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q-Bessel functions: the point of view of

the generating function method

G. DATTOLI – A. TORRE

Riassunto: Si dimostra che il metodo della funzione generatrice permette di de-
rivare le proprietà delle funzioni di Bessel di tipo q in maniera piuttosto naturale. Si
analizzano i tre diversi tipi di funzioni q-cilindriche di prima specie finora proposte, si
discutono le loro funzioni generatrici, le relazioni di ricorrenza da loro soddisfatte ed i
relativi teoremi di addizione e moltiplicazione. Si introducono inoltre le relative forme
modificate e si accenna infine alla possibilità di considerare q-funzioni di Bessel a più
variabili e q-polinomi di tipo Kampé de Fériét.

Abstract: We show that the generating function method allows a fairly straight-
forward understanding of the properties of q-Bessel functions. We analyze three dif-
ferent forms of cylindrical q-Bessel functions so far proposed, discuss their generating
functions, the recurrence relations they satisfy, and the relevant addition and multipli-
cation theorems. We also introduce q-Bessel functions of the I-type and touch on the
possibility of considering q-Bessel functions with more than one variable, as well as
q-Kampé de Fériét polynomials.

1 – Introduction

Mathematicians have explored the intriguing aspects of the q-analysis

for more than 150 years [1]. Within this framework q- or the basic ana-

log of the operations of the ordinary calculus have been introduced, and
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q-special functions generalizing the conventional functions have been care-

fully studied.

Basic analogs of Bessel functions (BF’s) have been introduced by

Jackson [2], by means of the series (n = 0,±1,±2 . . . )

(1.1a)

J (1)
n (x; q) =

∞∑

r=0

(−1)r
[ x

2(1 − q)

]n+2r

[r]q![n + r]q!
,

J (2)
n (x; q) =

∞∑

r=0

(−1)r
[ x

2(1 − q)

]n+2r

[r]q![n + r]q!
qr(n+r) ,

a third q-BF has been discussed by Swarthouw [3] and reads

(1.1b) J (3)
n (x; q) =

∞∑

r=0

(−1)r
[ x

2(1 − q)

]n+2r

[r]q![n + r]q!
q

r(r+1)
2 .

In the above equations we have defined

(1.2)

[n]q =
1 − qn

1 − q
,

[n]q! =
n∏

r=1

[r]q , [0]q! = 1 .

In the limit q → 1 the functions J (k)
n ((1 − q) · x; q) (k = 1, 2) reduce to

the ordinary cylindrical BF.

The properties of q-BF’s have been widely discussed in refs. [4], [6].

q-analogs of elementary functions have been introduced as well. The

q-exponential, for example, is specified by the series [7]

(1.3) eq(x) =
∞∑

r=0

xr

[r]q!
,

which is uniformly and absolutely convergent for all finite x, when |q| >

1, while convergence takes place for |x| < 1
(1−q)

, when |q| < 1. The
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function (1.3) does not have the semigroup property, since eq(x) · eq(y) !=
eq(x + y) and therefore eq(x)eq(−x) != 1. One can, however, introduce

the q-complementary exponential, defined by

(1.4) e1/q(x) =
∞∑

r=0

xrq
r(r−1)

2

[r]q!
,

for which [3]

(1.5) eq(x) · e1/q(−x) = 1 ,

The existence of q-exponentials and q-BF’s suggests that a general ap-

proach to the theory of basic analogs of special functions may be accom-

plished using the concepts and the formalism of the generating function

method (see also ref. [6]). Before entering into the specific details of the

problem it is worth recalling a few notions regarding the q-derivatives,

which will be widely exploited in the following.

The q-differential operator is defined, according to Jackson, as [3]

(1.6) D(q,x) =
1

x

[
d

dx

]

q

=
1 − exp

[
q

(
d

dx

)]

(1 − q)x
.

As a consequence of the previous definition, we find

(1.7a) D(q,x)x
n = [n]qx

n−1

and

(1.7b)
D(q,x)eq(ax) = aeq(ax) ,

D(q,x)eq(ax) = ae1/q(qax) .

