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Homographic approximation applied

to nonlinear elliptic unilateral problems

M.C. PALMERI

Riassunto: In questo articolo dimostriamo la disuguaglianza di Lewi-Stampacchia
per alcuni problemi unilaterali non lineari, in cui l’operatore è un operatore ellittico di
Leray-Lions. La dimostrazione si basa su un metodo di penalizzazione limitata per
disequazioni variazionali: l’approssimazione omografica.

Abstract: In this paper we prove the Lewi-Stampacchia’s inequality for some
nonlinear unilateral problems involving elliptic operators of Leray-Lions type. The proof
is based on a bounded penalization for elliptic variational inequalities: the homographic
approximation.

– Introduction

Penalization is an interesting method used to prove the existence and

some properties of solutions of variational inequalities. To give a general

definition of penalization, it consists in replacing the elliptic variational

inequality with a class of nonlinear Dirichlet problems which depend upon

a small positive parameter.

Several methods of penalization exist. A classical penality method

was introduced by J.L. Lions [11] and it is applied to nonlinear elliptic
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unilateral problems. Let us consider, for example, the following unilateral

problem with zero obstacle

u ∈ K0 : 〈A(u), v − u〉 ≥ 〈f, v − u〉 for all v ∈ K0 ,

K0 = {v ∈ W 1,p
0 (Ω) : v ≥ 0 almost everywhere in Ω} ,

where A is a coercive, continous, pseudomonotone operator of Leray-Lions

type, acting from W 1,p
0 (Ω) into its dual W −1,p′

(Ω), and f ∈ W −1,p′
(Ω).

One defines the penalized problem

uε ∈ W 1,p
0 (Ω) : A(uε) − 1

ε
(u−

ε )p−1 = f ,

that is, a family of equations perturbed by the addition of a penalization

term, and then one proves that the approximate sequence uε converges,

up to a subsequence, weakly in W 1,p
0 (Ω) to a solution u of the unilateral

problem.

This kind of penalization, involving unbounded mappings in the pe-

nalization term, is called unbounded penalization.

In this paper we consider a kind of bounded penalization, introduced

by C. M. Brauner and B. Nicolaenko in the linear case [9]: the

homographic approximation. In order to explain the salient features of

this technique we describe a simple example.

Let us consider the family of nonlinear problems

uλ ∈ H1
0 (Ω) : −∆uλ + g(x)

uλ

λ + |uλ| = f(x) + g(x)

where f ∈ Lq(Ω), q ≥ 2, is given; g is an arbitrary function in Lq(Ω),

g ≥ 0.

It is proved that the sequence uλ converges strongly in H1
0 (Ω) to a

function u. Then, if g is large enough (g ≥ 1
2
f−), u is the solution of the

unilateral problem

u ∈ K0 :

∫

Ω

DuD(v − u) dx ≥
∫

Ω

f(v − u) dx for all v ∈ K0 ,

K0 = {v ∈ H1
0 (Ω) : v ≥ 0 almost everywhere in Ω} .
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Moreover, if g ≥ f−, each function uλ satisfies the constraint uλ ≥ 0,

the sequence uλ is monotone decreasing and, since 0 ≤ uλ
λ+|uλ| ≤ 1 for ev-

ery λ > 0, we have the well known Lewy-Stampacchia’s inequality [10]

f ≤ −∆u ≤ f+ ,

that gives a result of regularity for u.

It is natural to extend the above results to nonlinear elliptic problems.

We give a contribution in this direction, developing the homographic ap-

proximation if −∆ is replaced by a nonlinear elliptic operator of Leray-

Lions type. In short, our main goal is to prove the Lewy-Stampacchia’s

inequality in the nonlinear case, by using the homographic approxima-

tion. In particolar we will consider two situations. First we will study the

strongly monotone case and, as in the linear case, will give several results

about the approximate sequence; then we will treat the quasilinear case

and we will prove that the approximate sequence is monotone decreasing

with respect to λ; moreover, we will deduce from the Lewy-Stampacchia’s

inequality dependence of the regularity of u on the regularity of the ob-

stacle.

