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g-Bessel functions: the point of view of

the generating function method

G. DATTOLI - A. TORRE

R1ASSUNTO: Si dimostra che il metodo della funzione gemeratrice permette di de-
rivare le proprieta delle funzioni di Bessel di tipo q in maniera piuttosto naturale. Si
analizzano i tre diversi tipi di funzioni q-cilindriche di prima specie finora proposte, si
discutono le loro funzioni generatrici, le relazioni di ricorrenza da loro soddisfatte ed ©
relativi teoremi di addizione e moltiplicazione. Si introducono inoltre le relative forme
modificate e si accenna infine alla possibilita di considerare q-funzioni di Bessel a piu
vartabili e g-polinomi di tipo Kampé de Fériét.

ABSTRACT: We show that the generating function method allows a fairly straight-
forward understanding of the properties of q-Bessel functions. We analyze three dif-
ferent forms of cylindrical q-Bessel functions so far proposed, discuss their generating
functions, the recurrence relations they satisfy, and the relevant addition and multipli-
cation theorems. We also introduce q-Bessel functions of the I-type and touch on the
possibility of considering q-Bessel functions with more than one variable, as well as
q-Kampé de Fériét polynomials.

1 — Introduction

Mathematicians have explored the intriguing aspects of the g-analysis
for more than 150 years [1]. Within this framework ¢- or the basic ana-
log of the operations of the ordinary calculus have been introduced, and
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g-special functions generalizing the conventional functions have been care-
fully studied.

Basic analogs of Bessel functions (BF’s) have been introduced by
JACKSON [2], by means of the series (n =0,£1,£2...)

(0[]
T (a) =2 [r]j[(:b T f]) o
(1.1a) = [ i q} .,
oo (Z1)" |5
I wz) = 3

) [
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; [r]q![n+r]q!
In the above equations we have defined
1—q"
[n}q = 1 —q ’
(1.2) .
[n]q' = H[T]qv [O]q' =1
r=1

In the limit ¢ — 1 the functions J((1 — q) - x;q) (k = 1,2) reduce to
the ordinary cylindrical BF.

The properties of ¢-BF’s have been widely discussed in refs. [4], [6].
g-analogs of elementary functions have been introduced as well. The
g-exponential, for example, is specified by the series [7]

o0 r

(1.3) eg(r) =3 =~

r=0 [T]q! ’

which is uniformly and absolutely convergent for all finite =, when |q| >

1, while convergence takes place for |z| < ﬁ, when [g] < 1. The
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function (1.3) does not have the semigroup property, since e, (z) - e,(y) #
eq,(z + y) and therefore e,(z)e,(—x) # 1. One can, however, introduce
the g-complementary exponential, defined by

e g
(1.4) 1/al@) = 3
for which [3]
(1.5) eq(z) - eyq(—2) =1,

The existence of g-exponentials and ¢-BF’s suggests that a general ap-
proach to the theory of basic analogs of special functions may be accom-
plished using the concepts and the formalism of the generating function
method (see also ref. [6]). Before entering into the specific details of the
problem it is worth recalling a few notions regarding the ¢-derivatives,
which will be widely exploited in the following.

The g-differential operator is defined, according to Jackson, as [3]

(1.6) D 1[d]qlexp{q<$)].

@0 = 3 |\ dw (1—-q)x
As a consequence of the previous definition, we find
(1.7a) Dyoyz" = [n],a"

and
. Dignyea(az) = acy(az)

D(q’w)eq(ali) = ael/q(qax) .

Furthermore, the formula of differentiation by parts can be written as

(1.8) D) lfi(@) fo(x)] = folq™ @) Diguay f1() + f1(q2) Diga) fo() -

The previous relations will be exploited in the remaining part of the
paper, which is organized as follows. The theory of cylindrical ¢-BF’s and
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associated modified forms is addressed in section 2, using the generating
function method as starting point. Within such a context in section 3
we will derive their recurrence relations, and discuss properties such as
multiplication theorems, integral representation, etc.

The generating functions are exploited in section 4 to introduce al-
ternative forms of ¢-Hermite polynomials and are further generalized to
present a class of g-polynomials, which is understood as the basic analog
of the Kampé de Fériét polynomials [8]. The link of these last polyno-
mials with ¢-BF’s having more than one variable [9] is also pointed out.
Finally, a brief discussion of the modified ¢-BF functions is presented in
section 5, where furthermore the ¢-Bessel differential equation is derived.

2 — Cylindrical ¢-Bessel functions of first kind

In analogy to the ordinary case, we introduce the generating function

(2.1) Gi(z;tlq) = e, (36;) e, ( x7§2_1> ,

which converges for any finite  when |¢| > 1 and for |z| < ‘%q’ when
g < 1.

