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Orthogonal polynomials related to the unit

circle and differential-difference equations

A. CACHAFEIRO – C. SUÁREZ

Riassunto: Si determinano le successioni di polinomi ortogonali sul cerchio unità
che verificano la seguente equazione differenziale alle differenze:

(z − α)(z − β)
φ′

n(z)

n
= (z + αn)φn(z) + βnφn−1(z) .

Le soluzioni sono i polinomi di Szegö ed i polinomi i cui nuclei monici normalizzati sono
ortogonali. Se ne deduce che sul cerchio unità l’equazione considerata e la condizione
di Hahn non sono tra loro equivalenti.

Abstract: In this paper we obtain the orthogonal polynomial sequences, related
to the unit circle, that verify the following differential-difference equation:

(z − α)(z − β)
φ′

n(z)

n
= (z + αn)φn(z) + βnφn−1(z) .

Since these solutions are the Szegö polynomials and those whose normalized monic
kernels are orthogonal, we conclude that on the unit circle the above equation and
Hahn’s condition are not equivalent.

1 – Introduction

Let IP be the space of polynomials with complex coefficients and let u

be a linear continuous functional on IP. We say that u is regular (positive
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definite) if the principal minors of the Hankel matrix associated to the

moment sequence un = u(xn) for n ∈ IN are nonsingular (positive). In

the positive definite case there exists a unique positive measure µ such

that un =
∫
IR xndµ for n ∈ IN.

A regular or positive definite functional u defines a symmetric bilin-

ear form φu on IP × IP, with respect to the shift operator is symmetric.

Therefore, there exists a unique sequence of monic orthogonal polynomi-

als (M.O.P.S.) respect to φu, that is, a family of polynomials {Pn(x)}n∈IN

that satisfies:

deg Pn(x) = n(1)

φu(Pn(x), Pm(x)) = u(Pn(x)Pm(x)) = knδn,m(2)

with kn &= 0 ∀n ∈ IN.

The most extensively studied and widely applied orthogonal systems

are called classical polynomials. This class includes the well-known poly-

nomial systems of Jacobi, Laguerre, Hermite and Bessel. From the differ-

ential point of view these four classical families of orthogonal polynomials

can be characterized by the following equivalent properties:

C-1) They are the only sequences related to a Hankel infinite reg-

ular matrix whose derivatives are again orthogonal polynomials or are

reducible to them by a linear change of independent variable (see [7]).

C-2) The classical families are the only M.O.P.S. related to a Hankel,

infinite and regular matrix that satisfy an ordinary differential equation:

a2(x)y′′(x) + a1(x)y′(x) + a0(x, n)y(x) = 0

with ak(x) ∈ IPk k = 0, 1, 2 (see [2]).

C-3) They are also the only M.O.P.S. related to a Hankel, infinite

and regular matrix whose moment functional satisfies the distributional

equation D(φu) + ψu = 0 where φ(x), ψ(x) ∈ IP2 with deg ψ(x) = 1

(see [4]).

C-4) Finally, in [1], Al-Salam and Chihara have shown that these

classical polynomials are the only orthogonal solutions of the differential-

difference equation:

φ(x)y′
n(x) = (anx + bn)yn(x) + cnyn−1(x)

with φ(x) ∈ IP2.
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On the unit circle T the classical families in the Hahn sense (condition

C-1 before) were characterized in [9]. They are the orthogonal polyno-

mials related to the Lebesgue measure on T and it is easy to prove that

C-2 is only satisfied by the same sequence. Therefore on the unit circle

the Hahn and Bochner characterizations are equivalent.

In this paper we study the corresponding condition C-4; that is we

solve the following problem: Find the orthogonal polynomial sequences

{φn(z)}n∈IN on the unit circle such that there exists a polynomial A(z)

with degree less or equal than two satisfying

A(z)φ′
n(z) = (anz + bn)φn(z) + cnφn−1(z) .

Since the problem for polynomials A(z) of degree one was solved in [11],

in the present paper we restrict ourselves to the case deg A(z) = 2.

