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Homographic approximation applied

to nonlinear elliptic unilateral problems

M.C. PALMERI

RIASSUNTO: In questo articolo dimostriamo la disuguaglianza di Lewi-Stampacchia
per alcuni problemi unilaterali non lineari, in cui ’operatore é un operatore ellittico di
Leray-Lions. La dimostrazione si basa su un metodo di penalizzazione limitata per
disequazioni variazionali: ’approssimazione omografica.

ABSTRACT: In this paper we prove the Lewi-Stampacchia’s inequality for some
nonlinear unilateral problems involving elliptic operators of Leray-Lions type. The proof
is based on a bounded penalization for elliptic variational inequalities: the homographic
approximation.

— Introduction

Penalization is an interesting method used to prove the existence and
some properties of solutions of variational inequalities. To give a general
definition of penalization, it consists in replacing the elliptic variational
inequality with a class of nonlinear Dirichlet problems which depend upon
a small positive parameter.

Several methods of penalization exist. A classical penality method
was introduced by J.L. L1ONs [11] and it is applied to nonlinear elliptic
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unilateral problems. Let us consider, for example, the following unilateral
problem with zero obstacle

u€ Ky: (A(u),v—u) > (f,v—u) for all v € Ky,

Ko = {v e Wy"(Q) : v> 0 almost everywhere in Q},

where A is a coercive, continous, pseudomonotone operator of Leray-Lions
type, acting from W, (Q) into its dual W=7 (Q), and f € W=7 (Q).
One defines the penalized problem

uc € Wib(@) s Alu) = ~(u ) = 1

that is, a family of equations perturbed by the addition of a penalization
term, and then one proves that the approximate sequence u. converges,
up to a subsequence, weakly in W,"*() to a solution u of the unilateral
problem.

This kind of penalization, involving unbounded mappings in the pe-
nalization term, is called unbounded penalization.

In this paper we consider a kind of bounded penalization, introduced
by C. M. BRAUNER and B. NICOLAENKO in the linear case [9]: the
homographic approximation. In order to explain the salient features of
this technique we describe a simple example.

Let us consider the family of nonlinear problems

U\

uy € Hy(Q) : —Auy, +g($)m =

f(x) +g(x)
where f € L9(Q2), ¢ > 2, is given; g is an arbitrary function in L?(Q),
g=0.

It is proved that the sequence u, converges strongly in Hj(f2) to a
function u. Then, if g is large enough (g > 5 f7), u is the solution of the
unilateral problem

uEKO:/DuD(v—u)de‘z/f(v—u)dxforallvEKO,
Q Q

Ky ={ve Hy(Q): v >0 almost everywhere in 2} .



3] Homographic approximation applied etc. 389

Moreover, if g > f~, each function u, satisfies the constraint uy > 0,
the sequence u, is monotone decreasing and, since 0 < ﬁ <1 for ev-
ery A > 0, we have the well known LEWY-STAMPACCHIA’s inequality [10]

fS_Au§f+7

that gives a result of regularity for w.

It is natural to extend the above results to nonlinear elliptic problems.
We give a contribution in this direction, developing the homographic ap-
proximation if —A is replaced by a nonlinear elliptic operator of Leray-
Lions type. In short, our main goal is to prove the Lewy-Stampacchia’s
inequality in the nonlinear case, by using the homographic approxima-
tion. In particolar we will consider two situations. First we will study the
strongly monotone case and, as in the linear case, will give several results
about the approximate sequence; then we will treat the quasilinear case
and we will prove that the approximate sequence is monotone decreasing
with respect to A; moreover, we will deduce from the Lewy-Stampacchia’s
inequality dependence of the regularity of u on the regularity of the ob-
stacle.

We recall that the Lewy-Stampacchia’s inequality has been extended
by various authors to the case of nonlinear elliptic operators, and used to
prove existence and regularity results (see among others A. BENSOUSSAN,
J. L. Lions [4], A. BENsOUsSAN, L. BoccarDO [2], L. BOCCARDO,
G.R. CirMI [6], L. BoccarDO, T. GALLOUET [7], A. MOKRANE, F.
MURAT [12], U. Mosco [13], U. Mosco, G.M. TROIANELLO [14]).