We recall that the Lewy-Stampacchia’s inequality has been extended

by various authors to the case of nonlinear elliptic operators, and used to

prove existence and regularity results (see among others A. Bensoussan,

J. L. Lions [4], A. Bensoussan, L. Boccardo [2], L. Boccardo,

G.R. Cirmi [6], L. Boccardo, T. Gallouët [7], A. Mokrane, F.

Murat [12], U. Mosco [13], U. Mosco, G.M. Troianello [14]).

1 – A nonlinear elliptic unilateral problem

Let A be a nonlinear elliptic differential operator of second order in

divergence form

A(v) = −div a(x, v, Dv) + a0(x, v, Dv) ,

where a, a0 are Carathéodory functions (with values in IRN and IR re-

spectively) such that for every s ∈ IR, ξ ∈ IRN , η ∈ IRN (ξ &= η), and for
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almost every x ∈ Ω,

|a(x, s, ξ)| ≤ β (k(x) + |s|p−1 + |ξ|p−1) ,(1.1)

|a0(x, s, ξ)| ≤ β (k(x) + |s|p−1 + |ξ|p−1) ,(1.2)

(a(x, s, ξ) − a(x, s, η)) · (ξ − η) > 0 , ξ &= η(1.3)

a(x, s, ξ) · ξ ≥ α |ξ|p ,(1.4)

a0(x, s, ξ) s ≥ α0 |s|p ,(1.5)

where α, β are positive real constants, k ∈ Lp′
(Ω), and Ω is a bounded

open set of IRN .

The operator A is then a coercive, continuous, pseudomonotone op-

erator of Leray-Lions type, acting from W 1,p
0 (Ω) into its dual W −1,p′

(Ω).

We assume that the obstacle ψ is a measurable function such that

the closed convex

Kψ := {v ∈ W 1,p
0 (Ω) : v ≥ ψ almost everywhere in Ω}

is not empty and we pick the datum f in Lq(Ω) with q ≥ (p∗)′.

We consider the problem:

(1.6)
u ∈ W 1,p

0 (Ω) : 〈A(u), v − u〉 + Φ(v − ψ) − Φ(u − ψ) ≥
≥ 〈f, v − u〉∀ v ∈ W 1,p

0 (Ω)

where

(1.7) Φ(v) = 2

∫

Ω

gv− dx,

and g is a function satisfying

(1.8) g ≥ 0, g ∈ Lq(Ω), q ≥ (p∗)′ .

Let λ > 0 be fixed. We introduce the homographic approximation

(1.9) A(uλ) + g
uλ − ψ

λ + |uλ − ψ| = f + g uλ ∈ W 1,p
0 (Ω) .
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The existence of a solution of problem (1.9) is a classical result (see

J.L. Lions [11])

Theorem 1.1. The sequence uλ of solutions of (1.9), up to a subse-

quence, converges strongly in W 1,p
0 (Ω) to a solution u of (1.6).

Proof. First we multiply (1.9) by uλ and deduce that uλ is bounded

in W 1,p
0 (Ω); hence we have, up to a subsequence, weak convergence in

W 1,p
0 (Ω) to an element u.

Let us introduce the functional (defined on Lq′
(Ω))

Φλ(v) := Φ(v) − λ

∫

Ω

g log(λ + |v|) dx =

∫

Ω

g[2v− − λ log(λ + |v|)] dx ,

whose differential at the point u is

Φ′
λ(u) = g

(
u

λ + |u| − 1

)
.

Multiplying (1.9) by v − uλ, v ∈ W 1,p
0 (Ω), we deduce

(1.10) 〈A(uλ), v − uλ〉 + 〈Φ′
λ(uλ − ψ), v − uλ〉 = 〈f, v − uλ〉 .

From the convexity of Φλ we obtain

Φλ(v − ψ) − Φλ(uλ − ψ) ≥ 〈Φ′
λ(uλ − ψ), v − uλ〉 ;

hence (1.10) implies

(1.11) 〈A(uλ), v − uλ〉 + Φλ(v − ψ) − Φλ(uλ − ψ) ≥ 〈f, v − uλ〉 .