2 – Preliminary results

Let Λ be the space of Laurent polynomials, that is, Λ = span{zk}k∈ZZ

and let L : Λ → C be a linear hermitian and regular functional. If we

denote the moments by cn = L(zn) for n ∈ ZZ we say that:

L is hermitian if c−n = cn for all n ∈ IN.

L is regular (positive definite) if the principal submatrices of the

moment matrix are nonsingular (positive), that is,

∀n ≥ 0 ∆n = det (L(zi−j))i=0,...,n;j=0,...,n &= 0(> 0) .

In the positive definite case there exists a Borel finite and positive measure

with infinite support on [0, 2π] such that ∀n cn =
∫ 2π

0 einθdµ(θ).

If we denote by {φn(z)}n∈IN the monic orthogonal polynomial se-

quence related to L (M.O.P.S.(L)), then it is known that {φn(z)}n∈IN

satisfy the following recurrence relations which are equivalent:

φn(z) = zφn−1(z) + φn(0)φ∗
n−1(z)(R1)

φn(z) = (1 − |φn(0)|2)zφn−1(z) + φn(0)φ∗
n(z)(R2)

φ∗
n(z) = φ∗

n−1(z) + φn(0)zφn−1(z)(R3)

φ∗
n(z) = (1 − |φn(0)|2)φ∗

n−1(z) + φn(0)φn(z)(R4)
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where the ∗-operator is defined for a polynomial P (z) of degree n by

P ∗(z) = znP ( 1
z
). Also it is known that in the positive definite case, the

zeros of the corresponding orthogonal polynomials are inside the unit disk

D and therefore ∀n ≥ 1 |φn(0)| < 1.

Conversely, Favard’s theorem, in [5], says that given a sequence of

complex numbers {an}n≥1 with |an| < 1 ∀n ≥ 1 there exists a Borel

finite and positive measure with infinite support on [0, 2π] such that the

sequence defined by (R1) with φn(0) = an is orthogonal with respect to µ.

In the regular case the zeros of the corresponding orthogonal poly-

nomials are not on T and therefore ∀n ≥ 1 |φn(0)| &= 1 (see [11]).

The corresponding theorem of Favard for the regular case can be

formulated as follows:

Given a sequence of complex numbers {an}n≥1 with |an| &= 1 ∀n ≥ 1

there exists a regular hermitian functional L on Λ such that the sequence

defined by (R1) with φn(0) = an is the M.O.P.S.(L).

3 – The difference-differential equation

The following lemma is crucial in our proof of the main result in

theorem 3:

Lemma 1. If {φn(z)}n∈IN is a M.O.P.S. related to T that verifies

the following difference-differential equation:

(3.1) (z − α)(z − β)
φ′

n(z)

n
= (z + αn)φn(z) + βnφn−1(z)

for n ≥ 1, then it holds:

(3.2)

(
(z−α)(z−β)(1+αnz)|φn(0)|2 − (1−αz)(1 − βz)An(z)

)
φ∗

n(z) =

=
(
(1 − αz)(1 − βz)Bn(z) − (z − α)(z − β)βnz2|φn(0)|2)φ∗

n−1(z)

for n ≥ 2 with An(z), Bn(z) ∈ IP1.
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Proof. By taking derivatives in relation (R2) and by applying

that (see [11])

z(φ∗
n(z))

′
= nφ∗

n(z) − (φ′
n(z))

∗

we get:

φ′
n(z) = (1 − |φn(0)|2) (

φn−1(z) + zφ′
n−1(z)

)
+

+
φn(0)

z

(
nφ∗

n(z) − (φ′
n(z))

∗)
.

If we substitute this last expression in (3.1) we obtain:

(3.3)

(1 − |φn(0)|2)
n

(z − α)(z − β)zφn−1(z)+

+
(1 − |φn(0)|2)

n
(z − α)(z − β)z2φ′

n−1(z)+

+ φn(0)(z − α)(z − β)φ∗
n(z)+

− φn(0)

n
(z − α)(z − β)(φ′

n(z))
∗

=

= z(z + αn)φn(z) + βnzφn−1(z) .

