q-Bessel functions: the point of view of the generating function method

G. DATTOLI - A. TORRE

Riassunto: Si dimostra che il metodo della funzione generatrice permette di derivare le proprietà delle funzioni di Bessel di tipo q in maniera piuttosto naturale. Si analizzano i tre diversi tipi di funzioni q-cilindriche di prima specie finora proposte, si discutono le loro funzioni generatrici, le relazioni di ricorrenza da loro soddisfatte ed i relativi teoremi di addizione e moltiplicazione. Si introducono inoltre le relative forme modificate e si accenna infine alla possibilità di considerare q-funzioni di Bessel a più variabili e q-polinomi di tipo Kampé de Fériét.

Abstract: We show that the generating function method allows a fairly straightforward understanding of the properties of q-Bessel functions. We analyze three different forms of cylindrical q-Bessel functions so far proposed, discuss their generating functions, the recurrence relations they satisfy, and the relevant addition and multiplication theorems. We also introduce q-Bessel functions of the I-type and touch on the possibility of considering q-Bessel functions with more than one variable, as well as q-Kampé de Fériét polynomials.

1 - Introduction

Mathematicians have explored the intriguing aspects of the q-analysis for more than 150 years [1]. Within this framework q - or the basic ana\log of the operations of the ordinary calculus have been introduced, and

[^0]q-special functions generalizing the conventional functions have been carefully studied.

Basic analogs of Bessel functions (BF's) have been introduced by JACKSON [2], by means of the series $(n=0, \pm 1, \pm 2 \ldots)$

$$
J_{n}^{(1)}(x ; q)=\sum_{r=0}^{\infty} \frac{(-1)^{r}\left[\frac{x}{2(1-q)}\right]^{n+2 r}}{[r]_{q}![n+r]_{q}!}
$$

$$
\begin{equation*}
J_{n}^{(2)}(x ; q)=\sum_{r=0}^{\infty} \frac{(-1)^{r}\left[\frac{x}{2(1-q)}\right]^{n+2 r}}{[r]_{q}![n+r]_{q}!} q^{r(n+r)} \tag{1.1a}
\end{equation*}
$$

a third q-BF has been discussed by Swarthouw [3] and reads

$$
\begin{equation*}
J_{n}^{(3)}(x ; q)=\sum_{r=0}^{\infty} \frac{(-1)^{r}\left[\frac{x}{2(1-q)}\right]^{n+2 r}}{[r]_{q}![n+r]_{q}!} q^{\frac{r(r+1)}{2}} \tag{1.1b}
\end{equation*}
$$

In the above equations we have defined

$$
\begin{align*}
{[n]_{q} } & =\frac{1-q^{n}}{1-q} \\
{[n]_{q}!} & =\prod_{r=1}^{n}[r]_{q}, \quad[0]_{q}!=1 \tag{1.2}
\end{align*}
$$

In the limit $q \rightarrow 1$ the functions $J_{n}^{(k)}((1-q) \cdot x ; q)(k=1,2)$ reduce to the ordinary cylindrical BF .

The properties of q-BF's have been widely discussed in refs. [4], [6]. q-analogs of elementary functions have been introduced as well. The q-exponential, for example, is specified by the series [7]

$$
\begin{equation*}
e_{q}(x)=\sum_{r=0}^{\infty} \frac{x^{r}}{[r]_{q}!}, \tag{1.3}
\end{equation*}
$$

which is uniformly and absolutely convergent for all finite x, when $|q|>$ 1 , while convergence takes place for $|x|<\frac{1}{(1-q)}$, when $|q|<1$. The
function (1.3) does not have the semigroup property, since $e_{q}(x) \cdot e_{q}(y) \neq$ $e_{q}(x+y)$ and therefore $e_{q}(x) e_{q}(-x) \neq 1$. One can, however, introduce the q-complementary exponential, defined by

$$
\begin{equation*}
e_{1 / q}(x)=\sum_{r=0}^{\infty} \frac{x^{r} q^{\frac{r(r-1)}{2}}}{[r]_{q}!} \tag{1.4}
\end{equation*}
$$

for which [3]

$$
\begin{equation*}
e_{q}(x) \cdot e_{1 / q}(-x)=1 \tag{1.5}
\end{equation*}
$$

The existence of q-exponentials and q-BF's suggests that a general approach to the theory of basic analogs of special functions may be accomplished using the concepts and the formalism of the generating function method (see also ref. [6]). Before entering into the specific details of the problem it is worth recalling a few notions regarding the q-derivatives, which will be widely exploited in the following.