1— A nonlinear elliptic unilateral problem

Let A be a nonlinear elliptic differential operator of second order in
divergence form

A(v) = —diva(z,v, Dv) + ag(x,v, Dv),

where a,ay are Carathéodory functions (with values in IR and IR re-
spectively) such that for every s € R, € € RY, n € RY (¢ # 1), and for
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almost every x € ),

(1.1) la(z, s,&)| < B (k@) + |s|" + [€]F71),

(1.2) lao(x, 5, )| < B (k(z) +[s|"" +1€[77),

(1.3) (a(z,5,8) —alz,5,n)-(£=n) >0, £Fn
(1.4) a(z,s,§) - & = alE]”,

(1.5)

aO(xa 875) s> Qo ‘S‘p )

where «, 8 are positive real constants, k € LPI(Q)7 and  is a bounded
open set of RY.
The operator A is then a coercive, continuous, pseudomonotone op-
erator of Leray-Lions type, acting from Wy () into its dual W—1#'(Q).
We assume that the obstacle 1 is a measurable function such that
the closed convex

Ky :={veWyP(Q) : v>1 almost everywhere in Q}

is not empty and we pick the datum f in L?(Q) with ¢ > (p*)".
We consider the problem:

we WiP(Q) : (Alw),v - u) + (v — o) — Blu— o) >

(1.6) - Ly

> (f,v—wu)Vv e WyP(Q)
where
(1.7) d(v) = Q/ng_ dz,

and g is a function satisfying
(1.8) 9=0,9€L%Q),q= ().

Let A > 0 be fixed. We introduce the homographic approzimation

uy — P

~———=/+ uy € Wy ().
)\+|U)\*¢| f g A 0()

(1.9) A(U,\) +g
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The existence of a solution of problem (1.9) is a classical result (see
J.L. Lions [11])

THEOREM 1.1. The sequence uy of solutions of (1.9), up to a subse-
quence, converges strongly in W, () to a solution u of (1.6).

PROOF. First we multiply (1.9) by uy and deduce that uy is bounded
in Wy* (©); hence we have, up to a subsequence, weak convergence in
W, () to an element .

Let us introduce the functional (defined on L ()

Dy (v) := P(v) — )\/leog()\ + |v|) dz = /Qg[Qv’ — Alog(A + |v|)] dzx,

whose differential at the point u is

w0 =g (5 =)
Multiplying (1.9) by v — uy, v € Wy (Q), we deduce
(1.10) (A(ur), v = un) + (@ (ur = ¥),v —ur) = (f,v —uy) .
From the convexity of ®, we obtain
(v =) — Palun — ) = (R (ur — ), v —un);
hence (1.10) implies
(1.11) (A(uy),v —uy) + Pr(v — ) — Py(uy — ) > (f,v —uy) .

We remark that for every a € IR |log(A+|al)| < |log A|+al, if A is small
enough. Then from

(A(ur), un —u) < Py(u— ) — Pa(ur — V) + (f,un —u),
and from the former estimates we deduce

lim (A(uy), uy — u) < ®(u— ) — lim S(uy — ),

A—0 A—0
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finally by Fatou’s lemma

}\IL%<A(U>\);U>\ —u) <0,

that is

A—0

Tim (/Q(a(:v,uA,DuA) — alx, ux, Du))(Duy — Du) dq:) <0.

Using a standard lemma in the theory of monotone operators, see e.g.
lemma 5 of [8], we obtain that u,, up to a subsequence, converges strongly
to u in W, P(9).

Passing to the limit in (1.11), we complete the proof of the theo-
rem. i

Let us consider the unilateral problem:
(1.12) ue Ky: (Alu),v—u) > (f,v—u), Vv e Ky.

It is trivial that a solution of (1.6) that satisfies the constraint u > v is
a solution of (1.12).

One can see that, if ¢ = 0, the condition g > %f* implies that u,
converges to v > 0 and the condition g > f~ implies uy > 0 for every
A > 0.

The general case needs more attention. We assume

(1.13) € WHP(Q), Ylag < 0.

