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A characterization of hypergraphs

which are products of a finite number of edges

In memory of Giuseppe Tallini

M. BURATTI – G. BUROSCH – P.V. CECCHERINI

Riassunto: In questo articolo si dimostra che un ipergrafo è il prodotto di un nu-
mero finito di spigoli se e soltanto se è intervallo-regolare, ha ogni spigolo “gated” ed ha
almeno un vertice di grado finito. In particolare, ciò dà luogo ad una caratterizzazione
dei grafi di Hamming e degli ipercubi.

Abstract: We prove that a hypergraph is a product of a finite number of edges
if and only if it is interval-regular, satisfies the gated-edge property and has a vertex of
finite degree. As a consequence, we get a characterization of Hamming graphs.

1 – Introduction

The concept of a hypergraph is a generalization of that of a graph. In

much the same way as the theory of functions of several complex variables

is something completely new with respect to that of one complex variable,

hypergraph theory is something different and much more rich than graph

theory. Given a set V of vertices, an edge of a (simple) graph on V is
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a set of two vertices, while an edge of a hypergraph on V is any subset

of V . In other words, hypergraphs are precisely the geometric spaces

(cf. [26]), the main object of combinatorial geometry. This is the general

theory of sets equipped with some distinguished subsets, which are called

in different ways — subspaces, flats, blocks, edges, hyperedges, code words

etc.— according to the different theories and contexts.

One aspect of the theory of hypergraphs —popularized and enriched

by many contributions of Berge [3], [4]— is the extension of theorems

about graphs to hypergraphs. The problem is to find a suitable formula-

tion of the theorems for hypergraphs in such a way that they contain the

graph case as a special case.

It may happen that these generalizations clarify the deep meanings

of the correspondent statements of graph theory and lead to new devel-

opments of the theory itself. This is the case of the theorem considered

in this paper.

Both (connected) graphs and hypergraphs can be considered as met-

ric spaces. This point of view has been very successeful for graph theory

(cf. [5], [28]), and could be useful also for hypergraphs.

In this paper, using the concept of gated set in a metric space (cf. [17]),

we consider, from a metric point of view, hypergraphs which are prod-

ucts of a finite number of edges. This class of hypergraphs is a “good”

extension of a very famous class of graphs, the celebrated hypercubes.

The hypercube Qn is the graph whose set of vertices is the set of ordered

n-tuples of 0’s and 1’s, and two n-tuples are adjacent if they differ in

one component. A vertex of Qn can be identified with the characteristic

function of a subset of a fixed set X with n elements, so that Qn appears

to be the undirected graph associated with the Hasse diagram of the lat-

tice P (X) of subsets of X. The hypercube Qn is from a theoretical and

practical point of view one of the most fascinating graphs, see [21]. This

is the reason why many characterizations of Qn have been given; the first

one was due to Foldes [18]; see [7], [9], [15], [25], [27] for overviews.

Another crucial problem is to characterize those graphs which are iso-

metrically embeddable in a hypercube; this problem was solved in two

different ways by Djokovic [16] and by Graham and Winkler [19].

The importance of hypercubes suggests to study some “good” gen-

eralizations of them. One is the so called “q-analogue of Qn”, introduced

in [12], [13] as the undirected graph associated with the Hasse diagram of
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the lattice of subspaces of the n-dimensional vector space over the finite

field with q elements; a further generalization in this direction is obtained

by considering, instead of the vector space, any finite (and possibly re-

ducible) projective space, cf. [14].

