f ∈ L∞([0, T ];L1) define:

(3.3) FT (x, v) = sup
0≤t≤T

|f ,|(x, v, t)

and

(3.4) ‖FT ‖ = ‖FT ‖+ + ‖FT ‖−

with

(3.5) ‖FT ‖± =

∫
dx

∫

v≶0

dv FT (x, v)

By (1.5), (1.6) and a suitable change of variables Q can be estimated

as follows:

(3.6)

∫
dx

∫
dv

∫ T

0

ds|Q(f, f),|(x, v, s) ≤

≤
∫

dx

∫
dv

∫ T

0

ds

∫
dv1χ(vv1 < 0)S(|v − v1|)·

· [FT (x + 2vs,−v)FT (x + (v + v1)s,−v1)+

+ FT (x, v)FT (x + (v − v1)s, v1)] =

= 2

∫
dx

∫
dv

∫ T

0

ds

∫
dv1χ(vv1 < 0)·

· S(|v − v1|)FT (x, v)FT (x + (v − v1)s, v1) ≤

≤ 2C0‖FT ‖2

Moreover for f and g ∈ L∞([0, T ];L1), proceeding as above:

(3.7)

∫
dx

∫
dv

∫ T

0

ds|Q(f, f), − Q(g, g),|(x, v, s) ≤

≤
∫

dx

∫
dv

∫ T

0

ds|Q(f + g, f − g),|(x, v, s) ≤

≤ 2C0(‖FT ‖ + ‖GT ‖)‖∆T ‖
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with:

∆T (x, v) = sup
0≤t≤T

|f , − g,|(x, v, t)

Following the method in [1], it is considered a sequence of cutoffed equa-

tions. Define for any positive integer n:

[f, f ](x, v, v1) = min (f(x, v)f(x, v1), n)

Qn(f, f) =

∫
χ(vv1 < 0)S(|v − v1|)([f, f ](x,−v,−v1)− [f, f ](x, v, v1))dv1

and consider the regularized equation:

(3.8) f ,(x, v, t) = g,(x, v, t) +

∫ t

A(x,v)

Qn(f, f),(x, v, s)ds .

with g the same as in (2.6).

For fixed n the i.b.v.p. (3.8) admits a unique positive solution, call

it fn. This can be seen by introducing some iterative system as the

following:

(3.9) fk,(x, v, t) = gk,(x, v, t) +

∫ t

A(x,v)

Qn(fk−1, fk−1),(x, v, s)ds

where for v > 0

(3.10-1) gk,(x, v, t) = f0(x, v)χ
(x

v
> 0

)
+ fk

(
0, v,

−x

v

)
χ

(x

v
< 0

)

and for v < 0

(3.10-2)

gk,(x, v, t) = f0(x, v)χ
(1 − x

|v| > 0
)
+

+ fk
(
1, v,

x − 1

|v|
)
χ

(1 − x

|v| < 0
)

for k = 2, 3, . . . The first term in the iteration is chosen to be f1 = 0.

Since the velocities are bounded, fk(t) can be explicitely found, once fk−1

is known, by performing a finite number of steps back in time, along the

characteristics, up to the initial condition. The fact that fk converges
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in L1 to fn uniformly on [0, T ], as k tends to infinity, can be seen with

a similar (a fortiori) argument to the one we are going to use for the

convergence of fn to f (solution to (2.5)-(2.7)). Hence, it will be omitted.

Notice that for fixed n, Qn ∈ L∞([0, T ], L∞); moreover g depends, by

definition, upon the value of f at previous time. This, together with

the boundedness of the velocities, implies that if fn and ∂xfn are in

L∞ at time zero, they will belong to L∞ over the time interval [0, T ].

As a consequence, the boundary conditions make sense on the fn’s and

they are regular enough to satisfy the bounds on energy and entropy in

Lemma 2.1. As a matter of fact, it is easily seen that Qn satisfies the

same sign properties as Q, when proving the estimate on the entropy,

which for this reason does not depend on n. This will turn out to be

very useful in a while. In what follows, subscript n will be used for all

quantities regarding equation (3.8).