The q-differential operator is defined, according to Jackson, as [3]

$$
\begin{equation*}
D_{(q, x)}=\frac{1}{x}\left[\frac{d}{d x}\right]_{q}=\frac{1-\exp \left[q\left(\frac{d}{d x}\right)\right]}{(1-q) x} \tag{1.6}
\end{equation*}
$$

As a consequence of the previous definition, we find

$$
\begin{equation*}
D_{(q, x)} x^{n}=[n]_{q} x^{n-1} \tag{1.7a}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{(q, x)} e_{q}(a x)=a e_{q}(a x), \tag{1.7b}\\
& D_{(q, x)} e_{q}(a x)=a e_{1 / q}(q a x)
\end{align*}
$$

Furthermore, the formula of differentiation by parts can be written as

$$
\begin{equation*}
D_{(q, x)}\left[f_{1}(x) f_{2}(x)\right]=f_{2}\left(q^{-1} x\right) D_{(q, x)} f_{1}(x)+f_{1}(q x) D_{(q, x)} f_{2}(x) \tag{1.8}
\end{equation*}
$$

The previous relations will be exploited in the remaining part of the paper, which is organized as follows. The theory of cylindrical q-BF's and
associated modified forms is addressed in section 2, using the generating function method as starting point. Within such a context in section 3 we will derive their recurrence relations, and discuss properties such as multiplication theorems, integral representation, etc.

The generating functions are exploited in section 4 to introduce alternative forms of q-Hermite polynomials and are further generalized to present a class of q-polynomials, which is understood as the basic analog of the Kampé de Fériét polynomials [8]. The link of these last polynomials with q-BF's having more than one variable [9] is also pointed out. Finally, a brief discussion of the modified q-BF functions is presented in section 5 , where furthermore the q-Bessel differential equation is derived.

2 - Cylindrical q-Bessel functions of first kind

In analogy to the ordinary case, we introduce the generating function

$$
\begin{equation*}
\mathcal{G}_{1}(x ; t \mid q)=e_{q}\left(\frac{x t}{2}\right) e_{q}\left(-\frac{x t^{-1}}{2}\right), \tag{2.1}
\end{equation*}
$$

which converges for any finite x when $|q|>1$ and for $|x|<\left|\frac{2}{1-q}\right|$ when $|q|<1$.

Expanding the q-exponentials according to (1.3) and (1.4) and noting that for $q=1$, eq. (2.1) reduces to the ordinary BF generating function, we set

$$
\begin{aligned}
\mathcal{G}_{1}(x ; t \mid q) & =\sum_{n=-\infty}^{+\infty} t^{n} J_{n}^{(1)}(x \mid q), \\
J_{n}^{(1)}(x \mid q) & =\sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x}{2}\right)^{n+2 s}}{[s]_{q}![n+s]_{q}!} .
\end{aligned}
$$

The q-BF defined by (2.2) is essentially the first of eqs. (1.1) apart from the unessential factor $(1-q)^{-1}$ in the argument.

In a similar way we can prove that the generating function

$$
\begin{equation*}
\mathcal{G}_{2}(x ; t \mid q)=e_{1 / q}\left(\frac{x t}{2}\right) e_{1 / q}\left(-\frac{x q}{2 t}\right) \tag{2.3}
\end{equation*}
$$

leads to the second of (1.1); in fact, (see also ref. [6])

$$
\mathcal{G}_{2}(x ; t \mid q)=\sum_{n=-\infty}^{+\infty} q^{\frac{n(n-1)}{2}} t^{n} J_{n}^{(2)}(x \mid q)
$$

$$
\begin{equation*}
J_{n}^{(2)}(x \mid q)=\sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x}{2}\right)^{n+2 s}}{[s]_{q}![n+s]_{q}!} q^{s(n+s)} \tag{2.4}
\end{equation*}
$$

Finally, it is also easily checked that

$$
\begin{equation*}
\mathcal{G}_{3}(x ; t \mid q)=e_{q}\left(\frac{x t}{2}\right) e_{1 / q}\left(-\frac{x q}{2 t}\right) \tag{2.5}
\end{equation*}
$$

is the generating function of the Swarthouw q - BF , namely,

$$
\mathcal{G}_{3}(x ; t \mid q)=\sum_{n=-\infty}^{+\infty} t^{n} J_{n}^{(3)}(x \mid q)
$$

$$
\begin{equation*}
J_{n}^{(s)}(x \mid q)=\sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x}{2}\right)^{n+2 s}}{[s]_{q}![n+s]_{q}!} q^{\frac{s(s+1)}{2}} \tag{2.6}
\end{equation*}
$$

and it is worth noting that

$$
\begin{equation*}
J_{-n}^{(3)}(x \mid q)=J_{n}^{(3)}\left(-x q \left\lvert\, \frac{1}{q}\right.\right) \tag{2.7}
\end{equation*}
$$

which makes the introduction of a fourth generating function unessential, i.e., being

$$
\begin{equation*}
\mathcal{G}_{4}(x ; t \mid q)=e_{1 / q}\left(\frac{q x t}{2}\right) e_{q}\left(-\frac{x}{2 t}\right)=\mathcal{G}_{3}\left(x q ; t \left\lvert\, \frac{1}{q}\right.\right) . \tag{2.8}
\end{equation*}
$$