Furthermore, the formula of differentiation by parts can be written as

(1.8) D(q,x)[f1(x)f2(x)] = f2(q
−1x)D(q,x)f1(x) + f1(qx)D(q,x)f2(x) .

The previous relations will be exploited in the remaining part of the

paper, which is organized as follows. The theory of cylindrical q-BF’s and
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associated modified forms is addressed in section 2, using the generating

function method as starting point. Within such a context in section 3

we will derive their recurrence relations, and discuss properties such as

multiplication theorems, integral representation, etc.

The generating functions are exploited in section 4 to introduce al-

ternative forms of q-Hermite polynomials and are further generalized to

present a class of q-polynomials, which is understood as the basic analog

of the Kampé de Fériét polynomials [8]. The link of these last polyno-

mials with q-BF’s having more than one variable [9] is also pointed out.

Finally, a brief discussion of the modified q-BF functions is presented in

section 5, where furthermore the q-Bessel differential equation is derived.

2 – Cylindrical q-Bessel functions of first kind

In analogy to the ordinary case, we introduce the generating function

(2.1) G1(x; t|q) = eq

(
xt

2

)
eq

(
−xt−1

2

)
,

which converges for any finite x when |q| > 1 and for |x| <
∣∣∣ 2
1−q

∣∣∣ when

|q| < 1.

Expanding the q-exponentials according to (1.3) and (1.4) and noting

that for q = 1, eq. (2.1) reduces to the ordinary BF generating function,

we set

(2.2)

G1(x; t|q) =
+∞∑

n=−∞
tnJ (1)

n (x|q) ,

J (1)
n (x|q) =

∞∑

s=0

(−1)s
(x

2

)n+2s

[s]q![n + s]q!
.

The q-BF defined by (2.2) is essentially the first of eqs. (1.1) apart from

the unessential factor (1 − q)−1 in the argument.

In a similar way we can prove that the generating function

(2.3) G2(x; t|q) = e1/q

(
xt

2

)
e1/q

(
−xq

2t

)
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leads to the second of (1.1); in fact, (see also ref. [6])

(2.4)

G2(x; t|q) =
+∞∑

n=−∞
q

n(n−1)
2 tnJ (2)

n (x|q) ,

J (2)
n (x|q) =

∞∑

s=0

(−1)s
(x

2

)n+2s

[s]q![n + s]q!
qs(n+s) .

Finally, it is also easily checked that

(2.5) G3(x; t|q) = eq

(
xt

2

)
e1/q

(
−xq

2t

)

is the generating function of the Swarthouw q-BF, namely,

(2.6)

G3(x; t|q) =
+∞∑

n=−∞
tnJ (3)

n (x|q) ,

J (s)
n (x|q) =

∞∑

s=0

(−1)s
(x

2

)n+2s

[s]q![n + s]q!
q

s(s+1)
2 ,

and it is worth noting that

(2.7) J
(3)
−n(x|q) = J (3)

n

(
− xq

∣∣∣1
q

)
,

which makes the introduction of a fourth generating function unessential,

i.e., being

(2.8) G4(x; t|q) = e1/q

(
qxt

2

)
eq

(
− x

2t

)
= G3

(
xq; t

∣∣∣1
q

)
.

The recurrences of the q-BF so far introduced can be established in dif-

ferent ways. Keeping the D(q,x) derivative of both sides of the first of

eqs. (2.2), we find

(2.9)

1

2

[
teq

(
xt

2

)
eq

(
−xt−1

2

)
− 1

t
eq

(
qxt

2

)
eq

(
−xt−1

2

) ]
=

=
+∞∑

n=−∞
tnD(q,x)J

(1)
n (x|q) .
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Using the generating function (2.1) and equating the t-like powers, we

end up with

(2.10) D(q,x)J
(1)
n (x|q) =

1

2

[
J

(1)
n−1(x|q) − q

n+1
2 J

(1)
n+1 (

√
qx|q)

]
.