By substituting again (3.1) for n − 1 in (3.3) we get

(3.4)

φn(0)

n
(z−α)(z−β)(φ′

n(z))
∗
=

(1−|φn(0)|2)
n

(z−α)(z−β)zφn−1(z)+

+ (1 − |φn(0)|2)n − 1

n
z2(z + αn−1)φn−1(z)+

+ (1 − |φn(0)|2)n − 1

n
βn−1z

2φn−2(z)+

+ φn(0)(z − α)(z − β)φ∗
n(z)+

− z(z + αn)φn(z) − βnzφn−1(z) n ≥ 2 .
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If we multiply by φn(0) and use relations (R3) and (R4)

(3.5)

|φn(0)|2
n

(z − α)(z − β)(φ′
n(z))

∗
=

=
(1 − |φn(0)|2)

n
(z − α)(z − β)

(
φ∗

n(z) − φ∗
n−1(z)

)
+

+ (1 − |φn(0)|2)n − 1

n
z(z + αn−1)

(
φ∗

n(z) − φ∗
n−1(z)

)
+

+ |φn(0)|2(z − α)(z − β)φ∗
n(z)+

+ (1 − |φn(0)|2)n − 1

n
βn−1φn(0)z2φn−2(z)+

− z(z + αn)
(
φ∗

n(z) − (1 − |φn(0)|2)φ∗
n−1(z)

)
+

− βn

(
φ∗

n(z) − φ∗
n−1(z)

)
.

From (R2), by using (R3) we get that

φn(0)z2φn−2(z) =
φ∗

n(z) − (1 + φn(0)φn−1(0)z)φ∗
n−1(z)

(1 − |φn−1(0)|2)
and by substituting in (3.5) we finally obtain:

(3.6)
|φn(0)|2

n
(z − α)(z − β)(φ′

n(z))
∗

= An(z)φ∗
n(z) + Bn(z)φ∗

n−1(z)

with

An(z) =
(1− |φn(0)|2)

n
(z−α)(z−β)+ (1−|φn(0)|2)n−1

n
z(z + αn−1)+

+
(n − 1)

(
1 − |φn(0)|2

)

n
(
1 − |φn−1(0)|2

) βn−1+

+ |φn(0)|2(z − α)(z − β) − βn − z(z + αn)

and

Bn(z) =βn− (1−|φn(0)|2)
n

(z−α)(z−β) −(1−|φn(0)|2)n−1

n
z(z+αn−1)+

−
(n − 1)

(
1 − |φn(0)|2

)

n
(
1 − |φn−1(0)|2

) βn−1

(
1 + φn(0)φn−1(0)z

)
+

+ (1 − |φn(0)|2)z(z + αn) .
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On the other hand, from (3.1), by applying the ∗-operator we have

(3.7) (1 − αz)(1 − βz)
(φ′

n(z))
∗

n
= (1 + αnz)φ∗

n(z) + βnz2φ∗
n−1(z) .

Finally from (3.6) and (3.7) by eliminating (φ′
n(z))

∗
we conclude the

result.

Theorem 1. If {φn(z)}n∈IN is a M.O.P.S. related to T that veri-

fies (3.1) then

φn(0) = 0 ∀n ≥ 5.

Proof. From lemma 1 we have that for n ≥ 2

P3,n(z)φ∗
n(z) = Q4,n(z)φ∗

n−1(z)

with deg P3,n(z) ≤ 3 and deg Q4,n(z) ≤ 4.

Assume that there exists n ≥ 5 such that φn(0) &= 0. Then let

n0 = min {n ∈ IN : n ≥ 5, φn(0) &= 0}

As φn0
(0) &= 0 then φ∗

n0
(z) and φ∗

n0−1(z) have no common roots and

therefore P3,n0
(z) = 0 which implies Q4,n0

(z) = 0, that is:

(3.8) (z − α)(z − β)(1 + αn0
z)|φn0

(0)|2 = (1 − αz)(1 − βz)An0
(z)

and

(3.9) (z − α)(z − β)βn0
|φn0

(0)|2 = (1 − αz)(1 − βz)Bn0
(z) .