The recurrences of the q-BF so far introduced can be established in different ways. Keeping the $D_{(q, x)}$ derivative of both sides of the first of eqs. (2.2), we find

$$
\frac{1}{2}\left[t e_{q}\left(\frac{x t}{2}\right) e_{q}\left(-\frac{x t^{-1}}{2}\right)-\frac{1}{t} e_{q}\left(\frac{q x t}{2}\right) e_{q}\left(-\frac{x t^{-1}}{2}\right)\right]=
$$

$$
\begin{equation*}
=\sum_{n=-\infty}^{+\infty} t^{n} D_{(q, x)} J_{n}^{(1)}(x \mid q) \tag{2.9}
\end{equation*}
$$

Using the generating function (2.1) and equating the t-like powers, we end up with

$$
\begin{equation*}
D_{(q, x)} J_{n}^{(1)}(x \mid q)=\frac{1}{2}\left[J_{n-1}^{(1)}(x \mid q)-q^{\frac{n+1}{2}} J_{n+1}^{(1)}(\sqrt{q} x \mid q)\right] \tag{2.10}
\end{equation*}
$$

On the other hand, since

$$
\begin{align*}
D_{(q ; x)} \mathcal{G}_{1}(x ; t \mid q)= & -\frac{1}{2}\left[\frac{1}{t} e_{q}\left(-\frac{x t^{-1}}{2}\right) e_{q}\left(\frac{x t}{2}\right)+\right. \tag{2.11}\\
& \left.-t e_{q}\left(-\frac{q x t^{-1}}{2}\right) e_{q}\left(\frac{x t}{2}\right)\right]
\end{align*}
$$

we can establish the further recurrence

$$
\begin{equation*}
D(q, x) J_{n}^{(1)}(x \mid q)=\frac{1}{2}\left[q^{\frac{n-1}{2}} J_{n-1}^{(1)}(\sqrt{q} x \mid q)-J_{n+1}^{(1)}(x \mid q)\right] \tag{2.12}
\end{equation*}
$$

which along with (2.10) leads to the difference equation

$$
\begin{equation*}
q^{-\frac{n-1}{2}} J_{n-1}^{(1)}(\sqrt{q} x \mid q)+q^{\frac{n+1}{2}} J_{n+1}^{(1)}(\sqrt{q} x \mid q)=J_{n-1}^{(1)}(x \mid q)+J_{n+1}^{(1)}(x \mid q) \tag{2.13}
\end{equation*}
$$

The second recurrence of $J_{n}^{(1)}(x \mid q)$ can be obtained either deriving the first of (2.2) with respect to $D_{(q, t)}$ or manipulating the series definition.

Multiplying both sides of the second of (2.2) by $[n]_{q}$ and noting that

$$
\begin{equation*}
[n]_{q}=[n+s]_{q}-q^{n}[s]_{q}, \tag{2.14}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
2 \frac{[n]_{q}}{x} J_{n}^{(1)}(x \mid q)=J_{n-1}^{(1)}(x \mid q)+q^{n} J_{n+1}^{(1)}(x \mid q) \tag{2.15}
\end{equation*}
$$

which is reminiscent of the recurrence of the ordinary case. The recurrences (2.10) and (2.12), although connecting the nearest-neighbor indices, link q-BF's with different arguments. It is, however, worth noting that (see Appendix)

$$
\begin{equation*}
q^{-\frac{n-1}{2}} J_{n-1}^{(1)}(\sqrt{q} x \mid q)=J_{n-1}^{(1)}(x \mid q)+(1-q) \frac{x}{2} J_{n}^{(1)}(x \mid q) \tag{2.16}
\end{equation*}
$$

so that, combining eqs. (2.16) and (2.13), we find

$$
\begin{equation*}
\left[D_{(q, x)}-(1-q) \frac{x}{4}\right] J_{n}^{(1)}(x \mid q)=-\frac{1}{2}\left[J_{n-1}^{(1)}(x \mid q)-J_{n+1}^{(1)}(x \mid q)\right] \tag{2.17a}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{\frac{n+1}{2}} J_{n+1}^{(1)}(\sqrt{q} x \mid q)=-(1-q) \frac{x}{2} J_{n}^{(1)}(x \mid q)+J_{n+1}^{(1)}(x \mid q) \tag{2.17~b}
\end{equation*}
$$

