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Elliptic operators of divergence type with

Hölder coefficients in fractional Sobolev spaces

S. CLAIN

Riassunto: Il lavoro tratta gli operatori ellittici del tipo della divergenza con coef-
ficienti hölderiani. Si riconosce che, se l’operatore di Laplace definisce un isomorfismo
bicontinuo da W 1+s

p (Ω) in W s−1
p (Ω), s ∈ [0, 1[, allora ciò vale anche per tutta una

classe di operatori ellittici con coefficienti hölderiani. Si dà anche una applicazione ad
un problema non lineare con ipotesi di regolarità deboli.

Abstract: This work concerns linear elliptic operators of divergence type with
Hölder coefficients in spaces of type W 1+s

p (Ω), s ∈ [0, 1[ on a Lipschitz domain Ω.

We prove that if the Laplace operator ∆ is a bicontinuous isomorphism from W 1+s
p (Ω)

onto W s−1
p (Ω) then the result holds for more general elliptic operators with Hölder

coefficients. An application to a non linear problem with low regularity in the right-
hand side is given.

– Introduction

This paper is devoted to the elliptic operator study in fractional

Sobolev spaces in Lipschitz domain Ω. The main motivation to intro-

duce fractional value for the derivatives comes from the fact that some
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classes of problems cannot have a solution in spaces of type W 2
p (Ω). Con-

sequently, from a numerical point of view, we cannot give an estimate

of the convergence order for approximate solutions (the approximation

with finite elements for example) if the solution just lies in a space of

type W 1
p (Ω). The idea consists to see whether the solution belongs to a

fractional Sobolev space of type W 1+s
p (Ω). The “fraction” of derivative

s will be usefull for numerical estimates in inducing a fractional order of

convergence [2].

More precisely, let a be a Hölder function defined on a bounded

open set Ω ⊂ IRN of Lipschitz boundary, N ≥ 2 and let us consider

the following elliptic operator −∇(a∇u), the goal of the paper consists

to show that if the Laplace operator −∆ is a bicontinuous isomorphism

from W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω) for a Lipschitz bounded open set

Ω then the result holds for general operators when a is regular enough

in Hölder spaces. We avoid then the boundary problem assuming that

the result holds for the Laplace operator. For an extended study of this

point, one can refer to [6].

We use a local pertubation method to express any elliptic operator

of divergence form as the Laplace operator on small compacts (rather

similar to the method of Korn and Schauder). In the first section, we

introduce space definitions and assumptions about the elliptic operators

we consider within the paper. The second section is devoted to technical

lemmas subsequently used as pertubation arguments. Section three gives

theorems about the existence and the uniqueness of solution in
◦

W 1
p(Ω)

for the continuous case. We present then a theorem of regularity in

W s+1
p (Ω)∩

◦
W 1

p(Ω) spaces in the fourth section for the Hölder case. Finally,

the last section shows an example where fractional Sobolev spaces give

new regularity results.

1 – Spaces and assumptions

In all the sequel, Ω denotes an open bounded set with a Lipschitz

boundary. For p ∈]1,∞[ and k = 1, 2, we denote by W k
p (Ω) the classical

Sobolev spaces given in [5], p. 16. Let s ∈]0, 1[, the definition of fractional

Sobolev spaces W s
p (Ω) and W 1+s

p (Ω) is given in [5], p. 17. For k = 1, 2,

the spaces
◦

W k
p(Ω) (

◦
W s

p(Ω) and
◦

W 1+s
p (Ω) respectively) are defined by the



[3] Elliptic operators of divergence type with etc. 209

closure in W k
p (Ω) of the infinitely differential compactly supported func-

tions set (in W s
p (Ω) and W 1+s

p (Ω) respectively). The space W s−1
p′ (Ω)

is the
◦

W 1−s
p (Ω) dual space where p′ denotes the conjugate number of

p. An other definition can be given to caracterise spaces W s−1
p (Ω) us-

ing the truncature on Ω in the distribution sense of all the elements of

W s−1
p (IRN) [5], p. 18:

Ŵ s−1
p (Ω)

def
= {v|Ω; v ∈ W s−1

p (IRN)} .

In the case of Lipschitz regularity for domain Ω, one can prove that most

of the time the two definitions are equivalent. Indeed, we have:

Ŵ s−1
p (Ω) = W s−1

p (Ω), ∀ s ∈]0, 1[, s != 1

p
.

It is important to note that spaces W
1
p −1

p (Ω) and Ŵ
1
p −1

p (Ω) do not corre-

spond (even if the domain is smooth) [5], p. 31 (we have just Ŵ
1
p −1

p (Ω) ⊂
W

1
p −1

p (Ω) [5], p. 18).

Remark 1.1. We introduce spaces Ŵ s−1
p (Ω) because they are natu-

ral spaces for the interpolation theory [9]. In particular we always have

with s ∈]0, 1[:

(1.1) (W −1
p (Ω), Lp(Ω))s,p = Ŵ s−1

p (Ω)

even if Ω is not regular. Since we assume the boundary to be Lipschitz,

we have with s != 1
p
:

(1.2) (W −1
p (Ω), Lp(Ω))s,p = W s−1

p (Ω) ,

but the exceptional case s = 1
p

cannot follow relation (1.2) even if

the boundary is smooth. Therefore, we are obliged to introduce spaces

Ŵ s−1
p (Ω) to take the case s = 1

p
into account.

At last, for σ ∈ [0, 1], C0,σ(Ω) denotes the Hölder space endowed with

the norm ‖.‖C0,σ(Ω) = ‖.‖C0(Ω) + [.]σ where

[v]σ
def
= sup

x,y∈Ω,x *=y

|v(x) − v(y)|
|x − y|σ .
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The value σ = 0 corresponds to the continuous functions space C0(Ω). We

present now the notations we use throughout this paper. Let σ ∈ [0, 1[,

we set the following assumptions:

a ∈ C0,σ(Ω) ,(1.3)

∃E > 0 such that ∀x ∈ Ω, a(x) ≥ E .(1.4)

For every s ∈ [0, 1[ and every p ∈]1,∞[, we can define the elliptic oper-

ator A from W 1+s
p (Ω) into W s−1

p (Ω) with s != 1
p

and from W 1+s
p (Ω) into

Ŵ s−1
p (Ω) with s = 1

p
by (see theorem 1.4.1.1 [5], p. 21 and theorem 1.4.4.6

p. 31):

(1.5) A(u)
def
= −∇ · (a∇u) .

Let p ∈]1,∞[, we say that the operator A has the property H1(p) if and

only if

(H1(p)) A is a bicontinuous isomorphism from
◦

W 1
p(Ω) onto W −1

p (Ω) .