Expanding the g-exponentials according to (1.3) and (1.4) and noting
that for ¢ = 1, eq. (2.1) reduces to the ordinary BF generating function,
we set

+oo

Gi(mitlg) = > "IV (xlq),

n=—oo

s £ n+2s
J(1) (z|q) = Z%

s=0

The ¢-BF defined by (2.2) is essentially the first of egs. (1.1) apart from
the unessential factor (1 —¢q)™*

In a similar way we can prove that the generating function

in the argument.
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leads to the second of (1.1); in fact, (see also ref. [6])

Ga(;tlq) = Z ¢

n—=—oo

= [slg![n + s],!

)
T2 (2]g)

Finally, it is also easily checked that

(2.5) Gs(x;tlg) = e, (Jc;) €1/q (_327?>

is the generating function of the Swarthouw ¢-BF, namely,

(x;tlq) = Z t"J ¥ (z|q),

€T\ n+2s
<_1) (5) s(s;l)
= [s]![n + s],! ’
and it is worth noting that

(27) I ala) = I (= 2a] )

which makes the introduction of a fourth generating function unessential,
i.e., being

;)

)

(2.8) Ga(x;t|q) = e1/q (%xt) eq( ;t) gg(xq,

The recurrences of the ¢-BF so far introduced can be established in dif-
ferent ways. Keeping the D, ,) derivative of both sides of the first of
egs. (2.2), we find

e () (55) e (5) (5]

“+o0

n—=—oo

(2.9)
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Using the generating function (2.1) and equating the t-like powers, we
end up with

210) D d(ele) = 5| A ale) — " I, (Vasla) |

On the other hand, since

171 xt~1 Tt
D (g2)G1 (w5 t]q) = —3 {geq (_T> €q (3) +
(2.11)

we can establish the further recurrence

[a—

(212)  Dlg,x)JP(le) = 5 [¢"7 I (Vazla) — I3 (alo)]

DO |

which along with (2.10) leads to the difference equation

(2.13) ¢ "= I, (Vazla) + 4% I (Vazla) = I, (2lq) + T (2]q)

The second recurrence of J(V(z|q) can be obtained either deriving the
first of (2.2) with respect to D, ) or manipulating the series definition.
Multiplying both sides of the second of (2.2) by [n], and noting that

(2.14) iy = n+ sl — "5l
we obtain
n
(2.15) 270 10 (alg) = J12 (ala) + " T2 )

which is reminiscent of the recurrence of the ordinary case. The recur-
rences (2.10) and (2.12), although connecting the nearest-neighbor in-
dices, link ¢-BF’s with different arguments. It is, however, worth noting
that (see Appendix)

216) ¢TI (Vazlg) = I (ala) + (1 - )5 TP (ala),
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so that, combining egs. (2.16) and (2.13), we find

X
(2173) D(q,:p) - (]- - Q)Z Jél)(]:|q) = - n 1((L’|q) 7L+1(‘T‘Q)
and
2.17b I 1—q)Z g I
( . ) n+1 (\/_$|Q) ( q) (x|q) n+1(m‘Q) .

Further comments will be presented in the concluding remarks.
To establish the recurrences of J(? (z|q) we note that setting

(2.18) y=2xq, v=—,

we obtain from egs. (2.3) and (2.4)

+o00
v Y 1
(219&) 61/q <y§> 61/q <__2'U> = E J7(ll) (y‘;) ;

n=—oo

or, what is the same,

(2.19D) J (fm ) — 4= IO (alq).

It is, therefore, evident that

and that

- 1 1 1
a2 (1) 0, (f2) w0t (o)
) q q q

From this last identity we also infer that J(3(z|q) satisfies the same re-
currence (2.15). The possibility of combining (2.20a) and (2.20b) to get
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a second-order difference equation for J(?(z|q) will be discussed in the
concluding section.

Regarding the recurrences of the function J{? (z|q), we can proceed as
before. It is, however, worth noting that we can extend the definition (2.6)

as follows:
n+2s
- (E>
s(s+8)

(3
(2.21) Iy (x]q) = Z T T

s=0

where 3 is not necessarily an integer. According to eq. (2.21), we find

(2.22) I (q2|q) = ¢°" T sar (2]q) -

Keeping the D, ,) derivative of the second of eq. (2.6), we find

1
@23)  DawJMele) = 5| Ihael) - I (el

The second recurrence relation is given by

o) 2 = 5[0 o) - el

The examples we have provided give an idea of the wealth of properties
of the ¢-BF’s. An idea of their behavior is also offered by figs. (1-3).