Let T ∗ be fixed such that V T ∗ < 1 and set Fn,T∗ = sup0≤t≤T∗

fn(x, v, t). For the sake of simplicity, being the whole paragraph (a)

devoted to the short time result for T = T ∗, we will skip the subscript

T ∗. It is possible to show that ‖Fn‖ is bounded uniformly in n. Indeed,

recalling (2.6) and (2.30) it is:

(3.11)

‖Gn‖+ :=

∫
dx

∫

v>0

dv sup
0≤t≤T∗

|g,
n|(x, v, t) ≤

≤ ‖f0‖+ +

∫
dx

∫

v>0

dv|fn|
(
0, v,

x

v

)
=

= ‖f0‖+ +

∫ T∗

0

dt

∫

v>0

dvv|fn|(0, v, t) =

= ‖f0‖+ +

∫ T∗

0

dt

∫

v>0

dv vM i
0(v)

∫

w<0

dw|wfn|(0, w, t) ≤

≤ ‖f0‖+ +

∫ T∗

0

dt

∫

w<0

dw|wfn|(0, w, t) =

= ‖f0‖+ +

∫ T∗

0

dt

∫

w<0

dw|w||f ,
n|(−wt, w, t)|

Notice that, since V T ∗ < 1, fn(0, w, t) (and hence f ,
n(−wt, w, t)) can

be expressed again in terms of equation (3.8), without any contribution
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coming from the boundary, so that by (3.6) it follows:

(3.12)

‖Gn‖+ ≤ ‖f0‖+ + ‖f0‖−+

+

∫ T∗

0

dt

∫

w<0

dw|w|
∫ t

0

ds|Q(fn, fn),|(−wt, w, s) ≤

≤ ‖f0‖ + 2C0‖Fn‖2

Doing the same estimate for ‖Gn‖− and going back to (3.8), it turns out:

(3.13) ‖Fn‖ ≤ 2‖f0‖ + 2C0‖Fn‖2 + 4C0‖Fn‖2 .

Then, by the assumption ‖f0‖ < 1
64C0

, it is:

(3.14) ‖Fn‖ ≤ 4‖f0‖ ≤ 1

16C0

.

The uniform in n estimate (3.14), allows to prove that {fn(t)} is a

Cauchy sequence in L∞([0, T ∗];L1), converging to the searched solution

to the problem (3.1). Indeed, setting δn(t) = (fn − fn−1)(t) and ∆n =

sup0≤t≤T∗ |δ,
n|, by (3.8) one has:

(3.15)

‖∆n‖+ ≤
∫

x<0

dx

∫

v>0

dv|δn(0, v,−x

v
)|+

+

∫
dx

∫

v>0

dv

∫ T∗

0

ds|Qn(fn, fn), − Qn−1(fn−1, fn−1)
,|(x, v, s) .

Now it is

∫

x<0

dx

∫

v>0

dv|δn(0, v,−x

v
)| =

∫ T∗

0

ds

∫

v>0

dvv|δn(0, v, s)| ≤

≤
∫ T∗

0

ds

∫

v>0

dv vM i
0(v)

∫

w<0

dw|wδn(0, w, s)|≤

≤
∫ T∗

0

ds

∫

w<0

dw|wδn(0, w, s)| =

∫ T∗

0

ds

∫

w<0

dw|wδ,
n(−ws, w, s)| ≤(3.16)

≤
∫ V T∗

0

dx

∫

w<0

dw|∆n(x, w)| ≤
∫ V T∗

0

dx

∫

w<0

dw×

×
∫ T∗

0

ds|Qn(fn, fn), − Qn−1(fn−1, fn−1)
,|(x, w, s)

(since V T ∗ < 1).
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Then by (3.15) and (3.16)

(3.17) ‖∆n‖≤2

∫
dx

∫
dv

∫ T∗

0

ds|Qn(fn, fn), − Qn−1(fn−1, fn−1)
,|(x, v, s)

Since Qn = (Qn − Q) + Q, by the Lipschitz property (3.7) and the

bound (3.14) it follows:

(3.18)

‖∆n‖≤2

∫
dx

∫
dv

∫ T∗

0

ds|Q(fn, fn), − Q(fn−1, fn−1)
,|(x, v, s)+

+

∫
dx

∫
dv

∫ T∗

0

ds rn(x, v, s) ≤

≤ 1

4
‖∆n‖ +

∫
dx

∫
dv

∫ T∗

0

ds rn(x, v, s)

where

rn(x, v, s) =
n∑

m=n−1

|Qm(fm, fm), − Q(fm, fm),|(x, v, s) .

As it has already been proven in [1], the term rn satisfies:

(3.19) lim
n→∞

∫
dx

∫
dv

∫ T∗

0

ds rn(x, v, s) = 0 .