We remark that for every a ∈ IR | log(λ+ |a|)| ≤ | log λ|+ |a|, if λ is small

enough. Then from

〈A(uλ), uλ − u〉 ≤ Φλ(u − ψ) − Φλ(uλ − ψ) + 〈f, uλ − u〉 ,

and from the former estimates we deduce

lim
λ→0

〈A(uλ), uλ − u〉 ≤ Φ(u − ψ) − lim
λ→0

Φ(uλ − ψ) ,
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finally by Fatou’s lemma

lim
λ→0

〈A(uλ), uλ − u〉 ≤ 0 ,

that is

lim
λ→0

(∫

Ω

(a(x, uλ, Duλ) − a(x, uλ, Du))(Duλ − Du) dx

)
≤ 0 .

Using a standard lemma in the theory of monotone operators, see e.g.

lemma 5 of [8], we obtain that uλ, up to a subsequence, converges strongly

to u in W 1,p
0 (Ω).

Passing to the limit in (1.11), we complete the proof of the theo-

rem.

Let us consider the unilateral problem:

(1.12) u ∈ Kψ : 〈A(u), v − u〉 ≥ 〈f, v − u〉, ∀ v ∈ Kψ .

It is trivial that a solution of (1.6) that satisfies the constraint u ≥ ψ is

a solution of (1.12).

One can see that, if ψ ≡ 0, the condition g ≥ 1
2
f− implies that uλ

converges to u ≥ 0 and the condition g ≥ f− implies uλ ≥ 0 for every

λ > 0.

The general case needs more attention. We assume

(1.13) ψ ∈ W 1,p(Ω), ψ|∂Ω ≤ 0 .

Then we suppose that there exists ā0 ∈ Lq(Ω) such that almost every-

where in {x ∈ Ω : s ≤ ψ(x)}

(1.14) ā0(x) − a0(x, s, ξ) ≥ 0 ,

and that there exists ā ∈ (Lq(Ω))N , with div ā ∈ Lq(Ω), such that

almost everywhere in {x ∈ Ω : s ≤ ψ(x)}

(1.15) (ā(x) − a(x, s, ξ))(Dψ(x) − ξ) ≥ α|Dψ(x) − ξ|p .

Note that if ψ ≡ 0, these assumptions are automatically satisfied with

ā0 ≡ 0, ā ≡ 0. In the linear case, a0(x, s, ξ) = α0s, a(x, s, ξ) = a(x)ξ, so
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that one can take ā0(x) = α0ψ(x), ā(x, s, ξ) = a(x)Dψ(x). In the strongly

monotone nonlinear case, a(x, s, ξ) = a(x, ξ), we can suppose a(x, Dψ) ∈
(Lq(Ω))N , div a(x, Dψ) ∈ Lq(Ω) and take ā(x, s, ξ) = a(x, Dψ(x)).

Theorem 1.2 (g–maximum principle). If g is a function of Lq(Ω)

satisfying

(1.16) g(x) ≥ 1

2
(f(x) + div ā(x) − ā0(x))−, almost everywhere in Ω,

then every solution u of (1.6) belongs to Kψ.

Proof. Choose v = ψ + (u − ψ)+ ∈ W 1,p
0 (Ω) in (1.6); then

〈−div a(x, u, Du) + a0(x, u, Du), (u − ψ)−〉 ≥
∫

Ω

(f + 2g)(u − ψ)− dx ,

and using (1.14), (1.15),

∫

Ω

(−div ā(x) + ā0(x))(u − ψ)− dx − α×

×
∫

Ω

|D(u − ψ)−|p dx ≥
∫

Ω

(f + 2g)(u − ψ)− dx .

Finally, since (1.16) implies

2g + f + div ā − ā0 ≥ 0 ,

we obtain

α

∫

Ω

|D(u − ψ)−|p dx ≤ 0

and so u ≥ ψ almost everywhere in Ω.

The g−maximum principle ensures that, if g is large enough (in the

sense specified by (1.16)), every solution of (1.6) is a solution of (1.12).

In this respect, g may be considered a parameter of transition between

the variational inequalities (1.6) and the unilateral problem (1.12).

Theorem 1.3. Under the assumptions (1.13) to (1.16), the se-

quence uλ of solutions of (1.9), up to a subsequence, converges strongly

in W 1,p
0 (Ω) to a solution u of the unilateral problem (1.12).
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Theorem 1.3 is a direct consequence of the above results.

However, uλ does not belong to Kψ in general. For example in the

simple case A = −∆, f ≤ 0 and ψ ≡ 0, if we take g = 1
2
f− we obtain

uλ ≤ 0. One of the main advantages of the homographic approximation

is the following result.