Further comments will be presented in the concluding remarks.
To establish the recurrences of $J_{n}^{(2)}(x \mid q)$ we note that setting

$$
\begin{equation*}
y=x \sqrt{q}, \quad v=\frac{t}{\sqrt{q}} \tag{2.18}
\end{equation*}
$$

we obtain from eqs. (2.3) and (2.4)

$$
\begin{equation*}
e_{1 / q}\left(y \frac{v}{2}\right) e_{1 / q}\left(-\frac{y}{2 v}\right)=\sum_{n=-\infty}^{+\infty} J_{n}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right) \tag{2.19a}
\end{equation*}
$$

or, what is the same,

$$
\begin{equation*}
J_{n}^{(1)}\left(\sqrt{q} x \left\lvert\, \frac{1}{q}\right.\right)=q^{\frac{n^{2}}{2}} J_{n}^{(2)}(x \mid q) \tag{2.19b}
\end{equation*}
$$

It is, therefore, evident that

$$
\left[D_{\left(q^{-1}, y\right)}-\left(1-q^{-1}\right) \frac{y}{4}\right] J_{n}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right)=
$$

$$
\begin{equation*}
=\frac{1}{2}\left[J_{n-1}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right)-J_{n+1}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right)\right] . \tag{2.20a}
\end{equation*}
$$

and that

$$
\begin{equation*}
2 \frac{[n]_{q^{-1}}}{y} J_{n}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right)=J_{n-1}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right)+q^{-n} J_{n+1}^{(1)}\left(y \left\lvert\, \frac{1}{q}\right.\right) . \tag{2.20~b}
\end{equation*}
$$

From this last identity we also infer that $J_{n}^{(3)}(x \mid q)$ satisfies the same recurrence (2.15). The possibility of combining (2.20a) and (2.20b) to get
a second-order difference equation for $J_{n}^{(2)}(x \mid q)$ will be discussed in the concluding section.

Regarding the recurrences of the function $J_{n}^{(2)}(x \mid q)$, we can proceed as before. It is, however, worth noting that we can extend the definition (2.6) as follows:

$$
\begin{equation*}
J_{n, \beta}^{(3)}(x \mid q)=\sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x}{2}\right)^{n+2 s}}{[s]_{q}![n+s]_{q}!} q^{\frac{s(s+\beta)}{2}}, \tag{2.21}
\end{equation*}
$$

where β is not necessarily an integer. According to eq. (2.21), we find

$$
\begin{equation*}
J_{n, 1}^{(3)}\left(q^{\alpha} x \mid q\right)=q^{\alpha n} J_{n, 4 \alpha+1}(x \mid q) \tag{2.22}
\end{equation*}
$$

Keeping the $D_{(q, x)}$ derivative of the second of eq. (2.6), we find

$$
\begin{equation*}
D_{(q, x)} J_{n, 1}^{(3)}(x \mid q)=\frac{1}{2}\left[J_{n-1,1}^{(3)}(x \mid q)-q^{n+2} J_{n+1,5}^{(3)}(x \mid q)\right] . \tag{2.23a}
\end{equation*}
$$

The second recurrence relation is given by

$$
\begin{equation*}
2 \frac{[n]_{q}}{x} J_{n, 1}^{(3)}(x \mid q)=\frac{1}{2}\left[J_{n-1,1}^{(3)}(x \mid q)-q^{n} J_{n+1,3}^{(3)}(x \mid q)\right] . \tag{2.23b}
\end{equation*}
$$

The examples we have provided give an idea of the wealth of properties of the q-BF's. An idea of their behavior is also offered by figs. (1-3).

3 - Multiplication and addition theorems

We have already noted that the functions $J_{n}^{(1)}(x \mid q)$ and $J_{n}^{(2)}(x \mid q)$ are linked by relations of the type (2.19). The link between, e.g., $J_{n}^{(2)}(x \mid q)$ and $J_{n}^{(3)}(x \mid q)$ can be obtained noting that (see eq. (1.5))

$$
\begin{equation*}
\mathcal{G}_{2}(x ; t ; q)=\mathcal{G}_{3}(x ; t ; q) \cdot e_{1 / q}\left(\frac{x q}{2 t}\right) \cdot e_{1 / q}\left(-\frac{x q}{2 t}\right) . \tag{3.1}
\end{equation*}
$$

Accordingly, we can write

$$
\begin{equation*}
J_{n}^{(2)}(x \mid q)=q^{-\frac{n(n-1)}{2}} \cdot \sum_{m=0}^{\infty}\left(\frac{x}{2}\right)^{m} q^{\frac{m}{2}(m-1)} J_{n-m}^{(3)}(x \mid q) \cdot A_{m}(q) \tag{3.2}
\end{equation*}
$$

$$
A_{m}(q)=\sum_{s=0}^{m} \frac{(-1)^{s} q^{s(s-m)}}{[m-s]_{q}![s]_{q}!}
$$

An analogous procedure can be exploited to state the multiplication theorem. In fact, using eqs. (2.1) and (2.5), we can write