Another generalization of Qn, going in the same direction developed

in this paper, is the so called cube-hypergraph Q(n, t), introduced in [10],

[11]. This is the hypergraph having {0, 1, . . . , t − 1}n as set of vertices

and having as edges any set {(a1, a2, . . . , xk, . . . , an)}, where the aj’s are

fixed and xk runs over {0, 1, . . . , t − 1}. When t is a prime number, then

the vertex set of Q(n, t) can be identified with the set of points of the

n-dimensional affine space over the field with t elements and the edge set

of Q(n, t) can be identified with the set of lines parallel to the coordi-

nate axes. Note that Q(n, 2) = Qn. The cube-hypergraph Q(n, t) has

been characterized in [11], and the hypergraphs which are isometrically

embeddable in Q(n, t) are characterized in [10]; when t = 2, these re-

sults give well known theoremes for Qn. The hypergraph Q(n, t) can be

also introduced as a suitable Cayley hypergraph, via a group theoretical

approach considered in [6].

As the cube-hypergraph Q(n, t) turns out to be the product of the n

edges X1 = . . . = Xn = {0, 1, . . . , t − 1}, it is quite natural to consider

all those hypergraphs which are product of n arbitrary edges X1, . . . , Xn,

where the Xk’s are not necessarily finite and not necessarily of the same

cardinality. This level of generality is optimal, in the sense that it clarifies

completely the structure of the Q(n, t)’s and in particular the structure

of the hypercubes Qn’s. In this paper a characterization of such general

hypergraphs is given.

Another link between graphs and hypergraphs is presented in Sec-

tion 4. With any hypergraph one can associate its adjacency graph

and with any graph one can associate its clique-hypergraph. This leads

to a method for carrying certain theorems from graphs to hypergraphs

and conversely. For instance our mentioned characterization gives a new

characterization of the (general) n-dimensional Hamming graphs, i.e. of

graphs which are product of n possibly infinite complete graphs. Finite

Hamming graphs of dimension n are another important generalization of

the hypercubes Qn’s; characterizations and properties of them have been

intensively investigated in the recent literature, cf. [1], [2], [8], [23], [24],

[27], [30].
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2 – Basic concepts

A hypergraph on a set V is a pair H = (V,E) where E is a set of

subsets of V . The elements of V and of E are called vertices and edges

respectively. H is simple if any two distinct edges of H are not in the

inclusion relation. H is called t-uniform if every edge of H has t vertices.

A 2-uniform hypergraph is a simple graph, and conversely. The degree,

d(x), of a vertex x is the number of edges containing x. H is called

locally finite if any vertex has a finite degree. H is called connected if

for any two distinct vertices x and y there exists an xy-path, that is a

sequence p(x, y) = x1Y1x2Y2 . . . xdYdxd+1, where the xi’s are vertices and

the Yi’s are edges such that x1 = x, xd+1 = y and {xi, xi+1} ∈ Yi, for any

i = 1, . . . , d. The integer d is the length of p(x, y). An xy-geodesic is an

xy-path of minimum length. The distance d(x, y) between x and y is the

length of any xy-geodesic. The diameter of H, denoted by diam(H), is

the maximum distance between any pair of vertices of H. In the following

any hypergraph under consideration will be simple and connected.

Denote by Γ(x, y) the set of xy-geodesics and by γ(x, y) its cardinal-

ity. Then denote by N1(x, y) the set of neighbours of x which are on at

least one xy-geodesic. In other words:

N1(x, y) := {z ∈ V : d(x, z) = 1, d(y, z) = d(x, y) − 1} .

Following a terminology introduced for graphs by Mulder [25], H is

said to be interval-regular when one of the following equivalent conditions

is fulfilled (cf. [11]):

(a) γ(x, y) = d(x, y)!, ∀x, y ∈ V .

(b) |N1(x, y)| = d(x, y),∀x, y ∈ V .

Following a terminology used in [17] for subsets of a metric space, we

shall say that an edge X of H is gated if for any vertex y of H there exists

exactly one vertex x of X such that d(y, x) = d(y, X). This vertex x (the

“gate” of X for y, i.e. the vertex of X nearest to y) will be denoted by

ν(X, y); if d(x, y) = j, then d(z, y) = j + 1 for any z ∈ X − {x}. We

shall say that H is a gated-edge hypergraph (or that H has the gated-edge

property) if any edge X of H is gated. When H reduces to a graph, the

gated-edge property reduces to bipartiteness.
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Note that two distinct edges of a gated-edge hypergraph H have at

most one vertex in common, i.e. H is semilinear. Note also that any

gated-edge hypergraph is triangle free.