Then we suppose that there exists a, € L(€2) such that almost every-
where in {z € Q: s <9(x)}

(1.14) ao(x) — ap(x,s,£) >0,

and that there exists a € (L9(Q))Y, with div a € LI(Q), such that
almost everywhere in {z € Q: s <(z)}

(1.15) (a(z) — a(z,5,6))(DY(x) = §) = a|D(z) = £]7.

Note that if ¢ = 0, these assumptions are automatically satisfied with
ap = 0, a = 0. In the linear case, ag(z,s,&) = aps, a(z, s,§) = a(x)E, so
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that one can take ao(z) = apt(z), a(x, s,§) = a(x)Dy(x). In the strongly
monotone nonlinear case, a(z, s,£) = a(x,§), we can suppose a(x, D) €
(L1(Q))N, diva(x, D) € L1(Q) and take a(z, s,&) = a(x, Di(x)).

THEOREM 1.2 (g-maximum principle). If g is a function of Li(2)
satisfying

(1.16) g(x) > =(f(z) +diva(z) — ap(x))~, almost everywhere in €,

| =

then every solution u of (1.6) belongs to K.

PROOF. Choose v =1 + (u — )" € W, ?() in (1.6); then
(—div a(x,u, Du) + ao(z,u, Du), (u —)~) > /Q(f +2g)(u — )" dzx,

and using (1.14), (1.15),

/ (—diva(e) + Go(2))(u — )~ dz — ax

/]Du— ]”dx>/(f+2g)(u—¢)_dx.

Q
Finally, since (1.16) implies
29+ f +diva —ag >0,

we obtain

and so u > 1) almost everywhere in €. 0

The g—maximum principle ensures that, if ¢ is large enough (in the
sense specified by (1.16)), every solution of (1.6) is a solution of (1.12).
In this respect, g may be considered a parameter of transition between
the variational inequalities (1.6) and the unilateral problem (1.12).

THEOREM 1.3.  Under the assumptions (1.13) to (1.16), the se-
quence uy of solutions of (1.9), up to a subsequence, converges strongly
in Wy P(Q) to a solution u of the unilateral problem (1.12).
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Theorem 1.3 is a direct consequence of the above results.

However, u, does not belong to K, in general. For example in the
simple case A = —A, f < 0 and ¢ = 0, if we take g = 1 f~ we obtain
uy < 0. One of the main advantages of the homographic approximation
is the following result.

THEOREM 1.4. Let us assume
(1.17)  g(x) > (f(z) +diva(x) — ag(x))”, almost everywhere in 2.
Then uy € Ky for every A > 0.

PROOF. Multiply (1.9) by (uy — )~ € Wy*(Q) to obtain

(—diva(z, uy, Duy) +ag(z, uy, Duy), (uy—1)") > /Q(f—i—g)(uA—i/J)*dx,

and using (1.14), (1.15)

/Q(—diva(x) +ao(2)) (s — ) dz — ax
< [ IDtus =) P de > [ (f+g)un =) da.
We remark that (1.17) implies
g+ f+diva—ay >0,

then
a/ |D(uy — )" |Pdz <0
Q

and so
uy € Ky, for every A > 0. 0

As a consequence we can prove the following generalization to the
nonlinear case of the Lewy-Stampacchia’s inequality.

THEOREM 1.5 (Lewy-Stampacchia’s inequality).

(1.18) [ < A(u) <max{f, —diva + ap} in L (Q)
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PRrROOF. We pick g satisfying (1.17); using (1.9) and theorem 1.4 we
obtain
f<A@w) < ftgin LQ).

Then there exists x € L9(2) such that A(u,), up to a subsequence, con-
verges to y weakly in L9(2) and, as a consequence, strongly in WLy (Q).
Nevertheless, since u,, up to a subsequence, converges to u strongly
in W, () and A is continuous, A(u,) converges to A(u) strongly in
W17 (Q). We deduce

A(uy) — A(u) (up to a subsequence) weakly in L(12)

and so
fF<A(u) < f+ginLi(Q).