$$
\begin{equation*}
\mathcal{G}_{1}(\lambda x ; t \mid q)=\mathcal{G}_{3}(x ; \lambda t \mid q) \cdot e_{q}\left(\frac{x q}{2 \lambda t}\right) e_{q}\left(-\frac{\lambda x}{2 t}\right), \tag{3.3}
\end{equation*}
$$

which can be exploited to derive the following theorem:

$$
\begin{equation*}
J_{n}^{(1)}(\lambda x \mid q)=\lambda^{n} \sum_{m=0}^{\infty} q^{m} \cdot A_{m}(\lambda \mid q) \cdot\left(\frac{x}{2}\right)^{m} J_{n+m}^{(3)}(x \mid q) \tag{3.4}
\end{equation*}
$$

$$
A_{m}(\lambda \mid q)=\sum_{s=0}^{m} \frac{(-1)^{s} \lambda^{2 s}}{q^{s}[m-s]_{q}![s]_{q}!}
$$

Further examples can be discussed, but are omitted for the sake of conciseness.

Before discussing the addition theorems, we state a straightforward but important identity

$$
\begin{equation*}
e_{q}\left(\frac{x}{2} t\right) e_{q}\left(\frac{y t}{2}\right)=\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!} O_{n}(x, y \mid q), \tag{3.5a}
\end{equation*}
$$

where

$$
O_{n}(x, y \mid q)=\sum_{s=0}^{n}\left[\begin{array}{l}
n \tag{3.5b}\\
s
\end{array}\right]_{q}\left(\frac{x}{2}\right)^{n-s}\left(\frac{y}{2}\right)^{s}
$$

$$
\left[\begin{array}{c}
n \\
s
\end{array}\right]_{q}=\frac{[n]_{q}!}{[n-s]_{q}![s]_{q}!}
$$

It is clear that $O_{n}(x, y \mid q)$ are polynomials generalizing the ordinary binomial form; furthermore, they satisfy the relations

$$
\begin{equation*}
D_{(q, x)} O_{n}(x, y \mid q)=D_{(q, y)} O_{n}(x, y \mid q)=[n]_{q} O_{n-1}(x, y \mid q) \tag{3.6}
\end{equation*}
$$

According to (3.5a), we can also introduce q-BF's with four variables according to the generating function
(3.7a) $e_{q}\left(\frac{x}{2} t\right) e_{q}\left(\frac{y t}{2}\right) e_{q}\left(-\frac{x^{\prime}}{2 t}\right) e_{q}\left(-\frac{y^{\prime}}{2 t}\right)=\sum_{n=-\infty}^{+\infty} t^{n(1)} J_{n}^{(1)}\left(x, y, x^{\prime}, y^{\prime} \mid q\right)$,
where

$$
\begin{equation*}
{ }^{(1)} J_{n}^{(1)}\left(x, y, x^{\prime}, y^{\prime} \mid q\right)=\sum_{s=0}^{\infty} \frac{(-1)^{s} O_{n-s}(x, y \mid q) O_{s}\left(x^{\prime}, y^{\prime} \mid q\right)}{[n-s]_{q}![s]_{q}!} \text {. } \tag{3.7b}
\end{equation*}
$$

According to the above results, we can prove the theorem

$$
\begin{align*}
\sum_{\ell=-\infty}^{+\infty} J_{n-\ell}^{(1)}(x \mid q) J_{\ell}^{(1)}(y \mid q) & ={ }^{(1)} J_{n}^{(1)}(x, y \mid q) \tag{3.8}\\
{ }^{(1)} J_{n}^{(1)}(x, y \mid q) & ={ }^{(1)} J_{n}^{(1)}(x, y, x, y \mid q)
\end{align*}
$$

Multiplying the l.h.s. of (3.8) by t^{n} and then summing over n, we find

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty} t^{n} & \sum_{\ell=-\infty}^{+\infty} J_{n-\ell}^{(1)}(x \mid q) J_{\ell}^{(1)}(y \mid q)= \\
& =\sum_{\ell=-\infty}^{+\infty} t^{\ell}\left(\sum_{n=-\infty}^{+\infty} t^{n-\ell} J_{n-\ell}^{(1)}(x \mid q)\right) J_{\ell}^{(1)}(y \mid q)= \\
& =e_{q}\left(\frac{x t}{2}\right) e_{q}\left(-\frac{x}{2 t}\right) e_{q}\left(\frac{y t}{2}\right) e_{q}\left(-\frac{y}{2 t}\right)
\end{aligned}
$$

The identity (3.8) follows, therefore, from eqs. (3.5) and (3.7).
The same technique can be exploited to prove an extension of the Graf addition formula, namely,

$$
\begin{equation*}
\sum_{\ell=-\infty}^{\infty} \xi^{\ell} J_{n-\ell}^{(1)}(x \mid q) J_{\ell}^{(1)}(y \mid q)={ }^{(1)} J_{n}^{1}\left(x, y \xi, x, \left.\frac{y}{\xi} \right\rvert\, q\right) \tag{3.10}
\end{equation*}
$$

Addition formulae for q-BF's have been discussed by Floreanini and Vinet [6] within the context of a different formalism employing an algebraic point of view and the use of ${ }_{r} \phi_{s}(\ldots)$ hypergeometric functions.