On the other hand, since

(2.11)

D(q;x)G1(x; t|q) = −1

2

[
1

t
eq

(
−xt−1

2

)
eq

(
xt

2

)
+

− t eq

(
−qxt−1

2

)
eq

(
xt

2

) ]
,

we can establish the further recurrence

(2.12) D(q, x)J (1)
n (x|q) =

1

2

[
q

n−1
2 J

(1)
n−1 (

√
qx|q) − J

(1)
n+1(x|q)

]
,

which along with (2.10) leads to the difference equation

(2.13) q− n−1
2 J

(1)
n−1 (

√
qx|q) + q

n+1
2 J

(1)
n+1 (

√
qx|q) = J

(1)
n−1(x|q) + J

(1)
n+1(x|q) .

The second recurrence of J (1)
n (x|q) can be obtained either deriving the

first of (2.2) with respect to D(q,t) or manipulating the series definition.

Multiplying both sides of the second of (2.2) by [n]q and noting that

(2.14) [n]q = [n + s]q − qn[s]q ,

we obtain

(2.15) 2
[n]q
x

J (1)
n (x|q) = J

(1)
n−1(x|q) + qnJ

(1)
n+1(x|q) ,

which is reminiscent of the recurrence of the ordinary case. The recur-

rences (2.10) and (2.12), although connecting the nearest-neighbor in-

dices, link q-BF’s with different arguments. It is, however, worth noting

that (see Appendix)

(2.16) q− n−1
2 J

(1)
n−1 (

√
qx|q) = J

(1)
n−1(x|q) + (1 − q)

x

2
J (1)

n (x|q) ,
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so that, combining eqs. (2.16) and (2.13), we find

(2.17a)

[
D(q,x) − (1 − q)

x

4

]
J (1)

n (x|q) = −1

2

[
J

(1)
n−1(x|q) − J

(1)
n+1(x|q)

]

and

(2.17b) q
n+1

2 J
(1)
n+1 (

√
qx|q) = −(1 − q)

x

2
J (1)

n (x|q) + J
(1)
n+1(x|q) .

Further comments will be presented in the concluding remarks.

To establish the recurrences of J (2)
n (x|q) we note that setting

(2.18) y = x
√

q , υ =
t√
q

,

we obtain from eqs. (2.3) and (2.4)

(2.19a) e1/q

(
y
υ

2

)
e1/q

(
− y

2υ

)
=

+∞∑

n=−∞
J (1)

n

(
y

∣∣∣∣
1

q

)
,

or, what is the same,

(2.19b) J (1)
n

(√
qx

∣∣∣∣
1

q

)
= q

n2

2 J (2)
n (x|q) .

It is, therefore, evident that

(2.20a)

[
D(q−1,y) − (1 − q−1)

y

4

]
J (1)

n

(
y

∣∣∣∣
1

q

)
=

=
1

2

[
J

(1)
n−1

(
y

∣∣∣∣
1

q

)
− J

(1)
n+1

(
y

∣∣∣∣
1

q

)]
.

and that

(2.20b) 2
[n]q−1

y
J (1)

n

(
y

∣∣∣∣
1

q

)
= J

(1)
n−1

(
y

∣∣∣∣
1

q

)
+ q−nJ

(1)
n+1

(
y

∣∣∣∣
1

q

)
.

From this last identity we also infer that J (3)
n (x|q) satisfies the same re-

currence (2.15). The possibility of combining (2.20a) and (2.20b) to get
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a second-order difference equation for J (2)
n (x|q) will be discussed in the

concluding section.

Regarding the recurrences of the function J (2)
n (x|q), we can proceed as

before. It is, however, worth noting that we can extend the definition (2.6)

as follows:

(2.21) J
(3)
n,β(x|q) =

∞∑

s=0

(−1)s

(
x

2

)n+2s

[s]q![n + s]q!
q

s(s+β)
2 ,

where β is not necessarily an integer. According to eq. (2.21), we find

(2.22) J
(3)
n,1(q

αx|q) = qαnJn,4α+1(x|q) .

Keeping the D(q,x) derivative of the second of eq. (2.6), we find

(2.23a) D(q,x)J
(3)
n,1(x|q) =

1

2

[
J

(3)
n−1,1(x|q) − qn+2J

(3)
n+1,5(x|q)

]
.