By comparing degrees in (3.9) we get βn0
= 0 which implies Bn0

(z) = 0

and therefore

(n0 − 1)βn0−1 = −αβ(1 − |φn0−1(0)|2)

and

(3.10) α + β − (n0 − 1)αn0−1 + αβφn0
(0)φn0−1(0) + n0αn0

= 0 .
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Then going back to (3.1) it follows (z −α)(z −β)
φ′

n0
(z)

n0
= (z +αn0

)φn0
(z)

and so α or β must be a root of φn0
(z). Assume φn0

(α) = 0 which implies

α &= 0 and |α| &= 1.

From (3.6), by applying the ∗-operator

(1 − αz)(1 − βz)
|φn0

(0)|2
n0

φ′
n0

(z) = A∗
n0

(z)φn0
(z) .

If we eliminate φ′
n0

(z) between these two last relations we deduce that

(3.11) (1 − αz)(1 − βz)|φn0
(0)|2(z + αn0

) = (z − α)(z − β)A∗
n0

(z) .

Taking z = α in (3.11) it follows

(3.12) (1 − αβ)(α + αn0
) = 0 .

– If αβ = 1 then β = 1
α

with |β| &= 1. By substituting in (3.1) it holds

that

(z − α)
(
z − 1

α

)φ′
n0

(z)

n0

= (z + αn0
)φn0

(z).

Since φn(z) cannot have symmetric roots with respect to T, then

αn0
= − 1

α
and φn0

(z) = (z − α)n0 .

– If αn0
= −α, then (z − β)

φ′
n0

(z)

n0
= φn0

(z). This implies φn0
(z) =

(z − β)n0 with |β| &= 1 and since φn0
(α) = 0 then α = β.

Next we try to determine n0, taking into account that φn0
(z) =

(z − α)n0 with α &= 0 and |α| &= 1. We distinguish between two cases:

i) If n0 > 5, then φ5(0) = ... = φn0−1(0) = 0 and φn0
(0) &= 0.

In the positive definite case, that is, if |α| < 1 then φn0−1(z) has

simple roots and φn0−1(0) &= 0, (see [10]), which is a contradiction.

In the regular case, φn0−1(z) must have simple roots in D (see [10])

and therefore this implies that n0 = 6 and φ6(z) = (z − α)6.

– In case αβ = 1 then

z(z − α)
(
z − 1

α

)φ′
5(z)

5
= (z2 + α5z + β5)φ5(z)
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As φ5(
1
α
) &= 0, (see [10]), and φ5(α) &= 0 then z

φ′
5(z)

5
= φ5(z), which

implies φ5(z) = z5 and so φ5(0) = 0 which is a contradiction.

– In case α6 = −α which implies β = α we have φ5(
1
α
) &= 0. Also since

φ6(0) &= 0 then φ5(α) &= 0. Therefore φ5(z) = z5 and so φ5(0) = 0

which is a contradiction.

ii) If n0 = 5 we have φ5(z) = (z − α)5 with α &= 0, B5(z) = 0,

β5 = 0 and α5 = −β. If we rewrite (3.8) we have (z − α)(z − β)|φ5(0)|2 =

(1 − αz)A5(z) from which we deduce β = 1
α
. Indeed if β = α then α = 1

α

which implies |α| = 1 (contradiction).

Next we prove that relation (3.1) for n = 5 is not true and thus

φn(0) = 0 ∀n ≥ 5 as we wanted to prove:

In this situation, from (R2) we obtain that:

φ4(z) = z4 +
5α(1 − |α|8)

|α|10 − 1
z3 − 10α2(1 − |α|6)

|α|10 − 1
z2+

+
10α3(1 − |α|4)

|α|10 − 1
z +

5α4(1 − |α|2)
|α|10 − 1

and

φ3(z) = z3 +
50α|α|6(|α|2 − 1)(1 − |α|4) − 5α(1 − |α|8)(|α|10 − 1)

(|α|10 − 1)2(|φ4(0)|2 − 1)
z2+

+
−50α2|α|4(|α|2 − 1)(1 − |α|6) + 10α2(1 − |α|6)(|α|10 − 1)

