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Some classes of probabilistic normed spaces

B. LAFUERZA GUILLÉN – J.A. RODRÍGUEZ LALLENA

C. SEMPI

Riassunto: Recentemente Alsina, Schweizer e Sklar hanno introdotto una nuova
definizione di spazio normato probabilistico (in breve spazio NP). Iniziamo qui lo studio
di questi spazi dando diversi esempi; in particolare (a) presentiamo uno studio partico-
lareggiato degli spazi α-semplici, (b) costruiamo uno spazio NP sullo spazio vettoriale
delle classi di equivalenza delle variabili aleatorie definite sopra uno spazio di probabi-
lità e (c) mostriamo che la norma probabilistica di quest’ultimo spazio genera da sola
le norme di tutti gli spazi Lp e di Orlicz.

Abstract: Probabilistic Normed Spaces (PN spaces) have recently been redefined
by Alsina, Schweizer and Sklar. We begin the study of these spaces by giving several
examples; in particular, we (a) present a detailed study of α-simple spaces, (b) construct
a PN space on the vector space of (equivalence classes) of random variables and (c) show
that its probabilistic norm alone generates the norms of all Lp- and Orlicz spaces.

1 – Introduction

Probabilistic Normed (= PN) Spaces were introduced by Šerstnev

in [10] by means of a definition that was closely modeled on the theory

of ordinary normed spaces. PN spaces are real linear spaces in which

to each vector p there is assigned not a positive number ‖p‖, its norm,

but rather a probability distribution function νp. The value νp(x) of the
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probabilistic norm νp of p at x ≥ 0 can be interpreted as the probability

that the “classical ” norm ‖p‖ of p is smaller than x. The theory of PN

spaces has been dormant after its initial applications until it was recently

put on a new basis by Alsina, Schweizer and Sklar [1]. Here we shall

consistently adopt the new, and in our opinion convincing, definition of a

PN space given by these authors. We believe that this new definition has

great potential for future applications to various fields of mathematics.

In this paper we study special classes of PN spaces (simple, α-simple,

EN spaces) that provide useful examples for the general theory and which

are interesting in their own right. Their definitions are extensions of

those known for Probabilistic Metric Spaces; although many of the PM

space results can be extended to the new setting, some proofs need to

be modified particularly in order to take into account axiom (N4) that is

alien to the setting of PM spaces. In addition, we construct a PN space

on the vector space of equivalence classes of random variables and show

that its probabilistic norm alone generates the norms of all Lp- and Orlicz

spaces.

We need some preliminaries.

A distribution function, briefly a d.f., is a function F defined on the

extended reals IR := [−∞,+∞] that is nondecreasing, left-continuous on

IR and such that F (−∞) = 0 and F (+∞) = 1. The set of all d.f.’s

will be denoted by ∆; the subset of those d.f.’s such that F (0) = 0 will

be denoted by ∆+ and by D+ the subset of the d.f.’s in ∆+ such that

lim
x→+∞

F (x) = 1. For every a ∈ IR, εa is the d.f. defined by

εa(x) :=

{
0, x ≤ a,

1, x > a.

The set ∆, as well as its subsets, can be partially ordered by the usual

pointwise order; in this order, ε0 is the maximal element in ∆+. The

topology of weak convergence in ∆, or in ∆+ can be metrized by the

Sibley metric [13] (among other ones).

A triangle function is a mapping τ : ∆+ × ∆+ → ∆+ that is commu-

tative, associative, nondecreasing in each variable, and which has ε0 as

identity. Typical continuous triangle functions are

τT (F, G)(x) := sup
s+t=x

T (F (s), G(t)) ,
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and

τT∗(F, G)(x) := inf
s+t=x

T ∗ (F (s), G(t)) .

Here T is a continuous t-norm, i.e. a continuous binary operation on [0, 1]

that is commutative, associative, nondecreasing in each variable and has

1 as identity; T ∗ is a continuous t-conorm, namely a continuous binary

operation on [0, 1] that is related to a continuous t-norm through

T ∗(x, y) := 1 − T (1 − x, 1 − y).

A t-norm T is strict if and only if it can be represented in the form

∀x, y ∈ [0, 1] T (x, y) = f−1 (f(x) + f(y))

where f : [0, 1] → IR+, the additive generator, is continuous, strictly

decreasing and satisfies f(0) = +∞ and f(1) = 0.