Inequality (1.18) is obtained using the optimal choice of g = (f +diva —
ag)~. 0

Let us investigate the strongly monotone case. In this specific situ-
ation we can obtain new results about the approximate sequence wuy: uy
is monotone decreasing as A decreases to 0; the speed of convergence of
uy to u in Wy P(Q) is of order \/7.

We consider the operator A defined, in the case p > 2, by
A(v) = —diva(z, Dv)

where the Carathéodory function a satisfies, for every &, € RY and for
almost every = € ),

(1.19) a(z,§) - & = af¢]”,
(1.20) la(z, &) < B(|h(x)| + €))7,
(1.21) (a(z,&)—alz,n)) - (€ —n) = al¢ —nl",

where «, 5 are positive real constants, and h € LP(£).

THEOREM 1.6. Let A be defined by A(v) = —diva(x, Dv) where a
satisfies conditions (1.19), (1.20) and (1.21). We assume that

b € WH(Q), ¥log < 0; —diva(z, DY) € LU(Q)
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and we take g € L9(QY) such that
(1.22)  g(x) > (f(x) + diva(z, Dy(x))~, almost everywhere in .

Then each uy, solution of (1.9), satisfies the constraint uy € Ky, the se-
quence uy converges strongly in Wol’p(Q) to the solution u of the unilateral
problem (1.12) and the sequence is monotone decreasing as \ decreases
to 0.

Moreover we have the error estimate

(1.23) alluy —ullf 1, < Allgll -
0
PRrOOF. First we remark that we can apply theorems 1.3 and 1.4 so

that the first part of the result follows.
Let )\1 < )\2. Then

Uy, — Y
A +g—F——=f+g,
(u/\1) g)\1+u)\1 _w f g
and y
Un, —
A +g—2——=f+g.
(UAZ) g)\2+'ll,)\2 _w f g
We have
Uy, — Y Uy, —
Aluy,) — Aluy, ) = L — 2
(ur,) — A(un,) =g W wr—
_ g_w()\z — A1) 4 Aaun, — Auy,
(/\1 + Uxy — Q/))()‘Q =+ Uy — 1/))7
so that

<A(u>\2) - A(uh)v (u)\z - u>\1)_> =

_ / —1(Aa — A1) + Aoy, — Ajuy,
Qg(/\1 +uy, — ) (Aa +uy, — )

()\2 - Al)(qu — ¢> B
> /Qg()\l + Uy, — ) (g + Uy, — ) (UAQ - uxl) dx > 0.

(un, —ur,)” dz >
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Using the strong monotonicity of A we deduce
O‘H(u/\z - u/\1)7 ”svol,p <0,

and so
Uy, < Uy, -

It remains to prove estimate (1.23). Since uy € K, then

(A(u),un —u) = (fux —u)

and
(A(ur),u —un) = =Allgllor + (fiu—un) .

Using the strong monotonicity of A we deduce

ollu = uall 1 < (Alus) = Alu), ux —u) < Allgllzs - 0

2 — A quasilinear elliptic unilateral problem

In this section we consider a quasilinear elliptic operator, acting from
H}(Q) into its dual H~1(Q):

Q(v) = —div (A(z,v)Dv)

where A(x, s) = (a;;(z,s)) is a matrix of Carathéodory such that

(2.1) a;j(z,s) € L(2 x R),
(2.2) Az, 8)E - € > alé]?, VeéeRY,
(2.3) |A(z, s)| < B,

where «, 8 > 0;

(2.4) Az, s) — Alz,t)| <w(|s—t]), VsteR,
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where w(s) is a function such that

ds

(2.5) w is non decreasing, w(0) =0, /0+ )

= +00.

Hypotheses (2.1), (2.2) and (2.3) imply that the operator @ is a coer-
cive, continuous, pseudomonotone operator of Leray-Lions type. Remark
that @ is, in general, not a monotone operator since a(x, s,§) = A(z, s)§
depends on s.

We introduce the penalized problem

uy — P

(2.6) Quy) +g =f+yg uy € Hy(Q).

