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A Liouville theorem for radial k-Hessian equations

YU. BOZHKOV

Riassunto: Si considera un’equazione non-lineare che contiene l’operatore k-hes-
siano. Si dimostra un principio di massimo forte dal quale si deduce un teorema di tipo
Liouville.

Abstract: We prove a strong maximum principle for the radial solutions of the
k-Hessian equation in IRn from which a Liouville theorem is derived.

1 – Introduction

In a recent paper [1] Caffarelli, Garofalo and Segala consider

the following class of quasi-linear equations in IRn

div(Φ′(|∇u|2)∇u) = f(u) .

Here Φ ∈ C3(IR+) is such that Φ(0) = 0. In addition, the function Φ

satisfies two different sets of conditions. The first one requires existence

of numbers p > 1, a ≥ 0 and positive constants c1, c2 such that for any
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non-zero σ, ξ ∈ IRn the inequalities

c1(a+ |σ|)p−2 ≤ Φ′(|σ|2) ≤ c2(a + |σ|)p−2 ,

c1(a+ |σ|)p−2|ξ|2 ≤
n∑

i,j=1

(2φ′′(|σ|2)σiσj + Φ′(|σ|2)δij)ξiξj ≤c2(a+ |σ|)p−2|ξ|2

hold. The second condition states that there exist c1, c2 > 0 such that for

any σ ∈ IRn and any vector ξ′ = (ξ, ξn+1) ∈ IRn+1 orthogonal to (−σ, 1)

c1(a+ |σ|)−1 ≤ Φ′(|σ|2) ≤ c2(a + |σ|)−1 ,

c1(a+ |σ|)−1|ξ′|2 ≤
n∑

i,j=1

(2φ′′(|σ|2)σiσj + Φ′(|σ|2)δij)ξiξj ≤c2(a+ |σ|)−1|ξ′|2.

Note that this class contains, in particular, the p-Laplacian equation

(Φ(s) = 2sp/2/p, p > 1) as well as the prescribed mean curvature equation

(Φ(s) = 2(
√

1 + s−1)). Further in [1] the authors prove a gradient bound

for sufficiently smooth solutions of the equations in the above class and

derive some consequences, e.g. Liouville theorems.

It is easily seen that the equations of k-Hessian type

(1) Sk(∇2u) = f(u)

do not belong to that class if k > 1. Recall that the k-Hessian operator

Sk is defined by

Sk(∇2u) =
∑

1≤i1<...<ik≤n

λi1 . . . λik ,

where 1 ≤ k ≤ n, the function u ∈ C2(Ω) and λij are the eigenvalues

of the Hessian of u, i.e. the matrix ∇2u, whose elements are the second

derivatives of u. Note that S1 is the Laplace operator and Sn is the

Monge-Ampère operator.

In this paper we shall consider the same kind of problem as in [1] for

the radial k-Hessian equation (k > 1)

(2)
1

rn−1
(rn−k|u′|k−1u′)′ = f(u)



[3] A Liouville theorem for radial k-Hessian equations 255

with

(3) F (u) =

∫ u

0

f(t)dt ≥ 0 .

One can observe that the cornerstone of [1] is a strong maximum

principle for a suitable P -function. The so-called P - function (see [4]) is

an expression in the terms of the solution u and its gradient. P assumes

its maximum on the boundary of the considered domain or at the critical

points of u [4]. Our first aim is therefore to find out an appropriate P -

function, which corresponds to the equation (2). In this case it is given by

(4) P (u, r) =
2k

k + 1

|u′(r)|k+1

rk−1
− 2F (u(r)) .

This choice of P enables us to prove in section 2 the following

Theorem 1. Let F ≥ 0, F ∈ C2(IR) and u ∈ C2(IR) ∩ L∞(IR) be a

solution of (2). Then for every r > 0 the inequality

(5)
|u′(r)|k+1

rk−1
≤ k + 1

k
F (u(r))

holds.

It is interesting to notice that if we go back to IRn, after an integra-

tion, the inequality (5) takes the form

∫

IRn
Tk−1(∇2u)ijuiuj dx ≤ k + 1

k

∫

IRn
F (u(x)) dx ,

where Tk−1(∇2u)ij is the Newtonian tensor (see [5] and the references

there).

We also note that if F = 0, then the inequality (5) implies u = const.

Having at our disposal the Theorem 1, we can derive the next theorem

of Liouville type.

Theorem 2. Let u and F be as in the Theorem 1. Moreover,

suppose also that if F (u0) = 0 for some u0, then F (u) = 0(|u − u0|k+1),

when u → u0.