A Probabilistic Metric Space (briefly a PM space) is a triple (S, F , τ)

where S is a nonempty set, F is a mapping from S ×S into ∆+ and τ is a

triangle function that satisfies the following conditions (Fp,q := F(p, q)):

(M1) Fp,q = ε0 if, and only if, p = q;

(M2) Fp,q = Fq,p;

(M3) Fp,r ≥ τ(Fp,q, Fq,r) for all p, q, r ∈ S.

If F satisfies (M1) and (M2) then (S, F , τ) will be said to be a Prob-

abilistic Semimetric Space, briefly PSM space.

We are now ready to introduce the definition of PN space.

Definition 1.1. A Probabilistic Normed space (briefly a PN space)

is a quadruple (V, ν, τ, τ ∗), where V is a vector space, τ and τ ∗ are contin-

uous triangle functions with τ ≤ τ ∗ and ν is a mapping (the probabilistic

norm) ν : V → ∆+ such that for every choice of p and q in V the following

conditions hold:

(N1) νp = ε0 if, and only if, p = θ (θ is the null vector in V );

(N2) ν−p = νp;

(N3) νp+q ≥ τ(νp, νq);

(N4) νp ≤ τ ∗(νλp, ν(1−λ)p) for every λ ∈ [0, 1].

A Menger PN space under T is a PN space (V, ν, τ, τ ∗), denoted by

(V, ν, T ), in which τ = τT and τ ∗ = τT∗ , for some continuous t-norm T

and its t-conorm T ∗.
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If ν satisfies (N2), (N3), (N4) and νθ = ε0 (but not necessarily (N1)),

then (V, ν, τ, τ ∗) will be said to be a Probabilistic Pseudonormed Space

(briefly, a PPN space). The pair (V, ν) is said to be a Probabilistic

Seminormed Space (=PSN space) if ν : V → ∆+ satisfies (N1) and (N2).

A PN space is called a Šerstnev space if it satisfies (N1) and (N3)

and the following condition, which implies (N2) and (N4) together

(Š) ∀p ∈ V ∀α ∈ IR − {0} ∀x > 0 ναp(x) = νp

(
x

|α|

)
.

2 – Simple PN spaces

A PSN space (V, ν) is said to be equilateral if there is a d.f. F ∈ ∆+,

different from ε0 and from ε∞, such that, for every p != θ, νp = F . It is

immediate that every equilateral PSN space (V, ν) is a PN space under

τ = M and τ ∗ = M, where M is the triangle function defined for all

G, H ∈ ∆+ by

M(G, H)(x) := min {G(x), H(x)} (x ∈ IR+).

An equilateral PN space will be denoted by (V, F,M).

Definition 2.1. Let G ∈ ∆+ be different from ε0 and from ε∞, let

(V, ‖ · ‖) be a normed space and define ν : V → ∆+ by νθ = ε0 and, if

p != θ, by

νp(t) := G

(
t

‖p‖

)
(t > 0).

The pair (V, ν) is called the simple space generated by (V, ‖ ·‖) and by G.

Theorem 2.1. The simple space generated by (V, ‖ · ‖) and by G is

a Menger PN space under M , denoted by (V, ‖ · ‖, G, M), and a Šerstnev

space. Here M(x, y) := min{x, y}.
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Proof. Let νp = ε0 and assume, if possible, p != θ; therefore, for

every t > 0, one has G(t/‖p‖) = 1. Since ‖p‖ > 0, this would imply

G = ε0 contrary to the assumption. Therefore p = θ. This proves (N1).

(N2) is obvious. In order to prove (N3) we shall have recourse to duality

(see [2] but also [8; Section 7.7]). Given a d.f. F , its quasi-inverse F ∧ is

defined by

F ∧(x) := sup {t : F (t) < x} .

Since ν∧
p = ‖p‖ G∧, one has, for every p, q ∈ V ,

[τM(νp, νq)]
∧

= ν∧
p + ν∧

q = ‖p‖ G∧ + ‖q‖ G∧

= (‖p‖ + ‖q‖) G∧ ≥ ‖p + q‖ G∧ = ν∧
p+q

so that νp+q ≥ τM(νp, νq), i.e. (N3).