4 - The generating function and q-Kampé de Fériét polynomials

Let us consider the generating function

$$
\begin{equation*}
\mathcal{F}_{1}(x, y ; t \mid q)=e_{q}(x t) e_{q}\left(y t^{2}\right)=\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!} H_{n}^{(1)}(x, y \mid q), \tag{4.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{n}^{(1)}(x, y \mid q)=[n]_{q}!\sum_{s=0}^{[n / 2]} \frac{x^{n-2 s} y^{s}}{[n-2 s]_{q}![s]_{q}!}, \tag{4.1b}
\end{equation*}
$$

and the symbol $[n / 2]$ denotes the truncated part of $n / 2$. The polynomials (4.1b) are the q-analog of the Kampé de FÉriét polynomials [8] and their recurrences are reported below:

$$
\begin{align*}
D_{(q, x)} H_{n}^{(1)}(x, y \mid q)= & {[n]_{q} H_{n-1}^{(1)}(x, y \mid q) } \\
D_{(q, y)} H_{n}^{(1)}(x, y \mid q)= & {[n]_{q}[n-1]_{q} H_{n-2}^{(1)}(x, y \mid q) } \\
{[n]_{q} H_{n}^{(1)}(x, y \mid q)=} & x D_{(q, x)} H_{n}^{(1)}(x, y \mid q)+ \tag{4.2}\\
& +q^{n} \cdot y D_{(q, y)}\left[H_{n}^{(1)}\left(x, \frac{y}{q^{2}}\right)+H_{n}^{(1)}\left(x, \left.\frac{y}{q} \right\rvert\, q\right)\right] .
\end{align*}
$$

The last expression can also be recast as

$$
\begin{aligned}
H_{n}^{(1)}(x, y \mid q)= & x H_{n-1}^{(1)}(x, y \mid q)+[n-1]_{q} q^{n-2} y H_{n-2}^{(1)}\left(x, \left.\frac{y}{q^{2}} \right\rvert\, q\right)+ \\
& +[n-1]_{q} q^{n-1} y H_{n-2}^{(1)}\left(x, \left.\frac{y}{q} \right\rvert\, q\right)
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
H_{n}^{(1)}(x, y \mid q)= & x H_{n-1}^{(1)}(x, y \mid q)+[n-1]_{q} y H_{n-2}^{(1)}(q x, y \mid q)+ \\
& +[n-1]_{q} q y H_{n-2}^{(1)}(q x, q y \mid q)
\end{aligned}
$$

Without entering into the specific importance of q-type Hermite polynomials, we note that, in analogy to ref. [9], they can be exploited to
introduce q-GBF's. It is, indeed, easily proved that

$$
\begin{equation*}
{ }^{(2)} J_{n}^{(1)}(x, y \mid q)=\sum_{s=0}^{\infty} \frac{H_{n+s}^{(1)}\left(\frac{x}{2}, \left.\frac{y}{2} \right\rvert\, q\right) H_{s}^{(1)}\left(-\frac{x}{2}, \left.-\frac{y}{2} \right\rvert\, q\right)}{[n+s]_{q}![s]_{q}!} \quad(n \geq 0) \tag{4.3}
\end{equation*}
$$

Or, what is the same,

$$
\begin{equation*}
{ }^{(2)} J_{n}^{(1)}(x, y \mid q)=\sum_{\ell=-\infty}^{+\infty} J_{n+2 \ell}^{(1)}(x \mid q) J_{\ell}^{(1)}(y \mid q) \tag{4.4}
\end{equation*}
$$

whose properties will be discussed elsewhere. The theory of q-BF's is, indeed, rich enough to require a separate treatment.

5 - Concluding remarks

In section 2 we mentioned cylindrical q-BF's of the first kind only. However, there is no prescription against the introduction of modified forms, defined through the generating function

$$
\mathcal{G}_{1}(x ; t \mid q)=e_{q}\left(\frac{x t}{2}\right) e_{q}\left(\frac{x}{2 t}\right)=\sum_{n=-\infty}^{+\infty} t^{n} I_{n}^{(1)}(x \mid q)
$$

$$
\begin{equation*}
I_{n}^{(1)}(x \mid q)=\sum_{s=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{n+2 s}}{[n+s]_{q}![s]_{q}!} \tag{5.1}
\end{equation*}
$$