(|α|10 − 1)2(|φ4(0)|2 − 1)
z+

+
25α3|α|2(|α|2 − 1)(1 − |α|8) − 10α3(1 − |α|4)(|α|10 − 1)

(|α|10 − 1)2(|φ4(0)|2 − 1)

Since β4 = α
4α

(|φ4(0)|2 − 1) and 4α4 = α − 4
α

− 5α|α|8(|α|2−1)

|α|10−1
, if we identify

the coefficients of z in

(z − α)
(
z − 1

α

)φ′
4(z)

4
= (z + α4)φ4(z) + β4φ3(z)

we deduce that |α| = 1 which is impossible.
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Theorem 2. If {φn(z)}n∈IN is a M.O.P.S. related to T that veri-

fies (3.1) then φ4(0) = 0 and φ3(0) = 0.

Proof. At first, we prove that φ4(0) = 0.

Since φ5(0) = 0 then φ5(z) = zφ4(z).

We write (3.1) for n = 5 obtaining:

(z − α)(z − β)
φ4(z) + zφ′

4(z)

5
= (z + α5)zφ4(z) + β5φ4(z),

which implies

z(z − α)(z − β)
φ′

4(z)

5
=

(
4

5
z2 +

[
α5 +

1

5
(α + β)

]
z + β5 − αβ

5

)
φ4(z).

If φ4(0) &= 0 then β5 = αβ
5

and

(z − α)(z − β)
φ′

4(z)

5
=

(
4

5
z + α5 +

1

5
(α + β)

)
φ4(z) .

Therefore φ4(z) must have α or β as a root. If we assume that φ4(α) = 0

then from (3.1) for n = 4 we deduce that β4 = 0.

Let us consider (3.2) for n = 4.

If (z −α)(z −β)(1+α4z)|φ4(0)|2 − (1−αz)(1−βz)A4(z) &= 0 we conclude

that φ∗
4(z) and φ∗

3(z) must have a common root which is impossible if

φ4(0) &= 0.

Then assume

(3.13) (z − α)(z − β)(1 + α4z)|φ4(0)|2 = (1 − αz)(1 − βz)A4(z) ,

which implies B4(z) = 0.

From B4(z) = 0 we obtain that β3 = −αβ
3

(1 − |φ3(0)|2) and 4α4 =

3α3 − (α + β) − αβφ4(0)φ3(0).

From (3.13), following the same argument as in theorem 1, we deduce

that

– If 1 = αβ then α4 = − 1
α
, φ4(z) = (z − α)4, A4(z) = − |φ4(0)|2

α
(z − α)

and thus 3α3 = − 3
α

+ α + αα3φ3(0).
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On the other hand by identifying coefficients in A4(z) we get

3α3 =
α + 3α|α|8 − 3

α
− |α|8

α

1 − |α|8 .

From both expressions of α3, by taking into account that φ3(0) =
4α3(|α|2−1)

1−|α|8 we obtain α = 0 (contradiction).

– If α4 = −α then β = α and φ4(z) = (z − α)4.

By substituting the last in (3.13) it holds that α = 1
α

which is im-

possible.

Therefore φ4(0) = 0.

Next, we prove that φ3(0) = 0.

Following the same argument as in the previous case it holds that

z(z − α)(z − β)
φ′

3(z)

4
=

(
3

4
z2 +

[
α4 +

1

4
(α + β)

]
z + β4 − αβ

4

)
φ3(z).

If φ3(0) &= 0 then β4 = αβ
4

and (z−α)(z−β)
φ′
3(z)

4
=

(
3
4
z + α4 + 1

4
(α + β)

)

φ3(z).

Therefore φ3(z) must have α or β as a root. If we assume that

φ3(α) = 0 then from (3.1) for n = 3 we deduce that β3 = 0 and φ3(z)

and φ′
3(z) must have, at least, a common root.

From (3.2) for n = 3 we obtain

(
(z − α)(z − β)(1 + α3z)|φ3(0)|2 − (1 − αz)(1 − βz)A3(z)

)
φ∗

3(z) =

=
(
(1 − αz)(1 − βz)B3(z)

)
φ∗

2(z) .