Let p ∈]1,∞[, s ∈]0, 1[, we say that the operator A has the property

H2(p, s) if and only if A has the property H1(p) and

(H2(p, s))





A is a bicontinuous isomorphism from

W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω) if s != 1

p
,

W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto Ŵ s−1
p (Ω) if s =

1

p
.

The main theorems we prove are the following ones.

Theorem 1.1 (continuous case). Let σ = 0, p ∈]1, ∞[ and the

coefficient a satisfying Assumptions (1.3)-(1.4). If −∆ satisfies H1(p)

then ∀ q ∈ [min(p, p′),max(p, p′)], A satisfies H1(q).

Theorem 1.2 (Hölder case). Let σ ∈]0, 1[, p ∈]1, ∞[ and the

coefficient a satisfying Assumptions (1.3)-(1.4). If −∆ satisfies H2(p, s)

for a real number s ∈]0, σ[, then A satisfies H2(p, s).

Remark 1.2. As we say in the introduction, boundary regularity

does not infer in the theorems. We just need the Lipschitz assumption
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for the boundary to give the compatibility between the norms Ŵ and

W [5], p. 25. However, regular assumptions are clearly necessary to prove

properties H1(p) and H2(p, s) for the Laplace operator.

2 – Some technical lemmas

This section deals with technical lemmas we shall use in the next

sections. The main goal consists to prove that locally the operator A

is a pertubation of the Laplace operator in
◦

W 1
p(Ω) or in W 1+s

p (Ω). We

build then new operators which approximate A on small domains. To this

end, we introduce functions coinciding with a on small compact domains.

New operators derived from these functions will help us to obtain local

regularity using a pertubation argument. This method is slightly different

to the other classical ones since we do not freeze the coefficient a for

particular points of Ω but we replace it by a family of functions aη which

coincide with a on small compact domains.

Definition 2.1. Let P be a point of IRN and η a positive real num-

ber. We denote by B2(P, η) (B∞(P, η) respectively) the closed ball of

center P of radius η in the euclidean norm (in the infinity norm respec-

tively).

Remark 2.1. Notice that

B2(P, η) ⊂ B∞(P, η) ⊂ B2(P, 2η) .

We denote by I = (i1, . . . , iN) ∈ ZZN the points of IRN with integer

coordinates. The balls B∞(I, 1), I ∈ ZZN cover the whole domain IRN . Let

P1 be the covering, we build now a partition of unit of IRN , invariant by

translation of integer value vectors. We first make the construction on IR.

Lemma 2.1. There exist functions αi ∈ D(IR), i ∈ ZZ such that:

i) supp αi ⊂ B∞
(
i,

2

3

)
,(2.1)

ii)
∑

i∈ZZ

αi = 1 on IR ,(2.2)

iii)αi(x) = α0(x − i) .(2.3)
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Proof. We first define the function α0 on [0, ∞[. We set:





α0 = 1 on
[
0,

1

3

]
,

α0 = 0 on
[2

3
,∞

[
,

α0 ∈ C∞([0,∞[) .

Next, we define the function α0 on ] − ∞, 0] by setting

{
α0 = (1 − α0)(1 + x) on [−1, 0] ,

α0 = 0 on ] − ∞, −1] .

We define then αi by αi(x) = α0(x − i). Obviously properties i), iii) are

satisfied. Furthermore, let j ∈ ZZ and x ∈ [j, j + 1], we have:

∑

i∈ZZ

αi(x) = αj(x) + αj+1(x) =

= α0(x − j) + α0(x − 1 − j) =

= α0(y) + α0(y − 1) =, with y = x − j

= α0(y) + 1 − α0(1 + y − 1) = 1 .

The lemma is proved.

Lemma 2.2. There exist functions αI ∈ D(IRN), I ∈ ZZN such that:

i) supp αI ⊂ B∞
(
I,

2

3

)
,(2.4)

ii)
∑

I∈ZZN

αI = 1 on IRN ,(2.5)

iii) if I0 = (0, . . . , 0) ∈ ZZN then αI(x) = αI0(x − I) .(2.6)
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Proof. We define functions αI , I = (i1, . . . , iN) by:

αI =
N∏

j=1

αij (xj) .

Obviously, properties i), iii) are satisfied. From relation (2.2) we deduce

relation (2.5).

The functions αI define a partition of unit associated to P1. Let η be

a positive real number and consider Pη the covering of IRN derived from

P1 by dilation η. Then, if we set

(2.7) αη
I (x)

def
= αI

(x

η

)
,

we obtain a partition of unit of IRN associated to Pη. Furthermore, we

have the following corollary.

Corollary 2.1. The functions αη
I ∈ D(IRN) defined by (2.7) satisfy

the following properties:

i) supp αη
I ⊂ B∞

(
ηI,

2η

3

)
,(2.8)

ii)
∑

I∈ZZN

αη
I = 1 on IRN ,(2.9)

iii) if I0 = (0, . . . , 0) ∈ ZZN then αη
I (x) = αη

I0
(x − Iη) ,(2.10)

iv) ‖αη
I‖Cr(IRN ) =

1

ηr
‖αI0‖Cr(IRN ), ∀ r ∈ IN .(2.11)

Now, let us denote by Ω′ the open set defined by

Ω′ = {x ∈ IRN |dist(x,Ω) < 3}

where dist(x,Ω) represents the euclidean distance between x and Ω. Ob-

viously, Ω ⊂ Ω′. We build a partition of unit on Ω such that the support

of this partition is included in Ω′.

Proposition 2.1. Let Ω be an open bounded set and η ∈]0, 1[,

there exists a finite number Jη of balls B∞(Iη, η) such that we have
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dist(Iη,Ω) ≤ η. If Mk, k = 1, . . . , Jη is a new indexing of the center

of the balls satisfying the previous property, we can write:

i)Ω ⊂
Jη⋃

k=1

B∞(Mk, η) ⊂
Jη⋃

k=1

B2(Mk, 2η) ⊂ Ω′ ,(2.12)

ii)

Jη∑

k=1

αη
k = 1 on Ω, supp

Jη∑

k=1

αη
k ⊂ Ω′ .(2.13)

Using the partition of unit, we build new function aη
k derived from a.

Notice that if a is a function of C0,σ(Ω) σ ∈ [0, 1], we can extend it to a

function of C0,σ(Ω′) – still denoted by a – thanks to Stein’s theorem [8],

p. 173 and there exists a constant C∗ independent of a and σ such that

‖a‖C0,σ(Ω) ≤ ‖a‖
C0,σ(Ω′) ≤ C∗‖a‖C0,σ(Ω) .

This extention does not require regularity of the boudary. Thanks to this

inequality the norms are equivalent. Hence, we do not make distinction

between a or its extention. We first deal with the continuous case and

next with the Hölder case. To this end, we consider the following sets:

E1 = B2(Mk, 2η) ,

E2 = {x ∈ IRN ; 2η < |x − Mk| ≤ 3η} ,

E3 = {x ∈ IRN ; |x − Mk| > 3η} .