3 — Multiplication and addition theorems

We have already noted that the functions J(V(z|q) and J¥ (z|q) are
linked by relations of the type (2.19). The link between, e.g., J*(z|q)
and J¥(z|q) can be obtained noting that (see eq. (1.5))

(3.1) Go(z3t;:q9) = Gs(ws;t3q) - e1yq <5;;1> '61/q< Z)

Accordingly, we can write

n(n—1) > X m mn .
J® (2q) = ¢~ -z(—) G2 IO (2lg) - An(g),

m=0 2
(3.2)

9 s(s m)

Z Jo's)g"

s=0
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An analogous procedure can be exploited to state the multiplication the-
orem. In fact, using egs. (2.1) and (2.5), we can write

A
(3.3) Gi1(Az;tlq) = Gs(w; Mt[q) - e (;i) €q (‘ﬁ) ’

which can be exploited to derive the following theorem:

T
IV (Azlg) = A”Zq m(Alg) - (2> T (),
(3.4)
m ))\25
NPV i
;qs ] [S]q!

Further examples can be discussed, but are omitted for the sake of con-
ciseness.

Before discussing the addition theorems, we state a straightforward
but important identity

(3.5a) €y (gt) €q (%) = i v .On(fc,y!cﬁ,

o [nld!
where
o= [1],(5) (3)
(3.5b)

It is clear that O, (z,y|q) are polynomials generalizing the ordinary bino-
mial form; furthermore, they satisfy the relations

(3.6) D(4.2)0n(2,ylq) = D(44)On(,ylq) = [n],0n—1(z,ylq) -

According to (3.5a), we can also introduce ¢-BF’s with four variables
according to the generating function

x yt x’ y' = n roo
(37&) €q (2t> eq (2) eq <_2t) eq <_2t) = Z t (1)‘]1(Ll)($7y7x Y |q)a

n—=—oo
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where
B7b) U@yl ylg) = Y D Ona@: D)0y lg)
! o ’ s=0 n—S] '[S]q!

According to the above results, we can prove the theorem

Z I (2lg) I8 (ylg) = DV IN (2, ylq)
(3.8) t=—c0

WIM (@, ylg) = VIO (@, y, 2, 9lq) -
Multiplying the Lh.s. of (3.8) by ¢" and then summing over n, we find

+oo

Z " > T (2la) I (yle) =

n=-—o00 l=—00

(3.9) - f tf< S et (@ )) I (yla) =

l=—00 n=-—oo

= (3)aa)a (%) (2)

The identity (3.8) follows, therefore, from egs. (3.5) and (3.7).
The same technique can be exploited to prove an extension of the
Graf addition formula, namely,

l=—00

Addition formulae for ¢-BF’s have been discussed by FLOREANINI and
VINET [6] within the context of a different formalism employing an alge-
braic point of view and the use of ¢, (...) hypergeometric functions.
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4 — The generating function and ¢-Kampé de Fériét polynomials

Let us consider the generating function

oo tn
(4.1a) Fi(z,y;tlq) = eq(wt)ey(yt?) = Z (z,ylq) ,
n=0
where
[n/2] n—2s
4.1b H(l) | v Yy
( ) (ZE y|q) [ ](I ; [n—QS]q![S]q"

and the symbol [n/2] denotes the truncated part of n/2. The polynomi-
als (4.1b) are the g-analog of the KAMPE DE FERIET polynomials [8] and
their recurrences are reported below:

Dy HV (z,ylq) = [n] H",\ (2, ylq) ,
Dy HY (z,ylg) = [n]y[n — 1),H s (2, ylq)

[n]qu(zl) (CU, y|q) = xD(q,x)Hle)(x7 y|Q)+

o s 2) 19 (22

The last expression can also be recast as
a) +

(4.2)

n— Yy
HO (2, ylq) = eHD, (2, yla) + [n — 1ya" 2y HY, ( z

+[n -1, yH Y, <:r %‘q) :
or equivalently,
HV(z,ylq) = xHY, (2, ylq) + [n — 1,y H, (g, yla)+
+ [n—1,qyH", (g7, qylq) -

Without entering into the specific importance of g-type Hermite poly-
nomials, we note that, in analogy to ref. [9], they can be exploited to
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introduce ¢-GBF’s. It is, indeed, easily proved that

W (rY m(_r Y
(43) DT (@l =3 — 22 Y e el
w0 [ + 5], 1[5],! =

Or, what is the same,

—+o0

(4.4) @I (@, ylg) = > T (zla) I (yla)

l=—00

whose properties will be discussed elsewhere. The theory of ¢-BF’s is,
indeed, rich enough to require a separate treatment.