An isomorphism of hypergraphs, from H = (V, E) to H ′ = (V ′, E′),

is a bijective map f : V → V ′ such that

(k ⊂ V ) k ∈ E ⇐⇒ kf ∈ E′.

We shall say that a hypergraph H = (V, E) is a product of n edges (where

n is an integer ≥ 1) if V is the cartesian product of n sets X1, X2, . . . , Xn

of cardinalities all greater than 1, i.e. V =
n∏

i=1
Xi, and E is the set of those

subsets of V each of which is of type {(a1, . . . , xj, . . . , an) : xj ∈ Xj},

where j ∈ {1, . . . , n}, and ai ∈ Xi.

This hypergraph will be denoted by
n

!
i=1

Xi, according to the fact that it

is the cartesian product of the hypergraphs (Xi, {Xi}), cf. [10]. When all

the Xi’s have the same cardinality t ≥ 2, then the t-uniform hypergraph
n

!
i=1

Xi reduces to the cube-hypergraph Q(n, t) introduced in [10], [11].

Also, if t = 2, then Q(n, 2) = Qn is the celebrated hypercube of dimension

n, which is the graph with vertex set consisting of all the ordered n-tuples

of 0’s and 1’s and in which two vertices are adjacent if and only if they

differ in exactly one component.

In this paper, we give a characterization of hypergraphs which are

products of a finite number of edges. This characterization immediately

implies the characterization of Qn given by Foldes [18] and the char-

acterization of Q(n, t) given in [11]. Note that here the edges may be

infinite sets (possibly of distinct cardinalities) and that also E(H) may

be an infinite set; as an example from geometry, take the hypergraph

whose vertices are the points of the n-dimensional euclidean space and

whose edges are the lines parallel to the coordinate axes.

3 – The characterization

Theorem A. A connected hypergraph H is, up to isomorphism, the

product of n edges if and only if the following conditions hold:

(i) H has the gated-edge property;

(ii) H is interval regular;

(iii) H has a vertex of degree n.



378 M. BURATTI – G. BUROSCH – P.V. CECCHERINI [6]

Proof. (=⇒). Suppose H =
n

!
i=1

Xi. Each vertex of H has obviously

degree n. Let a = (ai) and b = (bi) be two distinct vertices of H.

W.l.o.g. we can assume that a and b differ precisely in each of their first

d components, 1 ≤ d ≤ n. We have the following ab-path:

(a1, . . ., an){(x1, a2, . . . , an) : x1 ∈ X1}
(b1, a2, . . . , an){(b1, x2, . . . , an) : x2 ∈ X2}
(b1, b2, a3, . . . , an) . . . {(b1, b2, . . . , bd−1, xd, . . . , an) : xd ∈ Xd}
(b1, b2, . . . , bd, ad+1, . . . , an) .

This is obviously an ab-geodesic (of length d), uniquely determined by

giving a, b and the permutation (1, 2, . . . , d): this permutation shows in

which order the components of a must be changed to those of b. Therefore

the number of ab-geodesics equals the number d! of all permutations of

the set {1, 2, . . . , d}. Then H is connected and interval regular. Moreover

H has the gated-edge property, because for any vertex y = (y1, . . . , yn)

and any edge X = {a1} × . . . × Xi × . . . × {an}, the only vertex x ∈ X

such that d(x, y) = d(x, X) is the vertex x = (a1, . . . , yi, . . . , an).

(⇐=). Suppose now that H is a connected hypergraph satisfying

conditions (i)-(iii). Fix a vertex O ∈ V (H) such that d(O) = n, and let

X1, X2, . . . , Xn ∈ E(H) be the edges of H through O; by semilinearity,

any two distinct of them intersect only in O.