In order to prove (N4) we shall use the equality τM∗ = τM ([8; Corol-

lary 7.5.8]). Thus, the argument we have just used yields

[
τM∗(νλp, ν(1−λ)p)

]∧
=

[
τM(νλp, ν(1−λ)p)

]∧

= λ ‖p‖ G∧ + (1 − λ) ‖p‖ G∧ = ‖p‖ G∧ = ν∧
p

hence the assertion. By virtue of Theorem 2 in [1], a simple space is a

Šerstnev space under τM .

3 – α-Simple spaces

Definition 3.1. Let (V, ‖ · ‖) be a normed space and let G ∈ ∆+ be

different from ε0 and ε∞; define ν : V → ∆+ by νθ = ε0 and

νp(t) := G

(
t

‖p‖α

)
(p != θ, t > 0),

where α ≥ 0. Then the pair (V, ν) will be called the α-simple space

generated by (V, ‖ · ‖) and by G.

The α-simple space generated by (V, ‖ · ‖) and by G is, as is immedi-

ately checked, a PSN space; it will be denoted by (V, ‖ · ‖, G; α).

The PSM space associated with the PSN space (V, ‖ · ‖, G; α) is the

α-simple PSM space (V, d, G;α) where d is the metric of the norm ‖ · ‖,

i.e. d(p, q) = ‖p − q‖.
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For α = 0 and α = 1 one obtains the equilateral and simple spaces,

respectively.

If α ∈ ]0, 1[, then we know ([8; Section 8.6]) that dα is a metric so

that the simple PSM space with respect to the metric dα coincides with

the α-simple PSM space (V, d, G;α), which is a Menger space under M

([8; Theorem 8.4.2]). However, a new phenomenon arises in the case of

PN spaces, for contrary to the above, in this case ‖ · ‖α is not a norm if

α ∈ ]0, 1[ so that (V, ‖ · ‖, G;α) need not be a Menger PN space under M

as the following example shows.

Example 3.1. Let U be the d.f. of the uniform law on (0, 1) and

consider the α-simple space (V, ‖ · ‖, U ;α) with α ∈ ]0, 1[. We shall show

that the axiom (N4) does not hold for λ = 1/2. Now it is easy to evaluate

νp(‖p‖α) = 1. On the other hand, τM∗ = τM and τM(F, F )(x) = F (x/2)

for every F ∈ ∆+ and for every x ≥ 0. Therefore

τM∗
(
νp/2, νp/2

)
(‖p‖α) = U

( ‖p‖α

2 ‖p/2‖α

)
=

2α

‖p‖α

‖p‖α

2
= 2α−1 < 1 .

Thus

νp(‖p‖α) > τM∗
(
νp/2, νp/2

)
(‖p‖α).

It is not hard to deduce from the proof of Theorem 8.6.2 in [8], which

holds with same proof, that an α-simple PSN space with α > 1 need not

be a Menger space under M . A large class of α-simple PSM spaces can

be endowed with the structure of Menger spaces (see [6] or [8; Theorem

8.6.5]). The next theorems show that analogous results hold for PSN

spaces; their proves are not trivial extensions of the respective ones for

α-simple PSM spaces and, moreover, we shall also need to prove these

results for the case α ∈ ]0, 1[.

By a straightforward calculation one gets

Lemma 3.1. Let (V, ‖ · ‖) be a normed space, G ∈ D+ a strictly

increasing continuous d.f. and T a strict t-norm with additive generator

f . Then, for every α > 0 with α != 1, (V, ‖ · ‖, G;α) is a Menger PN

space under T if, and only if, the following inequalities hold for every

u, v ∈ ]0,+∞[, for every λ ∈ [0, 1] and for every pair of points p and q in
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V with p != θ, q != θ and p + q != θ

(1) (f ◦ G)

(
u + v

‖p + q‖α

)
≤ (f ◦ G)

(
u

‖p‖α

)
+ (f ◦ G)

(
v

‖q‖α

)

and

(2) (f ◦ G∗)

(
u + v

‖p‖α

)
≤ (f ◦ G∗)

(
u

λα‖p‖α

)
+(f ◦ G∗)

(
v

(1 − λ)α‖p‖α

)
,

where G∗(x) := 1 − G(x).