This follows from the definition of Qm, the uniform bound on ‖Fm‖ given

in (3.14) and the estimate on the entropy given in Lemma 2.1. This

achieves the proof of Step (a). Uniqueness and positivity of the solution

are standard.

Proof of (b). The proof follows from an argument which has be-

come classical in this context. The main observation is that, due to the

boundedness of the velocities and the smallness of the time T ∗, the so-

lution f(x, v, t) constructed in the previous step, depends only on the

restriction of f0 in an interval (depending on x) of lenght at most 2V T ∗.

Indeed, even if the flux from the boundary influences f(x, v, t), such a

flux comes uniquely from the mass in this interval. This fact, together

with the finiteness of the entropy, allows to prove estimate (3.14), which

is the crucial one in (a), for any initial condition. Given any L1-function

f0, choose an interval I ⊂ [0, 1] and put |I| to indicate its amplitude.
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After the above observation, fi(x, v, t) for x ∈ I and t ∈ [0, T ∗] depends

uniquely on fi,0(x, v) for x ∈ I0 with |I0| ≤ |I| + 2V T ∗. The interval I

has to be chosen in such a way that∫

I0

fi,0(x, v)dx dv ≤ 1

48C0

,

which is possible, since H(0) is finite. Then (3.14) holds for ‖FT∗‖I , that

is the restriction of the L1-norm of FT∗ on I. The complete estimate (3.14)

can be recovered, with a larger constant than 4. Finally, by Lemma 2.1,

the entropy can be bounded at later times in terms of initial quantities,

so that (3.14) can be iterated in time over [0, T ]. This implies the result

stated in the theorem.

Before going to the next section, it is useful to give a bound on the

time integral of the fluxes at the walls, relative to the bounded velocity

case. Taking into consideration the time-varying region [0, V (T − t)] with

V T = 1, it is almost obvious that the mass flowing, in the time interval

[0, T ], across 0 and V (T − t), is at most the initial mass in [0, V T ] =

[0, 1]. Indeed, this is due to the mass conservation property for particle

travelling with negative or positive velocity respectively (see (2.1)). More

precisely (using the absolute continuity of f , with respect to t) it is:

d

dt

∫ V (T−t)

0

dx

∫

v<0

dvf(x, v, t) =
d

dt

∫

v<0

dv

∫ V (T−t)−vt

−vt

dxf ,(x, v, t) =

(3.20)

=

∫

v<0

dv[(−v − V )f ,(V (T − t) − vt, v, t) + vf ,(−vt, v, t)] .

Therefore:

(3.21)

∫ V T

0

dx

∫

v<0

dvf(x, v, 0) = −
∫ T

0

dt

∫

v<0

dv vf(0, v, t)+

+

∫ T

0

dt

∫

v<0

dv(v + V )f(V (T − t), v, t)

The last term is positive so that:

(3.22)

∫ T

0

dtJ−(0, t) ≤ ‖f0‖− .

The analogous estimate holds for J+(1, t).
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4 – The large velocity problem

The mild form of problem (2.20-23) is:

(4.1) f ,
e(x, v, t) = l,(x, v, t) +

∫ t

A(x,v)

[2Q(fi, fe)
, + Q(fe, fe)

,](x, v, s)ds

where fi is the solution we have constructed in the previous section and:

l(x, v, t)=f0,e(x − vt, v)χ
(
t <

x

v

)
+ fe

(
0, v, t − x

v

)
χ

(
t >

x

v

)
(4.2-1)

l(x, v, t)=f0,e(x−vt, v)χ
(
t<

1−x

|v|
)
+fe

(
1, v, t− 1−x

|v|
)
χ

(
t>

1−x

|v|
)

(4.2-2)

for v > 0 and v < 0 respectively. fe on the boundaries with outgoing

velocities satisfies the boundary conditions (2.22)and (2.23). Indeed, as

before, it will be shown that fe is absolutely continuous in t for a.a. (x,v),

so that the boundary conditions make sense.