Theorem 1.4. Let us assume

(1.17) g(x) ≥ (f(x) + div ā(x) − ā0(x))−, almost everywhere in Ω .

Then uλ ∈ Kψ for every λ > 0.

Proof. Multiply (1.9) by (uλ − ψ)− ∈ W 1,p
0 (Ω) to obtain

〈−div a(x, uλ, Duλ)+a0(x, uλ, Duλ), (uλ −ψ)−〉 ≥
∫

Ω

(f +g)(uλ −ψ)− dx ,

and using (1.14), (1.15)

∫

Ω

(−div ā(x) + ā0(x))(uλ − ψ)− dx − α×

×
∫

Ω

|D(uλ − ψ)−|p dx ≥
∫

Ω

(f + g)(uλ − ψ)− dx .

We remark that (1.17) implies

g + f + div ā − ā0 ≥ 0 ,

then

α

∫

Ω

|D(uλ − ψ)−|p dx ≤ 0

and so

uλ ∈ Kψ , for every λ > 0.

As a consequence we can prove the following generalization to the

nonlinear case of the Lewy-Stampacchia’s inequality.

Theorem 1.5 (Lewy-Stampacchia’s inequality).

(1.18) f ≤ A(u) ≤ max{f , −div ā + ā0} in Lq(Ω)
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Proof. We pick g satisfying (1.17); using (1.9) and theorem 1.4 we

obtain

f ≤ A(uλ) ≤ f + g in Lq(Ω) .

Then there exists χ ∈ Lq(Ω) such that A(uλ), up to a subsequence, con-

verges to χ weakly in Lq(Ω) and, as a consequence, strongly in W −1,p′
(Ω).

Nevertheless, since uλ, up to a subsequence, converges to u strongly

in W 1,p
0 (Ω) and A is continuous, A(uλ) converges to A(u) strongly in

W −1,p′
(Ω). We deduce

A(uλ) → A(u) (up to a subsequence) weakly in Lq(Ω)

and so

f ≤ A(u) ≤ f + g inLq(Ω) .

Inequality (1.18) is obtained using the optimal choice of g = (f + div ā −
ā0)

−.

Let us investigate the strongly monotone case. In this specific situ-

ation we can obtain new results about the approximate sequence uλ: uλ

is monotone decreasing as λ decreases to 0; the speed of convergence of

uλ to u in W 1,p
0 (Ω) is of order λ1/p.

We consider the operator A defined, in the case p ≥ 2, by

A(v) = −div a(x, Dv)

where the Carathéodory function a satisfies, for every ξ, η ∈ IRN and for

almost every x ∈ Ω,

a(x, ξ) · ξ ≥ α|ξ|p ,(1.19)

|a(x, ξ)| ≤ β(|h(x)| + |ξ|)p−1 ,(1.20)

(a(x, ξ)−a(x, η)) · (ξ − η) ≥ α|ξ − η|p ,(1.21)

where α, β are positive real constants, and h ∈ Lp(Ω).

Theorem 1.6. Let A be defined by A(v) = −div a(x, Dv) where a

satisfies conditions (1.19), (1.20) and (1.21). We assume that

ψ ∈ W 1,p(Ω), ψ|∂Ω ≤ 0; −div a(x, Dψ) ∈ Lq(Ω)
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and we take g ∈ Lq(Ω) such that

(1.22) g(x) ≥ (f(x) + div a(x, Dψ(x))−, almost everywhere in Ω .

Then each uλ, solution of (1.9), satisfies the constraint uλ ∈ Kψ, the se-

quence uλ converges strongly in W 1,p
0 (Ω) to the solution u of the unilateral

problem (1.12) and the sequence is monotone decreasing as λ decreases

to 0.

Moreover we have the error estimate

(1.23) α‖uλ − u‖p

W
1,p
0

≤ λ‖g‖L1 .

Proof. First we remark that we can apply theorems 1.3 and 1.4 so

that the first part of the result follows.

Let λ1 < λ2. Then

A(uλ1
) + g

uλ1
− ψ

λ1 + uλ1
− ψ

= f + g ,

and

A(uλ2
) + g

uλ2
− ψ

λ2 + uλ2
− ψ

= f + g .