5 — Concluding remarks

In section 2 we mentioned cylindrical ¢-BF’s of the first kind only.
However, there is no prescription against the introduction of modified
forms, defined through the generating function

+oo
Gi(z;tlq) = e, (%t) e, (%) = Z t”[r(ll)(37|Q)7

n=-—oo

(5.1)

1P(alg) =Y )

= [n+ s]y![s],! ’

The properties of I (z|q) are listed below

(5.2a) IW(—zlq) = (=1)"IM(z|q),

IV (iz)q) = " JM (z]q)

n
and

2(n
[T]qfé”(wlfﬂ = I (zlq) — "IV (zlq)

(5.2b)

X

Digoy + (1= 0)§ | 10 (ale) =

. 121 (alg) + 1, (xlq)|

DN =
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Furthermore, fig. 4 yields an idea of their behavior as functions of x
and g. We omit the discussion of the functions I(>® (z|q) for the sake of
conciseness.

The recurrence relations can now be exploited to derive the ¢g-analog
of the Bessel equation. Combining, indeed, eqs. (2.15) and (2.17a), we
find [6]

{ [nj — Doy + (1 —q)= } J(l)(a:|q) M 7521(@‘])

2
S (e
n n T 14+¢
{54 4" [ D + (1= 0§ ] 50 ale) = S50 ).
T 4 2
Defining the shifting operators
P 2 P g
+,n — (1—(]”) T (g,x) q A )
(5.3b) ]
A 2 n x
Bop= g D - -] L
’ (1+q”){ P [ (@ ~ ¢ q>4”

which turn J (2|¢) into J'Y, (2|¢) and JV, (x|q) respectively, and noting
that

(53(3) E— n+1E+ n ( IQ) Jr(zl) ((E‘Q) ’

we end up with

n

{ n+1D [n]g 1 q n+1 1 _D
2 2 2
5.4 [ 1-¢ 0o ontigq 2
(5.4) S (el + 1]+ g T (- )+
WO 001 = o,

which reduces to the ordinary Bessel equation in the limit ¢ — 1.
It is interesting to note that, unlike the ordinary case, in the large =
limit, eq. (5.4) does not indicate that J((z|q) is an oscillating function
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with decreasing amplitudes. The presence of the term %mz raises the
doubt, supported by fig. 1, that the amplitudes increase. However, this
problem will be dealt with in a forthcoming paper.

The g-Bessel equations for I{V(z|q) and J(¥(z|q) can be obtained
using similar methods.

In this paper we have presented the theory of ¢-BF’s, using the gen-
erating function method as starting point. We have seen that, within
such a context, one can verify the treatment of the various forms so far
introduced and that one can go a step further in proposing modified forms
and generalized ¢-BF’s with more than one variable. An alternative treat-
ment, based on an algebraic point of view, is that of FLOREANINI and
VINET [6], [10]. Their approach, certainly more general than the present
analysis, should be considered as an effort to frame the g-special functions
within the framework of the theory of quantum groups. Albeit less am-
bitious, the present analysis offers a possibility to understand the details
of ¢-BF theory in a more classical sense, without any recourse to group

theoretical concepts and to the generalized hypergeometric functions.

2
1
J(o)(x| 1.1)
1 Jo(x)
(V)
-1

-15 -10 -5 0 5x10 15

Fig. 1 Comparison between the first three ¢-BF’s JT(LI)(:v|q) (n=0,1,2, g =1.1) and
the ordinary BF.
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-15 -10 -5 0 5 < 10 15
Fig. 2 Same as fig. 1 for J,(LQ)(x|q) (n=0,1,2, ¢ =0.9).
S PN TTMER)) [T 5 DR b)
1 (! X{1.
1 L ‘l‘ 0 "‘ 2r ,\/ 1 )
\ / 0 W‘
o ] ] -2 I’ \ -
\ %4 i J3(x]1.1)
-1 o -l ! 1 Y’ -4 l -l 11 1 1
-1 -10 -5 0 5 x 10 15 -5 -10 -5 O 5 x 10
1
"'N‘\ P C)
0 \
-1 p ) “\ [
AN GIEIERIIEL S RRURY
-2 1 1 ) 1 1

-5 -10 -5 0 5 x‘lO 15

Fig. 3 Comparison between J§L3>(x\q) and JT(LD(J:\q) (n=0,1,2, ¢ =1.1).

15
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1

0.

0.

0.

O— = 1.27
— T, Py a)
8 - 1(1) "... Io(x)
Il (xI1.1) N

™ N2 1.26
6 I(zli(xll B))
4 1 1 2(X) L [l 1'25 L 1 - |
0 2 4 6 8 10 1 2 g 3
Fig. 4 a) % vs. z (n=0,1,2; ¢ =1.1). b) Iél)(1|q) vs. q.
Appendix
The identity (2.16) can be proved as follows.
Since
- n—142s n—1+2s
(A1) = 0 () S (-1°(s)
' O T -1+, & s -1+,
using the identity
(A.2) ¢ =1-01—q)sl,
we find,
n 1 o _1) (zf)n71+28 (1) xr ‘(1)
(A.3) Z T s = (zlg) + (1 = ) 3" (xla) -
s=0
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