The second recurrence relation is given by

(2.23b) 2
[n]q
x

J
(3)
n,1(x|q) =

1

2

[
J

(3)
n−1,1(x|q) − qnJ

(3)
n+1,3(x|q)

]
.

The examples we have provided give an idea of the wealth of properties

of the q-BF’s. An idea of their behavior is also offered by figs. (1-3).

3 – Multiplication and addition theorems

We have already noted that the functions J (1)
n (x|q) and J (2)

n (x|q) are

linked by relations of the type (2.19). The link between, e.g., J (2)
n (x|q)

and J (3)
n (x|q) can be obtained noting that (see eq. (1.5))

(3.1) G2(x; t; q) = G3(x; t; q) · e1/q

(
xq

2t

)
· e1/q

(
−xq

2t

)
.

Accordingly, we can write

(3.2)

J (2)
n (x|q) = q− n(n−1)

2 ·
∞∑

m=0

(
x

2

)m

q
m
2 (m−1)J

(3)
n−m(x|q) · Am(q) ,

Am(q) =
m∑

s=0

(−1)sqs(s−m)

[m − s]q![s]q!
.
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An analogous procedure can be exploited to state the multiplication the-

orem. In fact, using eqs. (2.1) and (2.5), we can write

(3.3) G1(λx; t|q) = G3(x; λt|q) · eq

(
xq

2λt

)
eq

(
−λx

2t

)
,

which can be exploited to derive the following theorem:

(3.4)

J (1)
n (λx|q) = λn

∞∑

m=0

qm · Am(λ|q) ·
(

x

2

)m

J
(3)
n+m(x|q) ,

Am(λ|q) =
m∑

s=0

(−1)sλ2s

qs[m − s]q![s]q!
.

Further examples can be discussed, but are omitted for the sake of con-

ciseness.

Before discussing the addition theorems, we state a straightforward

but important identity

(3.5a) eq

(
x

2
t

)
eq

(
yt

2

)
=

∞∑

n=0

tn

[n]q!
On(x, y|q) ,

where

(3.5b)

On(x, y|q) =
n∑

s=0

[
n

s

]

q

(
x

2

)n−s (
y

2

)s

[
n

s

]

q

=
[n]q!

[n − s]q![s]q!

It is clear that On(x, y|q) are polynomials generalizing the ordinary bino-

mial form; furthermore, they satisfy the relations

(3.6) D(q,x)On(x, y|q) = D(q,y)On(x, y|q) = [n]qOn−1(x, y|q) .

According to (3.5a), we can also introduce q-BF’s with four variables

according to the generating function

(3.7a) eq

(
x

2
t

)
eq

(
yt

2

)
eq

(
−x′

2t

)
eq

(
− y′

2t

)
=

+∞∑

n=−∞
tn(1)J (1)

n (x, y, x′, y′|q) ,
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where

(3.7b) (1)J (1)
n (x, y, x′, y′|q) =

∞∑

s=0

(−1)sOn−s(x, y|q)Os(x
′, y′|q)

[n − s]q![s]q!
.

According to the above results, we can prove the theorem

(3.8)

+∞∑

5=−∞
J

(1)
n−5(x|q)J (1)

5 (y|q) = (1)J (1)
n (x, y|q) ,

(1)J (1)
n (x, y|q) = (1)J (1)

n (x, y, x, y|q) .

Multiplying the l.h.s. of (3.8) by tn and then summing over n, we find

(3.9)

+∞∑

n=−∞
tn

+∞∑

5=−∞
J

(1)
n−5(x|q)J (1)

5 (y|q) =

=
+∞∑

5=−∞
t5

(
+∞∑

n=−∞
tn−5J

(1)
n−5(x|q)

)
J

(1)
5 (y|q) =

= eq

(
xt

2

)
eq

(
− x

2t

)
eq

(
yt

2

)
eq

(
− y

2t

)
.

The identity (3.8) follows, therefore, from eqs. (3.5) and (3.7).