We shall prove that H is isomorphic to
n

!
i=1

Xi, showing that the fol-

lowing map:

f : V (H) → V (
n

!
i=1

Xi) : x 4→ xf = (x1, x2, . . . , xn), where xi = ν(Xi, x) ,

is a hypergraph isomorphism.

Given a vertex v = (v1, v2, . . . , vn) ∈ V (
n

!
i=1

Xi), define weight of v the

integer w(v) := |{i : vi &= O}|. It is clear that for any x ∈ V (H) we have

that ν(Xi, x) &= O iff ν(Xi, x) ∈ N1(O, x), so that:

w(xf ) = |N1(O, x)| = (by interval-regularity) d(x, O) .

Now we prove that f is bijective, i.e. that: “for every v ∈ V (
n

!
i=1

Xi):

(1)v there exists exactly one z ∈ V (H) such that zf = v” .
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We use induction on w(v). If w(v) = 0, i.e. if v = (O, O, . . . , O), then

(1)v is true with z = O. If w(v) = 1, we can assume w.l.o.g. that

v = (v1, O, . . . , O) with v1 &= O; then (1)v is true with z = v1. If w(v) = 2,

we can assume w.l.o.g. that v = (v1, v2, O, . . . , O) with v1 &= O &= v2.

As H is triangle free, we get d(v1, v2) = 2. Then γ(v1, v2) = 2! = 2,

and the set of geodesics between v1 and v2 must be of type Γ(v1, v2) =

{v1X1OX2v2, v1Y1xY2v2} for uniquely determined Y1, Y2 ∈ E(H) and x ∈
V (H) with d(x, O) = 2. Then (1)v is true with z = x.

Let w(v) = d ≥ 3. W.l.o.g. we can assume v = (v1, . . . vd, O, . . . , O)

with v1 &= O, . . . , vd &= O. Set v′ = (v1, . . . , vd−1, O, . . . , O). Then

w(v′) = d − 1 and there exists by induction exactly one y ∈ V (H) such

that yf = v′. We have ν(Xd, y) = O and d(O, y) = w(yf ) = w(v′) = d−1,

so that d(y, vd) = d by the gated-edge property. Therefore N1(y, O) is a

(d − 1)-set contained in the d-set N1(y, vd).

Let z be the unique element of N1(y, vd) \ N1(y, O). It follows that

d(z, vd) = d − 1 and d(z, O) &= d − 2. It is not d(z, O) = d − 1, otherwise

by d(z, vd) = d − 1 and by the gated edge property it would follow the

existence of wd ∈ Xd\{O} such that d(z, wd) = d−2, and hence d(y, wd) ≤
d − 1, which contradicts ν(Xd, y) = O. Then d(z, O) = d.

It follows that ν(Xd, z) = vd. For 1 ≤ i ≤ d − 1 we have that

ν(Xi, y) = vi, so that d(y, vi) = d(y, O) − 1 = d − 2; hence d(z, vi) <

d = d(z, O) and then ν(Xi, z) = vi. Finally ν(Xi, z) = O for every i > d,

otherwise w(zf ) > d. In conclusion zf = v, and this proves that f is

surjective.

Now, to complete the proof of (1)v , we show that if zf = z′f = v =

(v1, . . . , vd, O, . . . , O) , then z = z′. Set N1(z, O) = {a1, a2, ..., ad} and

N1(z
′, O) = {b1, b2, . . . , bd}. Each af

i and each bf
j is a “vector” of weight

d − 1 obtained from v changing to O one of its first d components; there

are precisely d such vectors, and by induction hypothesis each of them

is the image under f of exactly one vertex of H. It follows N1(z, O) =

N1(z
′, O). Let y ∈ N1(z, O) = N1(z

′, O). W.l.o.g. we can assume that

yf = (v1, . . . , vd−1, O, . . . , O) . We shall prove that z = z′ showing that

z, z′ ∈ N1(y, vd) \ N1(y, O) and |N1(y, vd) \ N1(y, O)| = 1.