Setting h := f ◦ G and h∗ := f ◦ G∗, one gets

(a) h, h∗ : [0,+∞] → [0,+∞], h(0) = h∗(+∞) = +∞, h(+∞) = h∗(0) =

0;

(b) both h and h∗ are continuous;

(c) h is strictly decreasing and h∗ is strictly increasing.

Therefore their inverses h−1 and (h∗)−1 satisfy the same properties

as h and h∗, respectively.

Let p and q be in V with p != θ, q != θ, p + q != θ and let λ ∈ ]0, 1[.

For u, v > 0 let

s := h

(
u

‖p‖α

)
t := h

(
v

‖q‖α

)
;

thus h−1(s) = u/‖p‖α and h−1(t) = v/‖q‖α. Now an easy calculation

shows that (1) is equivalent to

‖p + q‖α h−1(s + t) ≤ ‖p‖α h−1(s) + ‖q‖α h−1(t).

In a similar way one shows that (2) is equivalent to

λα (h∗)−1(s) + (1 − λ)α (h∗)−1(t) ≤ (h∗)−1(s + t).

Thus Lemma 3.1 takes the form.

Lemma 3.2. Let (V, ‖ · ‖) be a normed space, G ∈ D+ a strictly increasing

continuous d.f. and T a strict t-norm with additive generator f and let G∗(x) :=

1 − G(x). Then, for every α > 0 with α != 1, (V, ‖ · ‖, G;α) is a Menger PN
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space under T if, and only if, the following inequalities hold for every s, t ∈
]0,+∞[, for every λ ∈ [0, 1] and for every pair of points p and q in V with

p != θ, q != θ and p + q != θ,

(3) ‖p + q‖α (f ◦ G)
−1

(s + t) ≤ ‖p‖α (f ◦ G)
−1

(s) + ‖q‖α (f ◦ G)
−1

(t)

(4) (f ◦ G∗)
−1

(s + t) ≥ λα (f ◦ G∗)
−1

(s) + (1 − λ)α (f ◦ G∗)
−1

(t) .

Notice that, if α < 1 then inequality (3) is trivially satisfied, because

‖p + q‖α ≤ ‖p‖α + ‖q‖α and since (f ◦ G)
−1

is strictly decreasing.

On the other hand, if α > 1 then inequality (4) is trivial since f ◦ G∗

is strictly increasing, and for every λ ∈ ]0, 1[ and for every α > 1, λα +

(1 − λ)
α

< 1. Thus one can rephrase Lemma 3.2 in the following form.

Lemma 3.3. Let (V, ‖ · ‖) be a normed space, G ∈ D+ a strictly increasing

continuous d.f., T a strict t-norm with additive generator f and let G∗(x) :=

1 − G(x).

(a) When α ∈ ]0, 1[, then (V, ‖ · ‖, G;α) is a Menger PN space under T if,

and only if, for every λ ∈ ]0, 1[ and for all s, t ∈ ]0,+∞[ inequality (4)

holds;

(b) when α ∈ ]1,+∞[, then (V, ‖ · ‖, G;α) is a Menger PN space under T

if, and only if, for all s, t ∈ ]0,+∞[ and for all p, q ∈ V such that p != θ,

q != θ, p + q != θ, inequality (3) holds.

Lemma 3.4. If, beside the conditions of the previous Lemma, one has for α > 1,

(5) ∀x ∈ [0, +∞] (f ◦ G)(x) = x1/(1−α),

or, for α ∈ ]0, 1[,

(6) ∀x ∈ [0,+∞] (f ◦ G∗)(x) = x1/(1−α),

then (V, ‖ · ‖, G; α) is a Menger PN space under T .

Proof. In view of (5), if α > 1 and s, t ∈ ]0,+∞[, then inequality

(3), for all p != θ, q != θ with p + q != θ, is implied by the following

inequality

(s + t)1−α ≤ xα s1−α + (1 − x)α t1−α,
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for all x ∈ ]0, 1[, which can be proved in a straightforward manner. Sim-

ilarly, in view of (6), if α ∈ ]0, 1[, one can prove

∀x ∈ ]0, 1[ ∀s, t ∈ ]0,+∞[ (s + t)1−α ≥ xα s1−α + (1 − x)α t1−α,

from which inequality (4) follows by setting x = λ.