The same technique can be exploited to prove an extension of the

Graf addition formula, namely,

(3.10)
∞∑

5=−∞
ξ5J

(1)
n−5(x|q)J (1)

5 (y|q) = (1)J1
n

(
x, yξ, x,

y

ξ

∣∣∣∣q
)

.

Addition formulae for q-BF’s have been discussed by Floreanini and

Vinet [6] within the context of a different formalism employing an alge-

braic point of view and the use of rφs (. . . ) hypergeometric functions.
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4 – The generating function and q-Kampé de Fériét polynomials

Let us consider the generating function

(4.1a) F1(x, y; t|q) = eq(xt)eq(yt2) =
∞∑

n=0

tn

[n]q!
H(1)

n (x, y|q) ,

where

(4.1b) H(1)
n (x, y|q) = [n]q!

[n/2]∑

s=0

xn−2sys

[n − 2s]q![s]q!
,

and the symbol [n/2] denotes the truncated part of n/2. The polynomi-

als (4.1b) are the q-analog of the Kampé de Fériét polynomials [8] and

their recurrences are reported below:

(4.2)

D(q,x)H
(1)
n (x, y|q) = [n]qH

(1)
n−1(x, y|q) ,

D(q,y)H
(1)
n (x, y|q) = [n]q[n − 1]qH

(1)
n−2(x, y|q)

[n]qH
(1)
n (x, y|q) = xD(q,x)H

(1)
n (x, y|q)+

+ qn · yD(q,y)

[
H(1)

n

(
x,

y

q2

)
+ H(1)

n

(
x,

y

q

∣∣∣∣q
)]

.

The last expression can also be recast as

H(1)
n (x, y|q) = xH

(1)
n−1(x, y|q) + [n − 1]qq

n−2yH
(1)
n−2

(
x,

y

q2

∣∣∣∣q
)

+

+ [n − 1]qq
n−1yH

(1)
n−2

(
x,

y

q

∣∣∣∣q
)

,

or equivalently,

H(1)
n (x, y|q) = xH

(1)
n−1(x, y|q) + [n − 1]qyH

(1)
n−2(qx, y|q)+

+ [n − 1]qqyH
(1)
n−2(qx, qy|q) .

Without entering into the specific importance of q-type Hermite poly-

nomials, we note that, in analogy to ref. [9], they can be exploited to
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introduce q-GBF’s. It is, indeed, easily proved that

(4.3) (2)J (1)
n (x, y|q) =

∞∑

s=0

H
(1)
n+s

(
x

2
,
y

2

∣∣∣q
)

H(1)
s

(
−x

2
,−y

2

∣∣∣q
)

[n + s]q![s]q!
(n ≥ 0)

Or, what is the same,

(4.4) (2)J (1)
n (x, y|q) =

+∞∑

5=−∞
J

(1)
n+25(x|q)J (1)

5 (y|q) ,

whose properties will be discussed elsewhere. The theory of q-BF’s is,

indeed, rich enough to require a separate treatment.

5 – Concluding remarks

In section 2 we mentioned cylindrical q-BF’s of the first kind only.

However, there is no prescription against the introduction of modified

forms, defined through the generating function

(5.1)

G1(x; t|q) = eq

(
xt

2

)
eq

(
x

2t

)
=

+∞∑

n=−∞
tnI(1)

n (x|q) ,

I(1)
n (x|q) =

∞∑

s=0

(
x

2

)n+2s

[n + s]q![s]q!
.

The properties of I(1)
n (x|q) are listed below

(5.2a)

I
(1)
−n(x|q) = I(1)

n (x|q) ,

I(1)
n (−x|q) = (−1)nI(1)

n (x|q) ,

I(1)
n (ix|q) = inJ (1)

n (x|q) ,

and

(5.2b)

2[n]q
x

I(1)
n (x|q) = I

(1)
n−1(x|q) − qnI(1)

n (x|q) ,

[
D(q,x) + (1 − q)

x

4

]
I(1)

n (x|q) =
1

2

[
I

(1)
n−1(x|q) + I

(1)
n+1(x|q)

]
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Furthermore, fig. 4 yields an idea of their behavior as functions of x

and q. We omit the discussion of the functions I(2,3)
n (x|q) for the sake of

conciseness.