If there exists r0 > 0 such that F (u(r0)) = 0, then u(r) = const in

(0,∞).
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Further in section 3 we prove an uniqueness result. Namely,

Theorem 3. If u is a radial solution of the k-Hessian equation (1)

with F (u) ∈ L1(IRn) and n > 2k, then u = const.

The proof is divided in three steps. First we obtain a Pucci-Serrin-

Pohozaev type identity [3] for the radial solutions of the k-Hessian equa-

tion. This identity is used to show that an appropriate energy functional

is monotonically increasing on balls of increasing radii. Then the latter

fact and the assumptions in the Theorem 3 imply u = const.

It would be interesting to see if Theorems 1, 2 and 3 remain valid for

non-radial solutions.

2 – A strong maximum principle

In this section we prove the Theorem 1. Let us recall that the P -

function is given by

P (u, r) =
2k

k + 1

|u′(r)|k+1

rk−1
− 2F (u(r)) ,

(see eq. (4)). Our starting point is the following

Proposition 1. Let −∞ < a < b < +∞ and u be a sufficiently

smooth solution of (2), such that inf |u′(r)| > 0, r ∈ [a, b]. If there is

r0 ∈ (a, b) for which

P (u, r0) = sup
r∈[a,b]

P (u, r) ,

then P (u, . ) is a constant in (a, b).

Proof. From the regularity results for the k-Hessian equation [5] it

follows that u ∈ C2,α((a, b)). Then it is sufficient to prove an estimate of

the type

(6) u′2∆P + B.P ′ ≥ rk−1P ′2

2k|u′|k−1
,
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where ∆ is the Laplace operator and B is to be determined later. In-

deed, the Proposition 1 is a straightforward consequence from the strong

maximum principle and the inequality (6).

To begin with, we write the equation (2) in a developed form

(7)
k|u′|k−1

rk−1
u′′ +

(n − k)

rk
|u′|k−1u′ = f(u) .

Now we differentiate (4):

(8) P ′ =
2k|u′|k−1u′u′′

rk−1
− 2f(u)u′ +

2k(1 − k)

k + 1

|u′|k+1

rk
.

Differentiating P twice yields:

P ′′ =
2k

rk−1
|u′|k−1(u′′)2 + 2u′ d

dr

[k|u′|k−1u′′

rk−1

]
− 2f ′u′2−

− 2fu′′ +
2k2(k − 1)

k + 1

|u′|k+1

rk+1
− 2k(k − 1)

|u′|k−1u′u′′

rk
.

Then from the equation (7) we have that

P ′′ =
2k

rk−1
|u′|k−1(u′′)2 + 2u′ d

dr

[
f(u) − (n − k)

rk
|u′|k−1u′

]
− 2f ′u′2−

− 2f
[ frk−1

k|u′|k−1
− (n − k)u′

kr

]
+

2k2(k − 1)

k + 1

|u′|k+1

rk+1
−

− (k − 1)

r

[2k|u′|k−1u′u′′

rk−1

]
.

Further, expressing the term 2k|u′|k−1u′u′′

rk−1 from equation (8), we obtain

P ′′ =
2k

rk−1
|u′|k−1(u′′)2+2u′

[
f ′u′+

k(n−k)

rk+1
|u′|k−1u′− k(n−k)|u′|k−1u′′

rk

]
−

− 2f ′u′2 − 2f2rk−1

k|u′|k−1
+

2(n − k)

kr
fu′ +

2k2(k − 1)

k + 1

|u′|k+1

rk+1
−

− (k − 1)

r

[
P ′ + 2fu′ +

2k(k − 1)

k + 1

|u′|k+1

rk

]
.
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We now simplify the last expression follows:

P ′′=
2k

rk−1
|u′|k−1(u′′)2+2f ′u′2+2k(n−k)

|u′|k+1

rk+1
− (n−k)

r

2k|u′|k−1u′u′′

rk−1
−

− 2f ′u′2 − 2f2rk−1

k|u′|k−1
+

2(n − k)

kr
fu′ +

2k2(k − 1)

k + 1

|u′|k+1

rk+1
−

− (k − 1)

r
P ′ − 2(k − 1)

r
fu′ − 2k(k − 1)2

k + 1

|u′|k+1

rk+1
=

=
2k

rk−1
|u′|k−1(u′′)2+

[
2k(n − k) − 2k(k − 1)2

k + 1
+

2k2(k − 1)

k + 1

] |u′|k+1

rk+1
−

− (n − k)

r
P ′ − 2(n − k)

r
fu′ − 2k(n − k)(k − 1)

k + 1

|u′|k+1

rk+1
−

− 2f2rk−1

k|u′|k−1
+

2(n − k)

kr
fu′ − (k − 1)

r
P ′ − 2(k − 1)

r
fu′ .