Remark 2.2. In fact, we should write Ek,η
1 , Ek,η

2 , Ek,η
2 but for the

sake of simplicity, we omit the indexes k and η.

Remark 2.3. In the following lemmas, we adopt two different nota-

tions for the same mathematical object. For x, y ∈ IRN , we denote by xy

or by x−y the vector of origin x and of extremity y. The first notation is

more “vectorial” and we shall use it in geometrical considerations. The

expressions |xy| and |y − x| represent the euclidean norm of the vector.
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Lemma 2.3. Let a ∈ C0(Ω′) and η ∈]0, 1[. For every k = 1, . . . , Jη,

there exist functions aη
k ∈ C0(IRN) such that:

i) aη
k = a on E1 ,(2.14)

ii) sup
x∈IRN

|aη
k(x) − aη

k(Mk)| ≤ sup
z∈E1

|a(z) − a(Mk)| .(2.15)

Proof. We build the function aη
k in the following way. If x ∈ E1,

we set aη
k(x) = a(x). If x ∈ E3 we set aη

k(x) = a(Mk). If x ∈ E2 then let

y be the unique point on ∂E1 such that the points Mk, y, x are colinear

(fig. 1). We have then

(2.16) Mkx =
(
1 +

θ

2

)
Mky

with θη = |xy|, θ ∈ [0, 1]. We set aη
k(x) = (1 − θ)a(y) + θa(Mk). The

function aη
k(x) is obviously continuous, it remains to prove (2.15).

X Y

Mk

E
1

E
2

E
3

Fig. 1

Let x ∈ IRN , if x ∈ E1 we get

|aη
k(x) − aη

k(Mk)| = |a(x) − a(Mk)| ≤ sup
z∈E1

|a(z) − a(Mk)| .

If x ∈ E3 we have:

|aη
k(x) − aη

k(Mk)| = |a(Mk) − a(Mk)| = 0 .
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Now, assume that x ∈ E2 then we have formula (2.16) for a point y ∈ ∂E1

and we get:

|aη
k(x) − aη

k(Mk)| = (1 − θ)|a(y) − a(Mk)| ≤ sup
z∈E1

|a(z) − a(Mk)| .

So we have proved the lemma.

Corollary 2.2. Let a ∈ C0(Ω′), for every ε ∈]0, 1[, there exists

η(ε) > 0 such that:

(2.27) ∀ k = 1, . . . , Jη(ε), sup
x∈IRN

|aη(ε)
k (x) − a

η(ε)
k (Mk)| ≤ ε .

Proof. We use the uniform continuity of a on the compact set Ω′

and the relation (2.15). Indeed, we have for η = η(ε) small enough

|a(x) − a(y)| ≤ ε ∀x, y ∈ Ω′ with |x − y| ≤ 2η .

Then in particular, we have for every k:

sup
x∈E1

|a(x) − a(Mk)| ≤ ε .

We draw the corollary from relation 2.15.

Lemma 2.4. Let σ ∈]0, 1[, a ∈ C0,σ(Ω′) and η ∈]0, 1[. Then for

every k = 1, . . . , Jη, the functions aη
k defined in lemma 2.3 verify the

following conditions:

i) aη
k ∈ C0,σ(IRN) ,(2.18)

ii)∀ t ∈ [0, σ], [aη
k]0,t ≤ 6ησ−t[a]0,σ .(2.19)
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Proof. Let x1, x2 ∈ IRN , x1 != x2. We shall consider two cases

according we have |x1 − x2| ≤ η or not. First, let us consider the case

when |x1 − x2| > η. We can write:

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

≤ |aη
k(x1) − aη

k(Mk)|
|x1 − x2|t

+
|aη

k(Mk) − aη
k(x2)|

|x1 − x2|t
≤

≤ |aη
k(x1) − a(Mk)|

ηt
+

|a(Mk) − aη
k(x2)|

ηt
.

We are going to prove that

(2.20) |aη
k(x1) − a(Mk)| ≤ 2ησ[a]0,σ .

If x1 ∈ E1, we have aη
k(x1) = a(x1) so we get

|aη
k(x1) − a(Mk)| ≤ |x1 − Mk|σ[a]0,σ ≤

≤ (2η)σ[a]0,σ ≤
≤ 2ησ[a]0,σ .

If x1 ∈ E3, we have |aη
k(x1) − a(Mk)| = 0. At last, if x ∈ E2 then thanks

to the relation (2.16), there exists a unique y ∈ ∂E1 such that

|aη
k(x1) − a(Mk)| = (1 − θ)|a(y) − a(Mk)| .

Since y and Mk belong to E1 we draw the same estimate (2.20). We have

also this estimate for x2. To sum up, in the case when |x1 − x2| > η we

have prove relation (2.19).

Now we deal with the case when |x1 − x2| ≤ η. These leads us to

consider five subcases:

-1) x1 ∈ E1 and x2 ∈ E1.

By definition of aη
k we have:

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

=
|a(x1) − a(x2)|

|x1 − x2|t
≤

≤ |x1 − x2|σ−t[a]0,σ ≤

≤ ησ−t[a]0,σ .
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-2) x1 ∈ E3 and x2 ∈ E3.

Obviously we have |aη
k(x1) − aη

k(x2)| = |a(Mk) − a(Mk)| = 0.

-3) x1 ∈ E2 and x2 ∈ E2.

It is the most difficult case. Let (yi, θi) given by formula (2.16) asso-

ciated to xi, i = 1, 2. We can write:

(2.21) x1x2 =
(
1 +

θ1

2

)
y1y2 +

θ2 − θ1

2
Mky2 .

On the other hand, the scalar product formula gives:

|Mky1|2 = |Mky2|2 + |y2y1|2 + 2〈Mky2,y2y1〉 .

Since |Mky1|2 = |Mky2|2 = (2η)2, this yields:

〈Mky2,y1y2〉 =
|y1y2|2

2
.

From (2.21), we deduce:

〈x1x2,y1y2〉 =
(
1 +

θ1

2

)
|y1y2|2 +

θ2 − θ1

4
|y1y2|2 =

=
(
1 +

θ1 + θ2

4

)
|y1y2|2 .

Using the Cauchy-Schwartz inequality, we get:

(2.22) |x1x2| ≥
(
1 +

θ1 + θ2

4

)
|y1y2|

Since θ1, θ2 ∈ [0, 1], we have:

(2.23) |x1x2| ≥ |y1y2| .