We are now ready to state the main results of this section.

Theorem 3.1. Let (V, ‖ · ‖) be a normed space and let α > 1.

(a) If the d.f. G∈D+ is continuous and strictly increasing, then (V, ‖·‖, G;α) is

a Menger PN space under the strict t-norm defined for all x, y ∈ [0, +∞] by

TG(x, y) := G

({[
G−1(x)

]1/(1−α)
+

[
G−1(y)

]1/(1−α)
}1−α

)
;

(b) if T is a strict t-norm with additive generator f , then the function G :

[0,+∞] → [0, 1] defined by G(x) := f−1
(
x1/(1−α)

)
is a continuous,

strictly increasing d.f. of D+ and (V, ‖ · ‖, G;α) is a Menger PN space

under T .

Proof. (a) Given G define, for x ∈ [0, 1], f(x) := [G−1(x)]
1/(1−α)

.

It is immediate to check that f is the additive generator of a strict t-

norm and that this latter is exactly TG defined above. Then the assertion

follows from Lemma 3.4.

(b) Given the strict t-norm T with f as additive generator, define

G(x) := f−1(x1/(1−α)) for every x ∈ ]0,+∞[. Then it is immediate to

check that G thus defined is a continuous strictly increasing d.f. of D+.

Again the assertion follows from Lemma 3.4.

Theorem 3.2. Let (V, ‖ · ‖) be a normed space and let α ∈ ]0, 1[.

(a) If the d.f. G∈D+ is continuous and strictly increasing, then (V, ‖·‖, G;α) is

a Menger PN space under the strict t-norm defined for all x, y ∈ [0, +∞] by

TG∗(x, y) := G∗
({[

(G∗)−1(x)
]1/(1−α)

+
[
(G∗)−1(y)

]1/(1−α)
}1−α

)
,

where G∗(x) := 1 − G(x);

(b) if T is a strict t-norm with additive generator f , then the function G :

[0,+∞] → [0, 1] defined by G(x) := 1 − f−1
(
x1/(1−α)

)
is a continuous,
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strictly increasing d.f. of D+ and (V, ‖ · ‖, G;α) is a Menger PN space

under T .

Proof. (a) Given G, define, for x ∈ [0, 1], f(x) := [(G∗)−1(x)]
1/(1−α)

.

As is easy to check, the function f thus defined is the additive generator

of the t-norm TG∗ . Moreover (f ◦ G∗)(x) = x1/(1−α) so that the assertion

is now a consequence of Lemma 3.4,

(b) Given f , let G(x) := 1 − f−1(x1/(1−α)); then G is a continuous,

strictly increasing d.f. in D+, G∗(x) = f−1(x1/(1−α)) and, as a conse-

quence, (f ◦ G∗)(x) = x1/(1−α) so that again Lemma 3.4 yields the asser-

tion.

The following two results of this section are the analogue of Theorem

3 in [6] and show the relevance of the t-norms TG and TG∗ of Theorems

3.1 and 3.2.

Theorem 3.3. If α > 1, then there exist normed spaces (V, ‖ · ‖) with the

following properties:

(a) if G ∈ D+ is continuous and strictly increasing, then the t-norm TG is the

strongest continuous t-norm under which (V, ‖ · ‖, G; α) is a Menger PN

space (in the sense that, if T is any other continuous t-norm that makes it

a Menger PN space, then T ≤ TG);

(b) if T is a strict t-norm with additive generator f , then T is the strongest

t-norm under which (V, ‖ · ‖, G; α), with

G(x) := f−1(x1/(1−α)),

is a Menger PN space.

Proof. (a) Let (V, ‖ · ‖) = (R, | · |). Assume that (R, | · |, G;α) is

a Menger PN space under T , where T is a continuous t-norm. We wish

to prove that for every (s, t) ∈ [0, 1]
2

one has T (s, t) ≤ TG(s, t). In fact,

we only need to prove this inequality in the interior of [0, 1]2. Now let

(s, t) ∈ ]0, 1[
2

be fixed and set

p =
[
G−1(s)

]1/(1−α)
q =

[
G−1(t)

]1/(1−α) ∈ ]0,+∞[ .