In order to establish an a priori estimate for fe over the time interval

[0, T ] with T arbitrarily fixed, it is convenient to obtain first this estimate

for a short time interval, say [0, T ∗]. To this extent, call β = min (βo, β1)

and choose V , depending on the initial energy and mass, so large to

satisfy:

(4.3) ‖fe,0‖L1
+ e−βV 2‖f0‖L1

≤ 1

512C0

and moreover

(4.3-1)
1 + e−βV 2

1 − e−βV 2 ≤ 2

(this last is an inessential technical assumption which will be used in

(4.16)). After the proof of (b) in the preceeding section, estimate (3.14)

holds all over the (arbitrarily) fixed time interval [0, T ], so that we can

choose a positive number D satisfying:

(4.4) Dα−1‖Fi,T ‖ ≤ 1

256C0
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(α is the one introduced in (1.5)) and, consequently, T ∗ so small to satisfy

V T ∗ ≤ 1 together with the condition

(4.5) sup
x

∫ x+DT∗

x

dy

∫
dvFi,T∗(y, v) ≤ 1

256C0

It is worthwhile to spend some words on the Assumptions (4.3)-(4.5).

V is fixed in (4.3) and its choice depends upon E(0) and M(0). D de-

pends on V, T, M(0) and H(0). Finally, Assumption (4.5) is verified, pro-

vided that T ∗ is small enough, as a function of initial quantities. Indeed,

by (3.14), it is sufficient to recall the comments in the proof of Step (b)

in Section 3, that clarify the equivalence between looking at Fi,T∗ on a

small set and choosing a small initial condition.

As a conclusion, V, D and T ∗ depend uniquely upon T and the initial

mass, entropy and energy.

The collision part appearing in the right hand side of (4.1) can be

controlled, similarly to what has been done in [1]. Also in this proof we

will skip the subscript T ∗ as far as we are concerned with the short time

result. As to the linear term, by (2.27) it follows:

(4.6)

∫
dx

∫
dv

∫ T∗

0

dsQ(fi, fe)(x, v, s) ≤

≤
∫

dx

∫
dv

∫ T∗

0

ds

∫
dv1S(|v − v1|)χ(vv1 < 0)+

+ [Fi(x + 2vs,−v)Fe(x + (v + v1)s,−v1)+

+ Fe(x + 2vs,−v)Fi(x + (v + v1)s,−v1)+

+ Fi(x, v)Fe(x+(v−v1)s, v1) +Fe(x, v)Fi(x+(v−v1)s, v1)]=

= 4

∫
dx

∫
dv

∫ T∗

0

ds

∫
dv1×

× S(|v − v1|)χ(vv1 < 0)Fi(x + (v − v1)s, v1)Fe(x, v) ≤

≤ 4

∫
dx

∫
dv

∫ T∗

0

ds

∫
dv1S(|v − v1|)χ(|v − v1| < D)×

× Fi(x + (v − v1)s, v1)Fe(x, v)+

+ 4

∫
dx

∫
dv

∫
dy

∫
dv1

S(|v − v1|)
|v − v1|

χ(|v − v1| ≥ D)Fi(y, v1)Fe(x, v)
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being Fe the same as F in (3.3) with fe in place of f . The second integral,

by (1.5) and (4.4), can be bounded by:

(4.7) 4C0D
α−1‖Fi‖‖Fe‖ ≤ 1

64
‖Fe‖

while the first one is controlled by:

(4.8) 4C0

∫
dx

∫
dv

∫ x+DT∗

x

dy

∫
dv1Fi(y, v1)Fe(x, v) ≤ 1

64
‖Fe‖

by (4.5). Thus:

(4.9)

∫
dx

∫
dv

∫ T∗

0

ds|Q(fi, fe)
,|(x, v, s) ≤ 1

32
‖Fe‖ .

Recalling (3.6), by (4.1) it follows:

(4.10) ‖Fe‖ ≤ ‖L‖ +
1

16
‖Fe‖ + 2C0‖Fe‖2 .

Analogously to (3.11), to bound L one has to control the boundary term.

It is:

(4.11)

∫

x<0

dx

∫

v>0

dvfe(0, v,−x

v
) =

∫ T∗

0

dsJ+
e (0, s) =

=

∫ T∗

0

ds

∫

v>0

dvv[M e
0 (v)J−(0, s) + M i

0(v)J−
e (0, s)] ≤

≤ e−β0V 2
∫ T∗

0

dsJ−
i (0, s) + 2

∫ T∗

0

dsJ−
e (0, s) ≤

≤ e−β0V 2‖f0‖L1
+ 2

∫ T∗

0

dsJ−
e (0, s)

The last step is consequence of the smallness of T ∗ and (3.22). On the

other side, applying again (4.1)-(4.2) for v < 0:

(4.12)

fe(0, v, s) =

= fe(−vs, v, 0)χ(−vs < 1) + fe

(
1, v, s +

1

v

)
χ(−vs < 1)+

+

∫ s

A(0,v)

[2Q(fi, fe)
, + Q(fe, fe)

,](−vs, v, r)dr .
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Thus, recalling (2.22), (2.23), (4.9) and (3.6) it follows:

(4.13)

∫ T∗

0

dsJ−
e (0, s) ≤ ‖fe,0‖L1

+
1

32
‖Fe‖ + 2C0‖Fe‖2+

+

∫ T∗

0

ds

∫

v<0

dv|v|
[
M e

1 (v)J+
(
1, s +

1

v

)
+

+ M i
1(v)J+

e

(
1, s +

1

v

)]
χ(−vs > 1) .