Furthermore, we can write that:

|θ1 − θ2|η = ||x1y1| − |y2x2|| ≤
≤ |x1y1 − y2x2| =

= |x1x2 + y2y1| ≤
≤ |x1x2| + |y2y1| ≤
≤ 2|x1x2| .
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and we obtain:

(2.24) |θ1 − θ2| ≤ 2

η
|x1 − x2| .

The quantity aη
k(x1) − aη

k(x2) can be written in the following way:

aη
k(x1) − aη

k(x2) = (1 − θ1)(a(y1) − a(y2)) + (θ2 − θ1)(a(y2) − a(Mk)) .

Then, we obtain using (2.23) and (2.24):

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

≤ |1 − θ1|
|a(y1) − a(y2)|

|x1 − x2|t
+ |θ2 − θ1|

|a(y2) − a(Mk)|
|x1 − x2|t

≤

≤ |y1 − y2|σ
|x1 − x2|t

[a]0,σ + 2
|x1 − x2|1−t

η
|y2 − Mk|σ[a]0,σ ≤

≤ |x1 − x2|σ−t[a]0,σ + 2|x1 − x2|1−t2σησ−1[a]0,σ .

Since |x1 − x2| ≤ η, we draw:

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

≤ 5ησ−t[a]0,σ .

-4) x1 ∈ E1 and x2 ∈ E2.

Let x0 ∈ ∂E1 such that the points x1, x0, x2 are colinear, we have

then:

|x1x2| = |x1x0| + |x0x2| .
We can then write:

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

≤ |a(x1) − a(x0)|
|x1 − x2|t

+
|aη

k(x0) − aη
k(x2)|

|x1 − x2|t
≤

≤ |a(x1) − a(x0)|
|x1 − x0|t

+
|aη

k(x0) − aη
k(x2)|

|x0 − x2|t
.

Applying estimates obtained in Subsections 1 and 3, we get immediately:

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

≤ 6ησ−t[a]0,σ .
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-5) x1 ∈ E2 and x2 ∈ E3.

Let x0 ∈ ∂B2(Mk, 3η) such that x1, x0, x2 are colinear. Since |x1 −
x2| ≤ |x1 − x0|, we get:

|aη
k(x1) − aη

k(x2)|
|x1 − x2|t

=
|aη

k(x1) − aη
k(x0)|

|x1 − x2|t
≤

≤ |aη
k(x1) − aη

k(x0)|
|x1 − x0|t

.

Since points x1 and x0 are in E2, Subcase 3 gives the estimate.

3 – The continuous case

We consider first the continuous case for an elliptic operator of diver-

gence form A in spaces
◦

W 1
p(Ω). This means that we assume a ∈ C0(Ω).

The main idea of this section consists to prove an inequality of type

Agmon-Douglis-Nirenberg (also called generalized Gårding’s inequal-

ity [7]) for operator A assuming that the Laplace operator satisfies H1(p)

for a p ∈]1,∞[. This inequality associated with a duality argument

gives the first theorem. A similar result has been obtained by C. G.

Simader [7] assuming the boundary of Ω to be C1. The case of a polyg-

onal domain has been also studied by M. Dauge [4]. Nevertheless, the

method is different, the main result states in the following way: if, for

a Lipschitz open bounded domain Ω ⊂ IRN , the Laplace operator is a

bicontinuous isomorphism from
◦

W 1
p(Ω) onto W −1

p (Ω) with p ∈]1, ∞[ then

the result holds for an elliptic operator with continuous coefficients. In

the sequel, we always consider that the space
◦

W 1
p(Ω) is endowed with

its seminorm ‖∇v‖Lp(Ω) and the dual space W −1
p′ (Ω) is endowed with the

dual norm [1], p. 3 associated to the seminorm of
◦

W 1
p(Ω).

Proposition 3.1. Let p ∈]1, ∞[ such that operator A satisfies

H1(p). Then for all q ∈ [min(p, p′),max(p, p′)], A satisfies H1(q).
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Proof. If A satisfies H1(p), by duality A satisfy H1(p′). Indeed, for

every v ∈
◦

W 1
p(Ω), we have

‖∇v‖Lp(Ω) ≤ Cp‖Av‖W−1
p (Ω) ,

where Cp does not depend of v. This inequality yields that the operator

A is one-to-one on
◦

W 1
p(Ω) with a closed range in W −1

p (Ω) [1], p. 30.

This implies the adjoint operator A∗ = A is surjective from
◦

W 1
p′(Ω) onto

W −1
p′ (Ω). On the other hand, thanks to the Hann-Banach theorem [1],

p. 4, we can write for every v ∈
◦

W 1
p′(Ω):

‖∇v‖Lp′
(Ω) = sup

f∈W−1
p (Ω)

〈v, f〉
‖f‖W−1

p (Ω)

=

= sup

w∈
◦

W1
p(Ω)

〈v, Aw〉
‖Aw‖W−1

p (Ω)

≤

≤ Cp sup

w∈
◦

W1
p(Ω)

〈Av, w〉
‖∇w‖Lp(Ω)

.

We get then the estimate:

(3.1) ‖∇v‖Lp′
(Ω) ≤ Cp‖Av‖W−1

p′ (Ω) .

Relation (3.1) yields that A is one-to-one in
◦

W 1
p′(Ω) and A−1 is continuous

from W −1
p′ (Ω) onto

◦
W 1

p′(Ω), the continuity being implied by relation (3.1).

Operator A satisfies H1(p) and H1(p′) hence, by interpolation [9], p. 185,

we deduce the result for all q ∈ [min(p, p′),max(p, p′)].

Remark 3.2. A particular case of proposition 3.1 is A = −∆, the

constant Cp has then the value:

(3.2) Cp = ‖ − ∆−1‖
L(W−1

p (Ω),
◦

W1
p(Ω))

.

Proposition 3.2. Let a ∈ C0(Ω) satisfying Assumption (1.4) then

the operator A is a bicontinuous isomorphism from
◦

W 1
2(Ω) onto W −1

2 (Ω)
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with the estimate

(3.3) ‖∇v‖L2(Ω) ≤ 1

E
‖Av‖W−1

2
(Ω)

Proof. An elementary proof can be found in [1].

Proposition 3.3. Let p ∈]1,∞[ such that −∆ satisfies H1(p).

Then there exists η1 ∈]0, 1[ such that for k = 1, . . . , Jη1
, the operator Aη1

k

defined by

(3.4) Aη1
k v

def
= −∇ · (aη1

k ∇v)

is a bicontinuous isomorphism from
◦

W 1
p(Ω) onto W −1

p (Ω). Furthermore,

we get the estimate

(3.5) ‖∇v‖Lp(Ω) ≤ 2

E
Cp‖Aη1

k v‖W−1
p (Ω)

Proof. Let v ∈
◦

W 1
p(Ω) and η ∈]0, 1[, we can write:

Aη
kv

def
= −∇.(aη

k∇v) = −a(Mk)∆v + ∇ · ([a(Mk) − aη
k]∇v) .