We have

A(uλ2
) − A(uλ1

) = g

[
uλ1

− ψ

λ1 + uλ1
− ψ

− uλ2
− ψ

λ2 + uλ2
− ψ

]
=

= g
−ψ(λ2 − λ1) + λ2uλ1

− λ1uλ2

(λ1 + uλ1
− ψ)(λ2 + uλ2

− ψ)
,

so that

〈A(uλ2
) − A(uλ1

), (uλ2
− uλ1

)−〉 =

=

∫

Ω

g
−ψ(λ2 − λ1) + λ2uλ1

− λ1uλ2

(λ1 + uλ1
− ψ)(λ2 + uλ2

− ψ)
(uλ2

− uλ1
)− dx ≥

≥
∫

Ω

g
(λ2 − λ1)(uλ2

− ψ)

(λ1 + uλ1
− ψ)(λ2 + uλ2

− ψ)
(uλ2

− uλ1
)− dx ≥ 0.
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Using the strong monotonicity of A we deduce

α‖(uλ2
− uλ1

)−‖p

W
1,p
0

≤ 0 ,

and so

uλ1
≤ uλ2

.

It remains to prove estimate (1.23). Since uλ ∈ Kψ, then

〈A(u), uλ − u〉 ≥ 〈f, uλ − u〉

and

〈A(uλ), u − uλ〉 ≥ −λ‖g‖L1 + 〈f, u − uλ〉 .

Using the strong monotonicity of A we deduce

α‖u − uλ‖p

W
1,p
0

≤ 〈A(uλ) − A(u), uλ − u〉 ≤ λ‖g‖L1 .

2 – A quasilinear elliptic unilateral problem

In this section we consider a quasilinear elliptic operator, acting from

H1
0 (Ω) into its dual H−1(Ω):

Q(v) = −div (A(x, v)Dv)

where A(x, s) = (aij(x, s)) is a matrix of Carathéodory such that

aij(x, s) ∈ L∞(Ω × IR),(2.1)

A(x, s)ξ · ξ ≥ α|ξ|2, ∀ ξ ∈ IRN ,(2.2)

|A(x, s)| ≤ β,(2.3)

where α, β > 0;

(2.4) |A(x, s) − A(x, t)| ≤ ω(|s − t|), ∀ s, t ∈ IR,
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where ω(s) is a function such that

(2.5) ω is non decreasing, ω(0) = 0,

∫

0+

ds

ω(s)
= +∞.

Hypotheses (2.1), (2.2) and (2.3) imply that the operator Q is a coer-

cive, continuous, pseudomonotone operator of Leray-Lions type. Remark

that Q is, in general, not a monotone operator since a(x, s, ξ) = A(x, s)ξ

depends on s.

We introduce the penalized problem

(2.6) Q(uλ) + g
uλ − ψ

λ + |uλ − ψ| = f + g uλ ∈ H1
0 (Ω) .

Using theorem 1.1 we deduce that the sequence uλ of solution of (2.6),

up to a subsequence, converges strongly in H1
0 (Ω) to a solution u of

(2.7) u∈H1
0 (Ω) : 〈Q(u), v−u〉+Φ(v−ψ)−Φ(u−ψ)≥〈f, v−u〉,∀ v∈H1

0 (Ω).

We can suppose that ψ ∈ H1(Ω), ψ|∂Ω ≤ 0 and that hypothesis (1.15)

is satisfied, so that we are able to use theorems 1.2 and 1.4; this gives

(2.8) f ≤ Q(u) ≤ max{f,−div ā} in Lq(Ω) ,

where u is a solution of the unilateral problem

(2.9) u ∈ Kψ : 〈Q(u), v − u〉 ≥ 〈f, v − u〉, ∀ v ∈ Kψ .

Now we prove, again using the homographic approximation, that the

inequality (2.8) holds with ā = A(x, ψ)Dψ.

We will use the following result

Proposition 2.1. Let Q be defined by Q(v) = −div ((A(x, v)Dv))

where A satisfies conditions (2.1), (2.2), (2.3) and (2.4).

Then, if

〈Q(u) − Q(v),

∫ w−

0

ds

[ω(s + ε)]2
〉 ≥ 0 for all ε > 0 ,

one has u ≥ v almost everywhere in Ω, where u, v ∈ H1(Ω) are such that

w− = (u − v)− ∈ H1
0 (Ω).
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This proposition is a variant of the comparision result proved in [1].