In order to prove that z, z′ ∈ N1(y, vd), we have to prove that

d(z, vd) = d(z′, vd) = d − 1 and that d(y, vd) = d;
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these follow from

d(z, O) = d(z′, O) = w(zf ) = d, ν(Xd, z) = ν(Xd, z
′) = vd

and from

d(y, O) = w(yf ) = d − 1, ν(Xd, y) = O

respectively.

We have z, z′ /∈ N1(y, O), otherwise we would get d(z, O) = d(z′, O) =

d(y, O)−1 = d−2. Finally |N1(y, vd)\N1(y, O)| = d(y, vd)−d(y, O) = 1.

In conclusion, f is a bijection.

Now we prove that if X ∈ E(H) then Xf ∈ E(
n

!
i=1

Xi). We can

assume w.l.o.g. that

X ={x, y, . . . }, ν(X, O)=x, d(x, O)=d − 1, d(z, O)=d

for all z ∈ X \ {x},

xf =(v1, . . . , vd−1, O, . . . , O), yf =(v1, . . . , vd−1, yd, O, . . . , O),

v1 &= O, . . . , vd−1 &= O, yd &= O.

Let us prove that for all z ∈ X \ {x}, we have:

ν(Xi, z) = vi, for 1 ≤ i ≤ d − 1,(2)

ν(Xd, z) &= O,(3)

ν(Xj, z) = O, for d < j ≤ n.(4)

In fact, (2) immediately follows from the equalities d(z, O) = d, d(z, vi) =

d−1(1 ≤ i ≤ d−1). For proving (3) and (4), suppose on the contrary that

there exists s > d such that ν(Xs, z) = zs &= O. We have d(z, zs) = d − 1

since d(z, O) = d. Therefore d(y, zs) " d. But we have that ν(Xs, y) = O

and d(y, O) = d, so that d(y, zs) = d + 1, a contradiction.

From (2), (3) and (4) we have that z ∈ X implies that zf ∈
{(v1, . . . , vd−1, zd, O, . . . , O) : zd ∈ Xd}, i.e. Xf is included in the edge

X ′ := {(v1, . . . , vd−1, zd, O, . . . , O) : zd ∈ Xd} of
n

!
i=1

Xi. Let us prove that

conversely X ′ ⊂ Xf . As f is bijective any v=(v1, . . . , vd−1, xd, O, . . . , O)

with xd ∈ Xd is of type v = zf for exactly one z ∈ V (H). We have
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to prove that z ∈ X. This is obvious if xd = yd, because in this

case z = y ∈ X. Then let xd &= yd. From d(x, O) = d − 1 and

ν(Xd, x) = O &= xd it follows that

d(x, xd) = d, x ∈ X;

from d(y, O) = d and ν(Xd, y) = yd &= xd, it follows that

d(y, xd) = d, y ∈ X.

Then, by the gated-edge property, there exists z ∈ X such that

d(z, xd) = d − 1, z ∈ X.

Hence ν(Xd, z) = xd. Then, by (2) and (4), we get zf = v with z ∈ X,

as required.

We prove now that, conversely, any edge X ′ ={(v1, v2, . . . , xj, . . . , vn) :

xj ∈ Xj} of
n

!
i=1

Xi is the image X ′ = Xf of an edge X ∈ E(H). Let us

consider the following two vertices of X ′:

v′ = (v1, . . . , vj−1, O, vj+1, . . . , vn) and

v = (v1, . . . , vj−1, yj, vj+1, . . . , vn) with yj &= O.

There are uniquely determined vertices x, y ∈ V (H) such that xf = v′

and yf = v. We shall prove that x and y belong to the same edge X of

H; it will follow that Xf is the unique edge of
n

!
i=1

Xi containing xf and

yf , i.e. that Xf = X ′.