Summarizing, we have

P ′′ =
2k

rk−1
|u′|k−1(u′′)2 +

2k(2n − k − 1)

k + 1

|u′|k+1

rk+1
−

− (n − 1)

r
P ′ − 2f2rk−1

k|u′|k−1
− 2(k − 1)n

k

fu′

r
.

Since P is radial the Laplace operator applied to P gives

∆P = P ′′ +
(n − 1)

r
P ′ .

Therefore

(9)

∆P =
2k

rk−1
|u′|k−1(u′′)2 +

2k(2n − k − 1)

k + 1

|u′|k+1

rk+1
−

− 2f2rk−1

k|u′|k−1
− 2(k − 1)n

k

fu′

r
.

From (8) we can express u′′ as

(10) u′′ = rk−1
(
P ′ + 2fu′ +

2k(k − 1)

k + 1

|u′|k+1

rk

) 1

2k|u′|k−1u′ .
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Substituting (10) into (9) we get that

∆P =
rk−1P ′2

2k|u′|k+1
+

2rk−1fu′

k|u′|k−1u′2 P ′ +
2k(k − 1)2|u′|k+1

(k + 1)2rk+1
+

+
2(k − 1)rk−1

(k + 1)rk
P ′ +

4(k − 1)

k + 1

fu′

r
− 2(k − 1)n

k

fu′

r
+

+
2k(2n − k − 1)

k + 1

|u′|k+1

rk+1
.

Since the third and the last term of the expression above are non-negative

for n ≥ k ≥ 1 it follows that

(11)

u′2∆P ≥ rk−1P ′2

2k|u′|k−1
+ 2rk−1

( fu′

k|u′|k−1
+

(k − 1)u′2

(k + 1)rk

)
P ′+

+
2(k − 1)(2k − n(k + 1))

k(k + 1)

fu′3

r
.

On the other hand, (7) and (8) imply that

P ′ = 2u′
[
f(u) − (n − k)

rk
|u′|k−1u′

]
− 2f(u)u′ − 2k(k − 1)

k + 1

|u′|k+1

rk
=

= −2(n − k)

rk
|u′|k+1 − 2k(k − 1)

k + 1

|u′|k+1

rk
=

2(2k − n(k + 1))

k + 1

|u′|k+1

rk
.

That is,

P ′ =
2(2k − n(k + 1))

k + 1

|u′|k+1

rk
.

Therefore

u′2∆P ≥ rk−1P ′2

2k|u′|k−1
+ rk−1

((k + 1)fu′

k|u′|k−1
+

2(k − 1)u′2

(k + 1)rk

)
P ′ .

Hence we finally obtain that

u′2∆P + B.P ′ ≥ rk−1P ′2

2k|u′|k−1
,
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where

B = −rk−1
((k + 1)fu′

k|u′|k−1
+

2(k − 1)u′2

(k + 1)rk

)
.

Now we are ready to prove Theorem 1. Its proof is a consequence of

Proposition 1 and the translation invariance of the k-Hessian operator.

More precisely, if u is a solution of the k-Hessian equation (2) then by

the assumptions of the theorem there exists a constant C > 0 such that

‖u‖L∞(IR) ≤ C. This allows us to define the number

P0 = sup
{
P (u, r)|u is a solution of (2), ‖u‖L∞(IR) ≤ C

}
.

Suppose that P0 > 0. Then the translation invariance of (2) and the

fact that u ∈ C1,µ, 0 < µ < 1, (see [2]) enable us, as in [1], to apply

a diagonalizing procedure, from which we conclude that there exists a

solution v of (2) such that ‖v‖L∞(IR) ≤ C and P (v, r0) = P0 for some

r0 != 0. Then we can use the Proposition 1 and the assumption (3) in

the same way as in [1] to get a contradiction. Therefore P0 ≤ 0 which

completes the proof.

3 – Liouville results

In this section we present the

Proof of Theorem 2. Let u(r0) = u0, where F (u(r0)) = 0. Denote

A = {r ∈ IR|u(r) = u0} != ∅ .

Clearly A is closed. We prove the theorem by a showing that A is also

open, which implies that A must be the whole IR, that is, u = u0 = const.