If Gp denotes the inverse operator of −∆ in W −1
p (Ω), we have:

1

a(Mk)
GpA

η
k(v) =

{
v + Gp ◦ ∇ ·

(a(Mk) − aη
k

a(Mk)
∇v

)}
.

If we prove for a small enough real number η1 that the norm of the

operator

v 9→ Gp ◦ ∇ ·
(a(Mk) − aη1

k

a(Mk)
∇v

)

is small (less than 1/2 for example) then we have proved that GpA
η1
k is an

isomorphism on
◦

W 1
p(Ω), hence Aη1

k is an isomorphism from
◦

W 1
p(Ω) onto

W −1
p (Ω).
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To this end, let ε a positive real number, Corollary 2.2 says that we

can find η ∈]0, 1[ such that for every k = 1, . . . , Jη we have then:

‖∇ ·
(a(Mk) − aη

k

a(Mk)
∇v

)
‖W−1

p (Ω) ≤ ε

E
‖∇v‖Lp(Ω) .

We choose now ε = ε1(p) such that

(3.6) ε1 =
E

2Cp

.

This gives the value of η1(p) thanks to the uniform continuity of a. There-

fore, we get the estimate [10], p. 151:

‖ [GpA
η1
k /a(Mk)]

−1 ‖
L(

◦
W1

p(Ω),
◦

W1
p(Ω))

≤ 2

thus we have

‖∇v‖Lp(Ω) = ‖ [GpA
η1
k /a(Mk)]

−1
GpA

η1
k v/a(Mk)‖ ◦

W1
p(Ω)

≤

≤ 2

E
‖GpA

η1
k v‖ ◦

W1
p(Ω)

≤

≤ 2Cp

E
‖Aη1

k v‖W−1
p (Ω)

and the proposition is proved.

Remark 3.2. In all the section, we can just consider the case where

p ≥ 2. Indeed, proposition 3.1 shows that we can always obtain this case

by duality.

Remark 3.3. The value of η1 depends on p.

Proposition 3.4. Let p ∈ [2, 2∗[ with 1
2∗ = 1

2
− 1

N
and let us

assume that −∆ satisfies H1(p). For every f ∈ W −1
p (Ω), if v is the unique

solution in
◦

W 1
2(Ω) of Av = f then αη1

k v ∈
◦

W 1
p(Ω) for every k = 1, . . . , Jη1

.

Furthermore, we have the estimate

(3.7) ‖∇(αη1
k v)‖Lp(Ω) ≤ C(η1, p,Ω, a)‖Av‖W−1

p (Ω) .
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Proof. We can write Aη1
k (αη1

k v) = A(αη1
k v) because aη1

k = a on

the ball B∞(Mk, η1). Proposition 3.3 says that the operator Aη1
k is a

bicontinuous isomorphism from
◦

W 1
p(Ω) into W 1

p (Ω). It remains to prove

that A(αη1
k v) ∈ W −1

p (Ω).

Using the fact that Av = f , we obtain:

A(αη1
k v) = αη1

k Av + av∆αη1
k + a∇αη1

k · ∇v + ∇αη1
k · ∇(av) =

= αη1
k f + av∆αη1

k + a∇αη1
k · ∇v + ∇αη1

k · ∇(av) .

Since W −1
p (Ω) ⊂ W −1

2 (Ω) proposition 3.2 says that v ∈
◦

W 1
2(Ω) with the

estimate (3.3). Consequently, the functions av, a∇v and ∇(av) belong

to W −1
p (Ω) since p < 2∗ and A(αη1

k v) ∈ W −1
p (Ω). On the other hand,

Corollary 2.1 gives the estimates

|∇αη1
k | ≤ C

η1

|∆αη1
k | ≤ C

η2
1

where C does not depend on k and η1. We draw then the estimate

‖∇(αη1
k v)‖Lp(Ω) ≤ 2Cp

E
‖Aη1

k (αη1
k v)‖W−1

p (Ω) =

=
2Cp

E
‖A(αη1

k v)‖W−1
p (Ω) ≤

≤ C

η1

‖Av‖W−1
p (Ω) + C

( 1

η2
1

+
1

η1

)
‖a‖L∞(Ω)‖∇v‖L2(Ω) ≤

≤ C1‖Av‖W−1
p (Ω) + C2‖Av‖W−1

2
(Ω) ≤

≤ C(p, η1,Ω, a)‖Av‖W−1
p (Ω)

and the proposition is proved.

From the previous porposition, we deduce the following corollary.

Corollary 3.1. Let p ∈ [2, 2∗[ with 1
2∗ = 1

2
− 1

N
such that −∆

satisfies H1(p) and a ∈ C0(Ω) satisfying (1.4). Then for every r ∈ [p′, p],

operator A given by (1.5) is a bicontinuous isomorphism from
◦

W 1
r(Ω)

onto W −1
r (Ω) with the estimate

(3.8) ‖∇v‖Lr(Ω) ≤ C(p, Ω, a)‖Av‖W−1
r (Ω).
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Proof. Let f ∈ W −1
p (Ω), proposition 3.4 says that there exists a

unique solution u ∈
◦

W 1
p(Ω) such that Au = f . Furthermore, the following

estimate hold

‖∇u‖Lp(Ω) ≤
Jη1∑

k=1

‖∇(αη1
k u)‖Lp(Ω) ≤

≤
Jη1∑

k=1

C(p, Ω, a, η1)‖Av‖W−1
p (Ω) ≤

≤ Jη1
C(p, Ω, a, η1)‖Av‖W−1

p (Ω) .

Proposition 3.1 gives the conclusion for every r ∈ [p′, p].

Remark 3.4. The proposition 3.4 and the Corollary 3.1 contain the

case p = 2∗ if 2∗ < ∞.

Using a bootstrapping method, we conclude with the main theorem.

Theorem 3.1 (continuous case). Let p ∈]1, ∞[ such that −∆

satisfies H1(p) and a ∈ C0(Ω) satisfying (1.4). Then for every r ∈
[min(p, p′),max(p, p′)], operator A given by (1.5) is a bicontinuous iso-

morphism from
◦

W 1
r(Ω) onto W −1

r (Ω) with the estimate

‖∇v‖Lr(Ω) ≤ C(p, Ω, a)‖Av‖W−1
r (Ω) .