Note that ν(Xj, x) = O, so that d(x, yj) = d + 1, where d := d(x, O).

Now, using an argument similar to that used for proving the surjectivity

of f , we have that the pre-image y of v is determined as the unique

vertex of N1(x, yj) \ N1(x, O). As y ∈ N1(x, yj), we get d(x, y) = 1, i.e.

x and y belong to the same edge of H. This completes the proof of the

theorem.

Remark. In Theorem A, condition (iii) can be replaced by the fol-

lowing condition:

(iii′) diam(H) = n.
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Actually, (iii′) immediately follows from (i)-(iii), by Theorem A. We

prove now that conversely (i), (ii), (iii′) implies (iii). Let x and y be

vertices of H at the maximum distance: d(x, y) = diam(H) = n. Then

|N1(x, y)| = n by (ii) and (b); each edge X of H through x contains

exactly one vertex of N1(x, y) because X is gated by (i); each vertex

of N1(x, y) belongs to exactly one edge of H through x, because H is

semilinear by (i). Therefore x has degree n.

4 – A link between hypergraphs and graphs

Now, we want to show that the above Theorem A allows to get a

characterization of Hamming graphs. To do this, we need some consid-

erations.

Given a graph G = (V,E) and denoted by IE the set of cliques (max-

imal complete subgraphs) of G, define the clique hypergraph of G to be

the hypergraph C(G) := (V, IE).

It is clear that C(G) is connected iff G is connected, and that dC(G)(x, y)

= dG(x, y) for any two vertices x, y ∈ V ; it follows that G is interval-

regular iff C(G) is interval-regular. Moreover, C(G) has the gated-edge

property if and only if G has the gated-clique property, i.e. for any y ∈ V

and for any clique X of G there exists exactly one x ∈ X such that

d(y, X) = d(y, x).

Given any hypergraph H = (V, IE), define the adjacency graph of H

to be the graph A(H) := (V,E), where

(x, y ∈ V ) xy ∈ E : ⇐⇒ dH(x, y) = 1.

Note that for any graph G, we have A(C(G)) = G. If X ∈ IE, then X is

a complete subgraph (not necessarily maximal) of A(H).

It is clear that A(H) is connected iff H is connected, and that

dA(H)(x, y) = dH(x, y) for any two vertices x, y ∈ V ; it follows that H is

interval-regular iff A(H) is interval-regular.

An edge X ∈ IE will be called 1-saturated if it contains any vertex

y ∈ V having distance 1 from all vertices of X − {y}:

(y ∈ V ) [x ∈ X − {y} =⇒ dH(x, y) = 1] =⇒ y ∈ X.
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An edge X ∈ IE is 1-saturated if and only if X is a clique of A(H).

We shall say that a hypergraph H is 1-saturated iff any edge of H is

1-saturated. With this terminology, a graph turns out to be 1-saturated

iff it is triangle free; for such a graph G, A(G) = G and C(A(G)) = G.

For any hypergraph H, we have that C(A(H)) = H iff H is 1-saturated.

If an edge X ∈ IE is gated, then X is 1-saturated (but the converse is

false); so any hypergraph having the gated-edge property is 1-saturated.

Let H be any 1-saturated hypergraph. It is clear that the hypergraph

H has the gated-edge property iff the graph A(H) has the gated-clique

property.

A turns the class of hypergraphs which are product of a finite number

of edges into the class of Hamming graphs, and C turns this class into

the first.

Applying the above links between hypergraphs and graphs, one ob-

tains that the following characterization of Hamming graphs is equivalent

to Theorem A.

Theorem B. A connected graph G is, up to isomorphism, a Hamming

graph if and only if the following conditions hold:

(i) H has the gated-clique property;

(ii) H is interval regular;

(iii) H has a vertex of degree n.

Remark. By the Remark after Theorem A, it follows that in Theo-

rem B, condition (iii) can be replaced by the following condition:

(iii′) diam(G) = n.
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