Then

νp(p) = G

(
p

|p|α
)

= G
(
p1−α

)
= G

(
G−1(s)

)
= s;
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similarly νq(q) = t, so that

T (s, t) = T (νp(p), νq(q)) ≤ sup
u+v=p+q

{T (νp(u), νq(v))} =

= τT (νp, νq)(p + q) ≤ νp+q(p + q) = G

(
p + q

|p + q|α
)

.

On the other hand

TG(s, t) = T (νp(p), νq(q)) =

= G

{([
G−1(νp(p))

]1/(1−α)
+

[
G−1(νq(q))

]1/(1−α)
)1−α

}
=

= G
(
(p + q)1−α

)
= G

(
p + q

|p + q|α
)

.

This completes the proof of (a). The same example establishes (b).

Theorem 3.4. If α ∈ ]0, 1[, then there exist a normed space (V, ‖ · ‖) with the

following properties:

(a) if G ∈ D+ is continuous and strictly increasing, then the t-norm TG∗ is the

strongest continuous t-norm under which (V, ‖ · ‖, G; α) is a Menger PN

space;

(b) if T is a strict t-norm with additive generator f , then T is the strongest

t-norm under which (V, ‖ · ‖, G; α), with

G(x) := 1 − f−1(x1/(1−α)),

is a Menger PN space.

Proof. (a) As in the previous proof, assume that (R, | · |, G;α) is a

Menger PN space under T , where T is a t-norm. For (s, t) ∈ ]0, 1[
2

set

p =
[
(G∗)−1(s)

]1/(1−α)
q =

[
(G∗)−1(t)

]1/(1−α) ∈ ]0,+∞[

λ =
p

p + q
∈ ]0, 1[ .
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Then

νλ(p+q)(λ(p + q)) = G

(
λ(p + q)

(λ(p + q))α

)
= G

(
(λ(p + q))1−α

)
=

= G
(
p1−α

)
= G

(
(G∗)−1(s)

)
=

= 1 − G∗ (
(G∗)−1(s)

)
= 1 − s.

Similarly ν(1−λ)(p+q) ((1 − λ)(p + q)) = 1 − t. Therefore

T (s, t) = 1 − T ∗(1 − s, 1 − t) =

= 1 − T ∗ (
νλ(p+q)(λ(p + q)), ν(1−λ)(p+q) ((1 − λ)(p + q))

) ≤
≤ 1 − inf

u+v=p+q

{
T ∗ (

νλ(p+q)(u), ν(1−λ)(p+q)(v)
)}

=

= 1 − τT∗
(
νλ(p+q), ν(1−λ)(p+q)

)
(p + q) ≤ 1 − νp+q(p + q) =

= 1 − G

(
p + q

(p + q)α

)
= G∗ (

(p + q)1−α
)
.

On the other hand

TG∗(s, t) = TG∗
(
G∗(p1−α), G∗(q1−α)

)
= G∗ (

(p + q)1−α
)
.

Part (b) is proved in the same way.

The following result shows that an α-simple PN space with α != 1 is

not, in general, a Šerstnev space.

Theorem 3.5. Let α > 0 with α != 1. The following statements are equivalent

for an α-simple space (V, ‖ · ‖, G; α):

(a) (V, ‖ · ‖, G;α) is a Šerstnev PSN space under some triangle function τ ;

(b) G is constant on ]0,+∞[.

Proof. Since the implication (b) =⇒ (a) is immediate, we need only

deal with the other one (a) =⇒ (b).

In our case, axiom (Š) is equivalent to

∀p != θ, ∀λ != 0, ∀x > 0 G

(
x

‖λ p‖α

)
= G

(
x

λ ‖p‖α

)

which is equivalent to the equality G(t) = G (|λ|1−α t) for all t > 0 and

λ != 0; this implies that G is constant on ]0,+∞[.
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4 – EN, Lp- and Orlicz spaces

An important class of PN spaces is that of E-normed spaces.

Definition 4.1. Let (Ω, A, P ) be a probability space, (V, ‖ · ‖) a

normed space and S a linear space of V -valued random variables (possibly,

the entire space). For every p ∈ S and for every x ∈ R+, let ν : S → ∆+

be defined by νp(x) := P{ω ∈ Ω : ‖p(ω)‖ < x}; then (S, ν) is an E-normed

space (briefly, EN space) with base (Ω,A, P ) and target (V, ‖ · ‖).