Since T ∗V ≤ 1, then χ(−vs > 1)χ(|v| < V ) = 0 for s ∈ [0, T ∗].

Therefore M i
1(v)χ(−vs > 1) = 0 and for the remainder part in the

integral in (4.13) one has, again by (3.22):

(4.14)

∫ T∗

0

ds

∫

v<0

dv|v|M e
1 (v)[J+

i (1, s) + J+
e (1, s)]χ(−vs > 1) ≤

≤ e−β1V 2

[‖f0‖L1
+

∫ T∗

0

dsJ+
e (1, s)]

In conclusion:

(4.15)

∫ T∗

0

dsJ−
e (0, s) ≤ ‖fe,0‖L1

+
1

32
‖Fe‖ + 2C0‖Fe‖2+

+ e−β1V 2

[‖f0‖L1
+

∫ T∗

0

dsJ+
e (1, s)]

An analogous estimate can be obviously done for
∫ T∗

0 dsJ+
e (1, s) in terms

of
∫ T∗

0 dsJ−
e (0, s), so that, by (4.15),(4.3-1) and (4.10) it is:

(4.16) ‖Fe‖ ≤ 8[‖fe,0‖L1
+ e−βV 2‖f0‖L1

+
1

32
‖Fe‖ + 2C0‖Fe‖2]

from which, taking into account (4.3), it follows:

(4.17) ‖Fe‖ ≤ 1

32C0

To go to T larger than T ∗, one should verify that condition (4.3) still

holds at time T ∗, that is:

(4.18) sup
0≤t≤T∗

∫
dx

∫
dv|f(x, v, t)|χ(|v| ≥ V ) + e−βV 2‖f0‖L1

≤ 1

512C0

.
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This is not immediately true, since f could be not regular enough to

satisfy the energy estimate in Lemma 2.1, which would guarantee (4.18).

What is standard to do in this case is to introduce, as in Section 3,

a cutoffed version of equation (4.1) which admits a sufficiently regular

solution, satisfying the energy bound. Then, it remains to show that this

solution converges to that of the true problem, while removing the cutoff.

To this purpose it would be convenient to have a L∞ right hand side but,

since S(|v − v1|) is unbounded, the regularization chosen in Section 3

is not appropriate. A possible cutoffed system is the one obtained by

replacing in (4.1) Q with Q̄n, being this last the same as Qn introduced

in Section 3, but for the collision kernel S̄ defined as:

(4.19) S̄(|v − v1|) = S(|v − v1|)χ(|v − v1| ≤ R)

for some positive R. The fact that the solution to the regularized problem

converges in L1 to the solution to (4.1) can be easily seen. Indeed, taking

into account the uniform estimates (3.14) and (4.17) on fi and fe, the

Lipschitz property of
∫

dsQ shown in (3.7) and (4.9) and recalling (3.19),

the convergence is proven once the following is proven:

(4.20)

∫
dx

∫
dv

∫
ds

∫
dv1S(|v − v1|)χ(|v − v1|) ≥ R)×

× f(x, v, s)f(x + (v − v1)s, v1, s) ≤ ϕ(R)

with ϕ infinitesimal as R goes to infinity. This is actually true, due to the

property (1.5) of S. Thus (4.17) can be prolonged up to the arbitrarily

fixed time T and this, by the above discussion, implies the existence of

a unique solution to problem 4.1. Moreover, as it was to be expected,

fe stays small all over the interval [0, T ]. This concludes the proof of

Theorem 2.1. The positivity of the solution and the boundedness of

energy and entropy can be proven by standard arguments.

Final Remark. I want to thank one of the referees for pointing out

that the entropy and energy estimates in Lemma 2.1 can be obtained as

well by the arguments in [2] (see Lemmas 4.1 and 4.2 in this paper). This

approach works directly for mild solutions, making unnecessary the final

cutoff argument.
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