We give here the proof for the convenience of the reader.

Proof. First we remark that the function
∫ w−

0
ds

[ω(s+ε)]2
belongs to

H1
0 (Ω), for every, ε > 0, and

D

(∫ w−

0

ds

[ω(s + ε)]2

)
=

Dw−

[ω(w− + ε)]2
.

We have ∫

Ω

A(x, u)DuDw−

[ω(w− + ε)]2
dx ≥

∫

Ω

A(x, v)DvDw−

[ω(w− + ε)]2
dx

which implies

∫

Ω

A(x, u)D(u − v)Dw−

[ω(w− + ε)]2
dx ≥

∫

Ω

[A(x, v) − A(x, u)]DvDw−

[ω(w− + ε)]2
dx .

Then

−α

∫

Ω

|Dw−|2
[ω(w− + ε)]2

dx ≥ −
∫

Ω

|Dv||Dw−|
ω(w− + ε)

dx ≥

≥ −
(∫

Ω

|Dv|2 dx

) 1
2

(∫

Ω

|Dw−|2
[ω(w− + ε)]2

dx

) 1
2

.

Then Poincaré’s inequality gives

∫

Ω

[∫ w−

0

ds

ω(s + ε)

]2

dx ≤ c1(α, ‖v‖,Ω) .

Now, if we define E) = {x ∈ Ω: w−(x) ≥ 3} and we assume that meas

E) > 0, for some 3 > 0, we have

∫

E#

[∫ )

0

ds

ω(s + ε)

]2

dx ≤ c1, for every ε > 0 ,

that is a contradiction with (2.5) as ε tends to 0.

Thus w− = 0: that is u ≥ v.
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Theorem 2.1. Let Q be defined by Q(v) = −div ((A(x, v)Dv))

where A satisfies conditions (2.1), (2.2), (2.3) and (2.4).

We suppose that

(2.10) ψ ∈ H1(Ω), ψ|∂Ω ≤ 0; div (A(x, ψ(x))Dψ(x)) ∈ Lq(Ω)

and we take g ∈ Lq(Ω) such that

(2.11) g(x) ≥ (f(x)+div (A(x, ψ(x))Dψ(x)))−, almost everywhere in Ω.

Then each uλ, solution of (2.6), satisfies the constraint uλ ∈ Kψ, the

sequence uλ converges strongly in H1
0 (Ω) to a solution u of the unilateral

problem (2.9) and the sequence is monotone decreasing as λ decreases

to 0.

Proof. Multiply (2.6) by the function
∫ w−

λ
0

ds
[ω(s+ε)]2

, with w−
λ = (uλ−

ψ)−, to get

〈Q(uλ),

∫ w−
λ

0

ds

[ω(s + ε)]2
〉 ≥

∫

Ω

(f + g)

(∫ w−
λ

0

ds

[ω(s + ε)]2

)
dx,

so that, using (2.11),

〈Q(uλ) − Q(ψ),

∫ w−
λ

0

ds

[ω(s + ε)]2
〉 ≥ 0 .

Proposition 2.1 implies

uλ ≥ ψ, almost everywhere in Ω .

Then uλ, up to a subsequence, converges strongly in H1
0 (Ω) to a

solution u of (2.9).

Let λ1 < λ2. Repeating the proof of theorem 1.5, we obtain

〈Q(uλ2
) − Q(uλ1

),

∫ w−

0

ds

[ω(s + ε)]2
〉 ≥ 0 ,

where w− = (uλ2
− uλ1

)−. Proposition 2.1 then implies

uλ2
≥ uλ1

.
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As a consequence, for every λ > 0 fixed, the solution of problem (2.6) is

unique. Moreover, since uλ converges almost everywhere in Ω, the whole

sequence uλ converges strongly in H1
0 (Ω) to a solution u of (2.9).

Finally, proceeding as in the proof of theorem 1.5 and using theo-

rem 2.1, we obtain easily the following result.

Corollary 2.1 (Lewy-Stampacchia’s inequality).

(2.12) f ≤ Q(u) ≤ max{f , −div (A(x, ψ)Dψ)} inLq(Ω).
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