Proof. Thanks to the proposition 3.1, we can assume p ≥ 2. If

p < 2∗ with 1
2∗ = 1

2
− 1

N
the theorem is proved. If 2∗ < ∞, we repeat

the same technique as we do in proposition 3.4 for the intervalle [2∗, 2∗∗[

with 1
2∗∗ = 1

2∗ − 1
N

. For every p ∈ [2∗, 2∗∗[ there exists q ∈ [2, 2∗[ such that

we have the continuous embedding Lp(Ω) ⊂ W −1
q (Ω). We get then that

the functions αη1
k v belong to

◦
W 1

p(Ω) and we obtain the estimate with the

technique developed in the Corollary 3.1. If p ≥ 2∗∗, we shall consider

the intervalle [2∗∗, 2∗∗∗[ and repeat the process as far as we can put p in a

similar intervalle —remark that for a fixed dimension N we always have

a finite number of such intervals.
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4 – The Hölder case

We consider now an elliptic operator A in spaces W 1+s
p (Ω) with

Hölder coefficients. Let p ∈]1,∞[, s, σ ∈]0, 1[ with σ > s and a a real

function satisfying Assumptions (1.3)-(1.4). We assume that −∆ realises

property H2(p, s). By definition, −∆ realises also property H1(p) and

theorem 3.1 says that the operator A is a bicontinuous isomorphism from
◦

W 1
p(Ω) onto W −1

p (Ω). Hence, A is one-to-one from W 1+s
p (Ω)∩

◦
W 1

p(Ω) into

W s−1
p (Ω) for s != 1

p
and from W 1+s

p (Ω) ∩
◦

W 1
p(Ω) into Ŵ s−1

p (Ω) for s = 1
p
.

It remains to prove the surjectivity. It is now a problem of regularity.

Following the technique used in section three, we shall show that there

exists η2 ∈]0, 1[ such that for every k = 1, . . . , Jη2
, αη2

k u ∈ W 1+s
p (Ω). In

all this section, we do the proof only in the case s != 1
p

for the sake of

simplicity but we have also the result for s = 1
p
.

Lemma 4.1. Let t ∈]0, 1[, then there exists C > 0 independent of t

such that:

∀ y ∈ Ω,

∫

Ω

|x − y|t−N dx ≤ C

t
.

Proof. Denote by Ωy the domain derived from Ω by translation of

vector y, we have:

∫

Ω

|x − y|t−Ndx =

∫

Ωy

|x|t−Ndx .

For all x ∈ Ω, we have dist(x, y) ≤diam(Ω). Hence, if we set

R = diam (Ω),

we have using the spheric coordinates:

∫

Ω

|x − y|t−Ndx ≤
∫

B2(0,R)

|x|t−N dx ≤

≤ N |B2(0, 1)|
∫ R

0

rt−1 dr ≤

≤ N |B2(0, 1)|R
t

t
≤

≤ N |B2(0, 1)|sup(R, 1)

t
.



[21] Elliptic operators of divergence type with etc. 227

Lemma 4.2. Let s, σ ∈]0, 1[ with σ > s, p ∈]1, ∞[ and a ∈ C0,σ(Ω′).

There exists a constant C2 such that for every w ∈ W s
p (Ω), for every

η ∈]0, 1[ and k = 1, . . . , Jη:

(4.1) ‖(aη
k − a(Mk))w‖W s

p (Ω) ≤ C2

σ − s
η

σ−s
2 [a]

C0,σ(Ω′)‖w‖W s
p (Ω) .

The constant C2 does not depend on η, k, w, s, σ and a.

Proof. We can write:

‖(aη
k − a(Mk))w‖W s

p (Ω) ≤ A + B

with

A =

(∫

Ω

∫

Ω

|aη
k(x) − aη

k(y)|p|w(y)|p
|x − y|sp

dx dy

|x − y|N
) 1

p

and

B =

(∫

Ω

∫

Ω

|aη
k(x) − a(Mk)|p|w(x) − w(y)|p

|x − y|sp

dx dy

|x − y|N
) 1

p

.

We study first expression A. Lemma 2.4 yields that:

|aη
k(x) − aη

k(y)|p
|x − y|sp

=
|aη

k(x) − aη
k(y)|p

|x − y|sp

|x − y|p σ−s
2

|x − y|p σ−s
2

≤

≤ 6pηp σ−s
2 [a]p0,σ|x − y|p σ−s

2 .

Then, we get:

A ≤ 6η
σ−s

2 [a]0,σ

(∫

Ω

∫

Ω

|w(y)|p|x − y|p σ−s
2 −N dx dy

) 1
p

.

Using lemma 4.1 and noticing that (pσ − ps)
1
p ≥ (σ − s), we have a

constant c such that:

A ≤ c

σ − s
η

σ−s
2 [a]0,σ‖w‖Lp(Ω) .
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We study now expression B. Lemma 2.4 yields that:

|aη
k(x) − a(Mk)|p ≤ sup

x,y∈IRN

|aη
k(x) − aη

k(y)|p ≤

≤ 6pηpσ[a]p0,σ.

Hence we obtain immediatly:

B ≤ 6ησ[a]0,σ‖w‖W s
p (Ω) .

Since η and σ − s ∈]0, 1[, we have:

ησ ≤ 1

σ − s
η

σ−s
2

and the lemma is proved.

Thanks to the previous result, we can prove now that for η small

enough operator Aη
k defined by relation (3.4) is a bicontinuous isomor-

phisms from W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω).

Proposition 4.1. Let p ∈]1,∞[, σ, s ∈]0, 1[ with σ > s and a

real function satisfying Assumptions (1.3)-(1.4). We assume that −∆

realise property H2(p, s). We denote by Gs,p the inverse operator of −∆

and by Cs,p the norm of Gs,p in L(W s−1
p (Ω), W 1+s

p (Ω) ∩
◦

W 1
p(Ω)). Then

there exists η2 ∈]0, 1[ such that for every k = 1, . . . , Jη2
, operator Aη2

k is a

bicontinuous isomorphism operator from W 1+s
p (Ω)∩

◦
W 1

p(Ω) onto W s−1
p (Ω)

for s != 1
p

and from W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto Ŵ s−1
p (Ω) for s = 1

p
with the

estimate:

‖v‖W1+s
p (Ω) ≤ 2Cs,p

E
‖Aη2

k v‖W s−1
p (Ω) s != 1

p
,(4.2)

‖v‖W1+s
p (Ω) ≤ 2Cs,p

E
‖Aη2

k v‖
Ŵ s−1

p (Ω)
s =

1

p
.(4.3)
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Proof. In the proof, we assume s != 1
p

for the sake of simplicity. Let

v ∈ W 1+s
p (Ω) and η ∈]0, 1[, we can write:

Aη
kv = −a(Mk)∆v + ∇ · ([a(Mk) − aη

k]∇v) .

We have then:

1

a(Mk)
Gs,pA

η
kv = v + Gs,p∇ ·

(a(Mk) − aη
k

a(Mk)
∇v

)
.