The properties of $I_{n}^{(1)}(x \mid q)$ are listed below

$$
I_{-n}^{(1)}(x \mid q)=I_{n}^{(1)}(x \mid q)
$$

$$
\begin{align*}
I_{n}^{(1)}(-x \mid q) & =(-1)^{n} I_{n}^{(1)}(x \mid q) \tag{5.2a}\\
I_{n}^{(1)}(i x \mid q) & =i^{n} J_{n}^{(1)}(x \mid q)
\end{align*}
$$

and

$$
\frac{2[n]_{q}}{x} I_{n}^{(1)}(x \mid q)=I_{n-1}^{(1)}(x \mid q)-q^{n} I_{n}^{(1)}(x \mid q)
$$

$$
\begin{equation*}
\left[D_{(q, x)}+(1-q) \frac{x}{4}\right] I_{n}^{(1)}(x \mid q)=\frac{1}{2}\left[I_{n-1}^{(1)}(x \mid q)+I_{n+1}^{(1)}(x \mid q)\right] \tag{5.2b}
\end{equation*}
$$

Furthermore, fig. 4 yields an idea of their behavior as functions of x and q. We omit the discussion of the functions $I_{n}^{(2,3)}(x \mid q)$ for the sake of conciseness.

The recurrence relations can now be exploited to derive the q-analog of the Bessel equation. Combining, indeed, eqs. (2.15) and (2.17a), we find [6]

$$
\left\{\frac{[n]_{q}}{x}-D_{(q, x)}+(1-q) \frac{x}{4}\right\} J_{n}^{(1)}(x \mid q)=\frac{\left(1+q^{n}\right)}{2} J_{n+1}^{(1)}(x \mid q),
$$

$$
\begin{equation*}
\left\{\frac{[n]_{q}}{x}+q^{n}\left[D_{(q, x)}+(1-q) \frac{x}{4}\right]\right\} J_{n}^{(1)}(x \mid q)=\frac{\left(1+q^{n}\right)}{2} J_{n-1}^{(1)}(x \mid q) \tag{5.3a}
\end{equation*}
$$

Defining the shifting operators

$$
\begin{align*}
& \hat{E}_{+, n}=\frac{2}{\left(1-q^{n}\right)}\left\{\frac{[n]_{q}}{x}-D_{(q, x)}+(1-q) \frac{x}{4}\right\} \\
& \hat{E}_{-, n}=\frac{2}{\left(1+q^{n}\right)}\left\{\frac{[n]_{q}}{x}+q^{n}\left[D_{(q, x)}-(1-q) \frac{x}{4}\right]\right\} \tag{5.3b}
\end{align*}
$$

which turn $J_{n}^{(1)}(x \mid q)$ into $J_{n+1}^{(1)}(x \mid q)$ and $J_{n-1}^{(1)}(x \mid q)$ respectively, and noting that

$$
\begin{equation*}
\hat{E}_{-, n+1} \hat{E}_{+, n} J_{n}^{(1)}(x \mid q)=J_{n}^{(1)}(x \mid q) \tag{5.3c}
\end{equation*}
$$

we end up with

$$
\begin{align*}
& \left\{q^{n+1} D_{(q, x)}^{2}+\left[\frac{[n]_{q}^{2}}{x}(1-q)+\frac{q^{n}}{x}-q^{n+1}\left(1-q^{2}\right) \frac{x}{4}\right] D_{(q, x)}+\right. \\
& \quad-\frac{[n]_{q}^{2}}{x^{2}}-\frac{1-q^{2}}{4}\left([n]_{q}[n+1]_{q}+q^{n}+q^{n+1}(1-q)^{2} \frac{x^{2}}{16}\right)+ \tag{5.4}\\
& \left.\quad+\frac{\left(1+q^{n}\right)\left(1+q^{n+1}\right)}{4}\right\} J_{n}^{(1)}(x \mid q)=0
\end{align*}
$$

which reduces to the ordinary Bessel equation in the limit $q \rightarrow 1$.
It is interesting to note that, unlike the ordinary case, in the large x limit, eq. (5.4) does not indicate that $J_{n}^{(1)}(x \mid q)$ is an oscillating function
with decreasing amplitudes. The presence of the term $\frac{(1-q)^{2}}{16} x^{2}$ raises the doubt, supported by fig. 1, that the amplitudes increase. However, this problem will be dealt with in a forthcoming paper.

The q-Bessel equations for $I_{n}^{(1)}(x \mid q)$ and $J_{n}^{(2)}(x \mid q)$ can be obtained using similar methods.

In this paper we have presented the theory of q-BF's, using the generating function method as starting point. We have seen that, within such a context, one can verify the treatment of the various forms so far introduced and that one can go a step further in proposing modified forms and generalized q-BF's with more than one variable. An alternative treatment, based on an algebraic point of view, is that of Floreanini and Vinet [6], [10]. Their approach, certainly more general than the present analysis, should be considered as an effort to frame the q-special functions within the framework of the theory of quantum groups. Albeit less ambitious, the present analysis offers a possibility to understand the details of q-BF theory in a more classical sense, without any recourse to group theoretical concepts and to the generalized hypergeometric functions.