Theorem 4.1. An EN space (S, ν) is a PPN space under τW and τM . It is

said to be canonical if it is a PN space under the same two triangle functions.

In this latter case, it is a Šerstnev space.

Proof. The proof in [11] and [12] (but see also [8]) needs to be

supplemented by the part regarding the property (N4) that was missing

in the old definition. Actually, more is true, for it is not hard to show that

νp = τM(ναp, ν(1−α)p) for every p ∈ S and for every α ∈ [0, 1]. Therefore,

by virtue of Theorem 2 in [1], (S, ν) is a Šerstnev space under τW .

The proof of the following result is immediate

Theorem 4.2. In an EN space (S, ν), let a relationship ∼ be defined through

p ∼ q if and only if νp = νq.

Then ∼ is an equivalence relation on S. Moreover, if S = S/ ∼ is the quotient

space and if ν : S → ∆+ is defined via

(7) νp := νp

for every p in the equivalence class p, then (S, ν) is a canonical EN space,

called the quotient EN space of (S, ν).

The previous theorem can be applied to L0 := L0(Ω, A, P ), the linear

space of equivalence classes of random variables f : Ω → IR. In this case

the quotient mapping (7) is given explicitly by

(8) nf (x) := P {ω ∈ Ω : |f(ω)| < x} , x > 0,

As is usual in probability theory, we shall write f even when we refer to

f the equivalence class of f .
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As a consequence of Theorems 4.1 and 4.2, (L0, n, τW ) is a Šerstnev

space. Any linear subspace S of L0 inherits the property of last theorem;

in other words, (S, n, τW ) is a Šerstnev space. (Here we still denote by n

the restriction of n to S).

We are now ready to establish the result we have announced about

Lp and Orlicz spaces.

It was proved by Schweizer and Sklar (see [7]) that all Lp metrics

(p ∈ ]0,+∞]) could be derived from a single probabilistic metric. Later

this result was extended, with a simplified proof, by one of the present

authors (see [9]), to the case of Orlicz spaces. However, since both Lp

spaces with p ∈ [1, +∞] and Orlicz spaces are normed —in fact, Banach—

spaces, and therefore their metrics derive from a norm, it is more natural

to show that a single probabilistic norm generates the norms of all these

spaces.

Essentially by the change of variables formula (see, e.g., [4]) one can

prove the next theorem. For the definition and the properties of Orlicz

spaces see [3] or [5].

Theorem 4.3. Let Lp = Lp(Ω, A, P ) := {f ∈ L0 :
∫
Ω |f |p dP < +∞} for

p ∈ [1, +∞[ and L∞ := {f ∈ L0 : ‖f‖∞ := ess sup |f | < +∞}. If the prob-

abilistic norm n : L0 → ∆+ is defined by

nf (x) := P {ω ∈ Ω : |f(ω)| < x} , x > 0,

then

∀f ∈ Lp (p ∈ [1,+∞[) ‖f‖p =

(∫

IR+

xp dnf (x)

)1/p

,

∀f ∈ L∞ ‖f‖∞ = sup{x > 0 : nf (x) < 1}.

In the Orlicz space Lφ = Lφ(Ω,A, P ), the Luxemburg norm

∀f ∈ Lφ ‖f‖φ = inf

{
k > 0 :

∫

Ω

φ(f/k) dP ≤ 1

}
.

is given by

‖f‖φ = inf

{
k > 0 :

∫

IR+

φ

(
x

k

)
dnf (x) ≤ 1

}
.
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If p ∈ [1,+∞[, then a sequence {fn} in Lp converges to f ∈ Lp if,

and only if the p-th moment of nfn−f , the probabilistic norm of fn − f ,

tends to zero, viz. ∫

IR+

xp dnfn−f (x) −−−−→
n→+∞

0.

A measurable function f belongs to L∞ if, and only if, there is a point

x > 0 at which its probabilistic norm nf takes the value 1; in this case,

‖f‖∞ = x0 where

x0 := inf{x > 0 : nf (x) = 1}.

In a forthcoming paper we shall give some results on the functional

analysis of PN spaces.
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