If we prove that the linear operator v 9→ Gs,p∇ ·
(

a(Mk)−a
η
k

a(Mk)
∇v

)
has a

small norm (for example lower than 1/2), we have proved that operator

Gs,pA
η
k is an isomorphism from W 1+s

p (Ω) ∩
◦

W 1
p(Ω) onto itself, hence Aη

k

is an isomorphism form W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω).

Lemma 4.2 yields that:

‖∇ ·
(a(Mk) − aη

k

a(Mk)
∇v

)
‖W s−1

p (Ω) ≤
N∑

i=1

‖a(Mk) − aη
k

a(Mk)
∂xi

v‖W s
p (Ω) ≤

≤ N
C2

E(σ − s)
η

σ−s
2 [a]0,σ‖v‖W1+s

p (Ω) .

We now choose η2 such that:

(4.4) N
C2

E(σ − s)
η

σ−s
2

2 [a]0,σCs,p =
1

2
.

Under this condition, operator Aη2
k is an isomorphism. Furthermore, we

have the estimate [10], p. 151:

‖ [Gs,pA
η2
k /a(Mk)]

−1 ‖L(W1+s
p (Ω),W1+s

p (Ω)) ≤ 2

thus we have like in proposition 3.3

‖v‖W1+s
p (Ω) ≤ 2

E
‖Gs,pA

η2
k v‖W1+s

p (Ω) ≤

≤ 2Cs,p

E
‖Aη2

k v‖W s−1
p (Ω)

and we get the estimate (4.2).
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Proposition 4.2. Under the assumptions of proposition 4.1, let

f ∈ W s−1
p (Ω) if s != 1

p
and f ∈ Ŵ s−1

p (Ω) if s = 1
p′ . Let v be the unique

solution in
◦

W 1
p(Ω) of Av = f . Then, for all k = 1, . . . , Jη2

, αη2
k v ∈

W 1+s
p (Ω).

Furthermore, we have the following estimates:

‖αη2
k v‖W1+s

p (Ω) ≤ C3‖Av‖W s−1
p (Ω) s != 1

p
,(4.5)

‖αη2
k v‖W1+s

p (Ω) ≤ C3‖Av‖
Ŵ s−1

p (Ω)
s =

1

p
.(4.6)

Proof. We do the proof only in the case s != 1
p
. We can also

prove the same result for the exceptional case s = 1
p
. We can write

Aη2
k (αη2

k v) = A(αη2
k v) because aη2

k = a on ball B∞(Mk, η2). Operator Aη2
k

is a bicontinuous isomorphism from W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω). It

remains to prove that A(αη2
k v) ∈ W s−1

p (Ω).

We can rewrite A(αη2
k v) in the following way:

A(αη2
k v) = αη2

k Av + av∆αη2
k + a∇αη2

k · ∇v + ∇αη2
k · ∇(av) .

We show that each term in the right hand side member belongs to

W s−1
p (Ω) since Av ∈ W s−1

p (Ω).

-1) the term αη2
k Av.

Relation (2.11) says that:

‖αη2
k ‖C1 ≤ C ′

η2

, ‖αη2
k ‖C2 ≤ C ′

η2
2

where C ′ does not depend of k and η2. Thus we have:

(4.7)

‖αη2
k Av‖W s−1

p (Ω) ≤ ‖αη2
k ‖C1‖Av‖W s−1

p (Ω) ≤

≤ C ′

η2

‖Av‖W s−1
p (Ω) .
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-2) the term av∆αη2
k .

Thanks to theorem 3.1, we know that v ∈
◦

W 1
p(Ω). Hence we can

write:

(4.8)

‖av∆αη2
k ‖W s−1

p (Ω) ≤ ‖av∆αη2
k ‖Lp(Ω) ≤

≤ ‖αη2
k ‖C2‖av‖Lp(Ω) ≤

≤ C ′

η2
2
‖av‖Lp(Ω) ≤

≤ C ′

η2
2
‖a‖L∞(Ω)‖v‖Lp(Ω) ≤

≤ C ′

η2
2
‖a‖C0,σ(Ω)‖∇v‖Lp(Ω) ≤

≤ C ′C1

η2
2

‖a‖C0,σ(Ω)‖Av‖W−1
p (Ω) ≤

≤ C ′′C1

η2
2

‖a‖C0,σ(Ω)‖Av‖W s−1
p (Ω) .

-3) the term a∇αη2
k .∇v.

Like Subsection 2, we write:

(4.9)

‖a∇αη2
k .∇v‖W s−1

p (Ω) ≤ ‖a∇αη2
k .∇v‖Lp(Ω) ≤

≤ ‖αη2
k ‖C1‖a∇v‖Lp(Ω) ≤

≤ C ′

η2

‖a∇v‖Lp(Ω) ≤

≤ C ′

η2
2
‖a‖L∞(Ω)‖∇v‖Lp(Ω) ≤

≤ C ′

η2
2
‖a‖C0,σ(Ω)‖∇v‖Lp(Ω) ≤

≤ C ′C1

η2
2

‖a‖C0,σ(Ω)‖Av‖W−1
p (Ω) ≤

≤ C ′′C1

η2
2

‖a‖C0,σ(Ω)‖Av‖W s−1
p (Ω) .

-4) the term ∇αη2
k · ∇(av).

Since v ∈
◦

W 1
p(Ω) and a ∈ C0,σ(Ω), av ∈

◦
W s

p(Ω), hence ∇(av) ∈
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W s−1
p (Ω) with the estimate [5], p. 31:

‖∇(av)‖W s−1
p (Ω) ≤ N‖av‖W s

p (Ω) ≤
≤ N‖a‖C0,σ(Ω)‖v‖W s

p (Ω) ≤
≤ NC‖a‖C0,σ(Ω)‖v‖W1

p (Ω) ≤
≤ NCC1‖a‖C0,σ(Ω)‖Av‖W−1

p (Ω) ≤
≤ NC ′C1‖a‖C0,σ(Ω)‖Av‖W s−1

p (Ω) .

We obtain then:

(4.10)

‖∇αη2
k .∇(av)‖W s−1

p (Ω) ≤ ‖αη2
k ‖C2‖∇(av)‖W s−1

p (Ω) ≤

≤ C ′

η2
2
‖∇(av)‖W s−1

p (Ω) ≤

≤ N
C ′′C1

η2
2

‖a‖C0,σ(Ω)‖Av‖W s−1
p (Ω) .