The recurrence relations can now be exploited to derive the q-analog

of the Bessel equation. Combining, indeed, eqs. (2.15) and (2.17a), we

find [6]

(5.3a)

{
[n]q
x

− D(q,x) + (1 − q)
x

4

}
J (1)

n (x|q) =
(1 + qn)

2
J

(1)
n+1(x|q) ,

{
[n]q
x

+ qn

[
D(q,x) + (1 − q)

x

4

]}
J (1)

n (x|q) =
(1 + qn)

2
J

(1)
n−1(x|q) .

Defining the shifting operators

(5.3b)

Ê+,n =
2

(1 − qn)

{
[n]q
x

− D(q,x) + (1 − q)
x

4

}
,

Ê−,n =
2

(1 + qn)

{
[n]q
x

+ qn

[
D(q,x) − (1 − q)

x

4

]}
,

which turn J (1)
n (x|q) into J

(1)
n+1(x|q) and J

(1)
n−1(x|q) respectively, and noting

that

(5.3c) Ê−,n+1Ê+,nJ (1)
n (x|q) = J (1)

n (x|q) ,

we end up with

(5.4)

{
qn+1D2

(q,x) +
[ [n]2q

x
(1 − q) +

qn

x
− qn+1(1 − q2)

x

4

]
D(q,x)+

− [n]2q
x2

− 1 − q2

4
([n]q[n + 1]q + qn + qn+1(1 − q)2 x2

16

)
+

+
(1 + qn)(1 + qn+1)

4

}
J (1)

n (x|q) = 0 ,

which reduces to the ordinary Bessel equation in the limit q → 1.

It is interesting to note that, unlike the ordinary case, in the large x

limit, eq. (5.4) does not indicate that J (1)
n (x|q) is an oscillating function
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with decreasing amplitudes. The presence of the term (1−q)2

16
x2 raises the

doubt, supported by fig. 1, that the amplitudes increase. However, this

problem will be dealt with in a forthcoming paper.

The q-Bessel equations for I(1)
n (x|q) and J (2)

n (x|q) can be obtained

using similar methods.

In this paper we have presented the theory of q-BF’s, using the gen-

erating function method as starting point. We have seen that, within

such a context, one can verify the treatment of the various forms so far

introduced and that one can go a step further in proposing modified forms

and generalized q-BF’s with more than one variable. An alternative treat-

ment, based on an algebraic point of view, is that of Floreanini and

Vinet [6], [10]. Their approach, certainly more general than the present

analysis, should be considered as an effort to frame the q-special functions

within the framework of the theory of quantum groups. Albeit less am-

bitious, the present analysis offers a possibility to understand the details

of q-BF theory in a more classical sense, without any recourse to group

theoretical concepts and to the generalized hypergeometric functions.

Fig. 1 Comparison between the first three q-BF’s J
(1)
n (x|q) (n = 0, 1, 2, q = 1.1) and

the ordinary BF.
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Fig. 2 Same as fig. 1 for J
(2)
n (x|q) (n = 0, 1, 2, q = 0.9).

Fig. 3 Comparison between J
(3)
n (x|q) and J

(1)
n (x|q) (n = 0, 1, 2, q = 1.1).
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Fig. 4 a)
I
(1)
n (x|q)
In(x)

vs. x (n = 0, 1, 2; q = 1.1). b) I
(1)
0 (1|q) vs. q.

Appendix

The identity (2.16) can be proved as follows.

Since

(A.1) q− n−1
2

∞∑

s=0

(−1)s
(

x
√

q

2

)n−1+2s

[s]q![n − 1 + s]q!
=

∞∑

s=0

(−1)s
(

x
2

)n−1+2s

qs

[s]q![n − 1 + s]q!
,

using the identity

(A.2) qs = 1 − (1 − q)[s]q ,

we find,

(A.3) q− n−1
2

∞∑

s=0

(−1)s
(

x
√

q

2

)n−1+2s

[s]q![n − 1 + s]q!
= J (1)

n (x|q) + (1 − q)
x

2
j(1)
n (x|q) .
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