Fig. 1 Comparison between the first three q-BF's $J_{n}^{(1)}(x \mid q)(n=0,1,2, q=1.1)$ and the ordinary BF .

Fig. 2 Same as fig. 1 for $J_{n}^{(2)}(x \mid q)(n=0,1,2, q=0.9)$.

Fig. 3 Comparison between $J_{n}^{(3)}(x \mid q)$ and $J_{n}^{(1)}(x \mid q)(n=0,1,2, q=1.1)$.

Fig. 4 a) $\frac{I_{n}^{(1)}(x \mid q)}{I_{n}(x)}$ vs. $x(n=0,1,2 ; q=1.1)$. b) $I_{0}^{(1)}(1 \mid q)$ vs. q.

Appendix

The identity (2.16) can be proved as follows.
Since

$$
\begin{equation*}
q^{-\frac{n-1}{2}} \sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x \sqrt{ }}{2}\right)^{n-1+2 s}}{[s]_{q}![n-1+s]_{q}!}=\sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x}{2}\right)^{n-1+2 s} q^{s}}{[s]_{q}![n-1+s]_{q}!} \tag{A.1}
\end{equation*}
$$

using the identity

$$
\begin{equation*}
q^{s}=1-(1-q)[s]_{q}, \tag{A.2}
\end{equation*}
$$

we find,
(A.3) $\quad q^{-\frac{n-1}{2}} \sum_{s=0}^{\infty} \frac{(-1)^{s}\left(\frac{x \sqrt{q}}{2}\right)^{n-1+2 s}}{[s]_{q}![n-1+s]_{q}!}=J_{n}^{(1)}(x \mid q)+(1-q) \frac{x}{2} j_{n}^{(1)}(x \mid q)$.

Acknowledgements

The authors recognize that this research has been stimulated by Dr.
S. Lorenzutta, whose kind interest and help is gratefully acknowledged.

REFERENCES

[1] G.E. Andrews: q-series: their development and application in analysis, number theory combinations, physics and computer algebra, Conference Board of Mathematical Science N. 66 (Am. Math. Soc., Providence (R.I.) USA, (1986).
[2] F.H. Jackson: The application of basic numbers to bessel's and Legendre functions, Proc. London Math. Soc., 2 (1903-1904), 192-220.
[3] R.F. Swarthouw: An addition theorem and some product formulas for the HahnExton q-Bessel functions, Can. J. Math., 44 (1992), 867-879.
[4] M.E.H. Ismail: The zeros of basic Bessel functions, the function $J_{v+\alpha x}(x)$ and associated orthogonal polynomials, J. Math. Anal. Appl., 86 (1982), 1-19.
[5] M.E.H. Ismail: The basic Bessel functions and polynomials, SIAM J. Math. Anal., 12 (1981), 454.
[6] M. Rahman: An integral representation and some transformation properties of q-Bessel functions, Can. J. Math., 40 (1988), 1203.
[7] R. Floreanini - L. Vinet: Addition formulas for q-Bessel functions, J. Math. Phys., 33 (1992), 2984.
[8] N. Ya. Vilenkin - A.U. Klimyk: Representation of Lie groups and special functions, Vol. 3, Kluwer Academic Publisher, Boston (1992), 3.
[9] P. Appell - J. Kampé de Fériét: Fonctions Hypérgeométriques et Hypersphériques, Polynomes d'Hermite, Gauthiers-Villars, Paris (1926).
[10] G. Dattoli - C. Chiccoli - S. Lorenzutta - G. Maino - A. Torre: Computers, Math. Appl., 28 (1994), 71-83.
[11] G. Dattoli - C. Chiccoli - S. Lorenzutta - G. Maino - A. Torre: Generalized Bessel functions and generalized Hermite polynomials, J. Math. Anal. Appl., 178 (1993), 509-516.
[12] G. Dattoli - A. Torre: Theory and application of generalized Bessel functions, Aracne, Roma (1996)
[13] R. Floreanini - L. Vinet: Quantum algebras and q-special functions, Annals of Physics, 221 (1993), 53-70.

Lavoro pervenuto alla redazione il 17 luglio 1996 ed accettato per la pubblicazione il 23 aprile 1997. Bozze licenziate il 30 maggio 1997

Indirizzo DEGLI Autori:

G. Dattoli - A. Torre - ENEA, Dipartimento Innovazione, Settore Fisica Applicata, Centro Ricerche Energia Frascati, P.O. Box 65 - 00044 Frascati, Roma (Italia)

[^0]: Key Words and Phrases: Bessel functions - Generating functions - q-polynomials A.M.S. Classification: 33C10