Let r1 ∈ A. Introduce the function ϕ(t) = u(r1 ± t) − u0. Then

|ϕ′(t)| = |u′(r1 ± t)|. Therefore

|ϕ′(t)|k+1 = |u′(r1 ± t)|k+1 ≤ k + 1

k
F (u(r1 ± t))|r1 ± t|k+1 =

=
k + 1

k
(F (u(r1 ± t)) − F (u0))|r1 ± t|k+1

by Theorem 1. By the asymptotic assumptions on F near u0 we conclude

that |ϕ′(t)| ≤ const |ϕ(t)| for sufficiently small t (note that k > 1). Since
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r1 ∈ A it follows that ϕ(0) = u(r1) − u0 = 0. Therefore ϕ = 0 in a

sufficiently small neighbourhood of r1. In this way we have shown that

A is open.

Further we are going to prove the Theorem 3. Before doing this, we

need the next

Lemma 1. Let u ∈ C2((0,∞)) be a solution of (2). Then for any

r > 0 the following identity

F (u(r))rn−1 − k

k + 1
rn−k|u′(r)|k+1 =

=
n

r

∫ r

0

F (u(t))tn−1dt +
n − 2k

r(k + 1)

∫ r

0

tn−k|u′(t)|k+1dt

holds.

Proof. We have

n

∫ r

0

F (u(t))tn−1dt = F (u(r))rn −
∫ r

0

tnf(u(t))u′(t)dt =

= F (u(r))rn −
∫ r

0

tu′(tn−k|u′|k−1u′)′dt =

= F (u(r))rn − rn−k+1|u′(r)|k+1 +

∫ r

0

tn−k|u′|k−1u′(u′ + tu′′)dt =

= F (u(r))rn − rn−k+1|u′(r)|k+1 +

∫ r

0

tn−k|u′|k+1dt+

+

∫ r

0

tn−k+1|u′|k−1u′u′′dt =

= F (u(r))rn − rn−k+1|u′(r)|k+1 +

∫ r

0

tn−k|u′|k+1dt+

+

∫ r

0

tn−k+1 1

k + 1
(|u′|k+1)′dt =

= F (u(r))rn − rn−k+1|u′(r)|k+1 +

∫ r

0

tn−k|u′|k+1dt+

+
rn−k+1

k + 1
|u′(r)|k+1 − n − k + 1

k + 1

∫ r

0

tn−k|u′|k+1dt =

= F (u(r))rn − k

k + 1
rn−k+1|u′(r)|k+1 − n − 2k

k + 1

∫ r

0

tn−k|u′|k+1dt .

Dividing by r we obtain the desired identity.
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Remark. We note that the above identity is nothing but the Pucci-

Serrin-Pohozaev identity [3] for the radial k-Hessian equation.

The second step is to obtain a monotonicity result for the spherical

mean of an appropriate function.

Proposition 2. Let n > 2k. Let a be such that

0 < a <
n − 2k

(k + 1)n
.

For u as in the Theorem 1, we define the function

E(r) =
τ

rn−1

∫ r

0

[
F (u(t))tn−1 + atn−k|u′(t)|k+1

]
dt ,

where τ is the measure of the unit sphere in IRn.

Then E(r) is monotone increasing for r ≥ 0.

Proof. Differentiating E we obtain:

E′(r)

τ
=

1 − n

rn

∫ r

0

[
F (u(t))tn−1 + atn−k|u′(t)|k+1

]
dt+

+
1

rn

[
F (u(r))rn−1 + arn−k|u′(r)|k+1

]
.

Further, using Lemma 1, we get

E′(r)

τ
=

1

rn

∫ r

0

[
F (u(t)) + a

|u′(t)|k+1

tk−1

]
tn−1dt+

+
1

rn

[n − 2k

k + 1
− na

] ∫ r

0

tn−k|u′(t)|k+1dt+

+
1

rk−1

[
a +

k

k + 1

]
|u′(r)|k+1 .

The choice of a ensures that all terms above are non-negative. Therefore

E′(r) ≥ 0.

After this preparatory work, we are ready for the

Proof of Theorem 3. Since F (u) ∈ L1(IRn), by Theorem 1 (see

(5)) we conclude that the function |u′|k+1r−(k−1) ∈ L1(IRn).
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Hence F (u) + a|u′|k+1r−(k−1) ∈ L1(IRn) and

0 ≤ E(r) ≤ 1

rn−1

∫

IRn

[
F (u(|x|) + a|u′(|x|)|k+1|x|−(k−1)

]
dx .

Thus lim
r→∞

E(r) = 0. By Proposition 2 we conclude that E(r) = 0 for any

non-negative r. Since F ≥ 0 and a ≥ 0, it follows that u′(r) = 0 and

u = const.
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