Summing up relations (4.7)-(4.10), we have A(αη2
k v) ∈ W s−1

p (Ω) with the

following estimate:

‖Aη2
k (αη2

k v)‖W s−1
p (Ω) = ‖A(αη2

k v)‖W s−1
p (Ω) ≤

≤ C ′′

η2
2
‖a‖C0,σ(Ω)C1‖Av‖W s−1

p (Ω) ,

where the constants C ′, C ′′, C1 do not depend on k,η2, a. We can now

write:

‖αη2
k v‖W s+1

p (Ω) ≤ 2Cs,p

E
‖Aη2

k (αη2
k v)‖W s−1

p (Ω) ≤

≤ 2Cs,p

E
‖A(αη2

k v)‖W s−1
p (Ω) ≤

≤ C ′′ 2C1

η2
2

‖a‖2
C0,σ(Ω)

‖Av‖W s−1
p (Ω) .
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To sum up all the results of this section, we have the theorem.

Theorem 4.1 (Hölder case). Let p ∈]1,∞[, σ, s ∈]0, 1[ with σ > s

and a real function satisfying Assumptions (1.3)-(1.4). We assume that

−∆ satisfies assumption H2(p, s). Then A satisfies Assumption H2(p, s)

with the estimate:

‖v‖W1+s
p (Ω) ≤ C4‖Av‖W s−1

p (Ω) s != 1

p
,(4.11)

‖v‖W1+s
p (Ω) ≤ C4‖Av‖

Ŵ s−1
p (Ω)

s =
1

p
.(4.12)

Proof. We do the proof in the case s != 1
p
. Proposition 4.2 gives

that v ∈ W 1+s
p (Ω). Using estimate (4.5), we can write:

‖v‖W1+s
p (Ω) = ‖

Jη2∑

k=1

αη2
k v‖W1+s

p (Ω) ≤

≤
Jη2∑

k=1

‖αη2
k v‖W1+s

p (Ω) ≤

≤
Jη2∑

k=1

C3‖Av‖W s−1
p (Ω) ≤

≤ Jη2
C3‖Av‖W s−1

p (Ω) .

Taking for example C4 = Jη2
C3, we obtain the estimate.

Remark 4.1. In fact, we can take a weaker property H2(s, p) as-

suming the H2(s, p) assumption but a weakened assumption for H1(p).

We can prove the embeddings (4.7)-(4.10) are satisfied since A has the

property H1(max(p∗
s, 2)) for p ≥ 2 with 1

p∗
s

= 1
p

+ 1−s
N

and H1(min(ps, 2))

for p ≤ 2 with 1
ps

= 1
p
− s

N
. In particular, H1 assumption is not necessary

when p∗
s ≤ 2 if p ≥ 2 or when ps ≥ 2 if p ≤ 2 since H1(2) is automatically

satisfied thanks to the energy inequality.
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5 – Application to a non linear problem

We present an application of the theorems we have established in the

previous sections. We first recall the following result.

Proposition 5.1. Let Ω be an open bounded set of IRN with a C1,1

boundary. For every p ∈]1,∞[, the Laplace operator −∆ is a bicontin-

uous isomorphism from
◦

W 1
p(Ω) onto W −1

p (Ω). For every p ∈]1,∞[, the

Laplace operator −∆ is a bicontinuous isomorphism from W 2
p (Ω)∩

◦
W 1

p(Ω)

onto Lp(Ω).

Proof. This first result is given in [7], p. 123, theorem 7.2. The

second result is given in [5], p. 124, theorem 2.4.2.5.

We deduce then the following lemma.

Corollary 5.1. Let s ∈]0, 1[ and p ∈]1,∞[. Under the as-

sumptions of proposition 5.1, the Laplace operator is a bicontinuous iso-

morphism from W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω) if s != 1

p
and from

W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto Ŵ s−1
p (Ω) if s = 1

p
.

Proof. Let p ∈]1,∞[, proposition 5.1 says that −∆ is a bicontinuous

isomorphism in the following spaces:
◦

W 1
p(Ω) 9→ W −1

p (Ω),

W 2
p (Ω) ∩

◦
W 1

p(Ω) 9→ Lp(Ω) .

Using interpolation of operators −∆ and −∆−1 as it is done in [9], p. 401,

we get that −∆ is a bicontinuous isomorphism in interpolated spaces:

(
◦

W 1
p(Ω), W 2

p (Ω) ∩
◦

W 1
p(Ω))s,p 9→ (W −1

p (Ω), Lp(Ω))s,p .

Moreover, we have [9], p. 320:

(W −1
p (Ω), Lp(Ω))s,p = W s−1

p (Ω) if s != 1

p
,

(W −1
p (Ω), Lp(Ω)) 1

p ,p = Ŵ
1
p −1

p (Ω) ,

(
◦

W 1
p(Ω), W 2

p (Ω) ∩
◦

W 1
p(Ω))s,p = W 1+s

p (Ω) ∩
◦

W 1
p(Ω) .

The corollary is proved.
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Corollary 5.2. Let s, σ ∈]0, 1[ with s < σ and a ∈ C0,σ(Ω) satis-

fying Assumptions (1.3)-(1.4). Then for every p ∈]1,∞[, under assump-

tions of proposition 5.1, operator A is a bicontinuous isomorphism from

W 1+s
p (Ω) ∩

◦
W 1

p(Ω) onto W s−1
p (Ω) if s != 1

p
and from W 1+s

p (Ω) ∩
◦

W 1
p(Ω)

onto Ŵ s−1
p (Ω) if s = 1

p
.

Proof. We apply theorem 4.1.

We present a short example where fractional Sobolev spaces give

regularity result. We consider a bounded open set Ω of IR2 with a C1,1

boundary. Assume p ∈]1, 2[ and let f be a function of Lp(Ω). We consider

the following problem: find (u, v) such that:

(5.1)





−∇.(k(u)∇v) = f in Ω ,

v = 0 on ∂Ω ,

−∆u = k(u)|∇v|2 in Ω ,

u = 0 on ∂Ω ,

where k is a bounded Lipschitz function of IR satisfying k(ξ) ≥ E > 0, for

all ξ ∈ IR. It is a classical system in thermistor or in induction heating

problems.

Using a fixed point theorem and the Meyers lemma, we can prove that

there exists a solution (u, v) for the problem (5.1) in
◦

W 1
p∗
2

(Ω)∩W 2
p∗
2

(Ω)×
◦

W 1
p∗(Ω) with 1

p∗ = 1
p

− 1
2

[3]. If p > 4
3
, the Morey theorem says that

u ∈ C0,1(Ω), hence using a classical regularity result [5], p. 125, we get

that v ∈ W 2
p (Ω). If p ∈]1, 4

3
[, we only have u ∈ C0,α(Ω) with α = 4(1− 1

p
).

In this case, let s ∈]0, α[ and set

q =
2p

2 + (s − 1)p

then using the embedding Lp(Ω) ⊂ W s−1
q (Ω), we obtain thanks to the

Corollary 5.2 a solution v ∈ W 1+s
q (Ω). This “s−regularity” could be very

usefull to get numerical estimates.
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