Using theorem 1.1 we deduce that the sequence u, of solution of (2.6),
up to a subsequence, converges strongly in Hj(2) to a solution u of

(2.7) ue Hy(Q) : (Q(u), v—u)+P(v—1p) =P (u—1)) > (f, v—u), Vv e H)(Q).

We can suppose that ¥ € H*(Q),1]sq < 0 and that hypothesis (1.15)
is satisfied, so that we are able to use theorems 1.2 and 1.4; this gives

(2.8) f < Q(u) <max{f,—diva} in LI(Q),
where u is a solution of the unilateral problem
(2.9) ue Ky: (Qu),v—u) > (f,v—u), Vv e K.

Now we prove, again using the homographic approximation, that the
inequality (2.8) holds with a = A(z,v¢)D1.
We will use the following result

PROPOSITION 2.1. Let Q be defined by Q(v) = —div ((A(x,v)Dwv))
where A satisfies conditions (2.1),(2.2),(2.3) and (2.4).
Then, if

ds

(Q(u) — Q(U),/Ow_ Lo g o) 20 forall =0,

one has u > v almost everywhere in Q, where u,v € H'(Q) are such that
w™ = (u—v)" € H}(Q).
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This proposition is a variant of the comparision result proved in [1].
We give here the proof for the convenience of the reader.

PRrOOF. First we remark that the function [;°
H; (), for every, € > 0, and

o( [ [w(sdj e>12> - [w(u?w+ Sk

A(z,u)DuDw™ A(z,v)DvDw™
)y Bt ar 2, ot v ar

[w(sd%)]Q belongs to

We have
dx

which implies

A(z,u)D(u —v)Dw~ [A(z,v) — A(x,u)|DvDw™
T R (A
Then
|Dw™|? | Dv||Dw™|
R AT L A e L

2_(/Q|Dv,zdx>% (f 2t )

Then Poincaré’s inequality gives

/U ﬁ]dw < o, ol Q).

Now, if we define E, = {v € Q: w (z) > p} and we assume that meas
E, > 0, for some o > 0, we have

J

that is a contradiction with (2.5) as € tends to 0.
Thus w™ = 0: that is © > v. a

4 ds 2 d f 0
TN <
|:/O OJ(S+6):| T < ¢y, Ior everye > U,

e
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THEOREM 2.1.  Let Q be defined by Q(v) = —div ((A(x,v)Dwv))
where A satisfies conditions (2.1),(2.2),(2.3) and (2.4).
We suppose that

(2.10) ) € H'(Q), ¥loa < 0; div (A(z, 9 (x)) D (x)) € LU(Q)
and we take g € LY(Q) such that
(2.11) g(x) > (f(z)+div (A(z, ¥ (z))DY(x)))~, almost everywhere in €.

Then each wy, solution of (2.6), satisfies the constraint uy € K, the
sequence uy converges strongly in H} () to a solution u of the unilateral
problem (2.9) and the sequence is monotone decreasing as A decreases
to 0.

PrOOF. Multiply (2.6) by the function fow; [W(s‘iﬁ,
¥)”, to get

<Q(Ux)a/0w; [w(sdjg)]Q) > /Q(f+9) </0w; w(sdjg)]Q) dz,

so that, using (2.11),

with wy = (uy—

@) - Q). [ =) >0

w(s+e)]?" —
Proposition 2.1 implies
uy > 1, almost everywhere in €.

Then uy, up to a subsequence, converges strongly in H;(Q2) to a
solution u of (2.9).
Let A\; < A2. Repeating the proof of theorem 1.5, we obtain

ds ) >0,

QUur) Q). [ et

where w™ = (uy, — uy,)”. Proposition 2.1 then implies

u,\2 2 U)\l .
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As a consequence, for every A > 0 fixed, the solution of problem (2.6) is
unique. Moreover, since u) converges almost everywhere in €2, the whole
sequence uy converges strongly in Hg () to a solution u of (2.9). O

Finally, proceeding as in the proof of theorem 1.5 and using theo-
rem 2.1, we obtain easily the following result.

COROLLARY 2.1 (Lewy-Stampacchia’s inequality).

(2.12) f < Q(u) < max{f, —div (A(w,¥)Dv)} inLU(Q).
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