By identifying the degrees of both members we have that

α3|φ3(0)|2 − αβa3 = 0,

where a3 is the principal coefficient of A3(z).

Then if we suppose the following polynomial of degree less or equal

than 2 is different from zero (z −α)(z −β)(1+α3z)|φ3(0)|2 − (1−αz)(1−
βz)A3(z) &= 0, it follows that

φ∗
3(z) divides (1 − αz)(1 − βz)B3(z),



414 A. CACHAFEIRO – C. SUÁREZ [12]

then φ∗
3(

1

β
) = 0 and

(3.14) φ∗
2(z) divides (z−α)(z−β)(1+α3z)|φ3(0)|2 −(1−αz)(1−βz)A3(z) .

On the other hand from (3.1) for n = 3, taking into account that β3 = 0

and φ3(β) = 0, we deduce that

φ3(z) = (z − α)2(z − β) and α3 = −α, or

φ3(z) = (z − α)(z − β)2 and α3 = −β

Suppose the first situation (the second is similar), from (3.14) it holds

that φ∗
2(

1
α
) = 0. Therefore φ2(α) = 0 which is impossible.

If

(3.15) (z − α)(z − β)(1 + α3z)|φ3(0)|2 − (1 − αz)(1 − βz)A3(z) = 0

then B3(z) = 0 and from expression of Bn(z) in (3.6) it holds that β2 =

−αβ(1−|φ2(0)|2)

2
and 3α3 = 2α2 − (α + β) − αβφ3(0)φ2(0).

Let z = 1
α

then βα = 1 or α3 = −α.

– If α3 = −α, from (3.1) for n=3 it holds that φ3(z) = (z − β)3 then

α = β and from (3.15) we conclude that α = 1
α
.

– If αβ = 1, from (3.1), for n = 3 it holds that φ3(z) = (z − α)3.

From (3.15) we get A3(z) = − α
α2 |φ3(0)|2(z − α). In this case 2α2 =

− 2
α

+ α − αα2φ2(0).

On the other hand, by identifying coefficients in A3(z) we get

2α2 =
3

1 − |α|6
(

− α

α2 |α|6 + α|α|6+ 1

α
|α|6− 1

α
+

(1−|α|6)(1−|α|2)
3α

)

From both expressions of α2, we deduce φ2(0) = 3α2(|α|2−α)

|α|6−1
and from

the recurrence relations φ2(0) = 3α2(|α|2−1)

|α|6−1
which implies α = 1.

Then necessarily φ3(0) = 0.
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Theorem 3. The M.O.P.S. {φn(z)} such that verifies (3.1) are the

following

φn(z) = zn(3.16)

φn(z) = zn−1(z − α) ∀n ≥ 1 with |α| &= 1 and α &= 0.(3.17)

φn(z) = zn−2(z − α)2 ∀n ≥ 2, φ1(z) = z − 2α

1 + |α|2(3.18)

with |α| &= 1 and α &= 0 .

φn(z) = zn−2(z − α)(z − β) n ≥ 2, and(3.19)

φ1(z) = z +
α(1 − |β|2) + β(1 − |α|2)

|αβ|2 − 1
,

with |α| &= 1, |β| &= 1, α &= β and αβ &= 0 .

Proof. Since φ3(z) = zφ2(z) then from (3.1) for n = 3

(3.20) (z − α)(z − β)
φ2(z) + zφ′

2(z)

3
= (z2 + α3z + β3)φ2(z) .

Next, we distinguish the following cases

– If φ2(α) &= 0 and φ2(β) &= 0 then (z −α)(z −β) = (z2 +α3z +β3) and

from (3.20) it holds that φ2(z) = z2.

– If φ2(α) = φ2(β) = 0 then from (3.1) for n=2 taking z = α and z = β

it holds that φ2(0) = 0 or φ2(z) = (z − α)(z − β) with α &= β.

– If φ2(α) = 0 and φ2(β) &= 0 then from (3.1) for n=2 taking z = α it

holds that φ2(0) = 0 or φ2(z) = (z − α)2.

To sum up, we have the following possibilities for φ2(z)

(i) φ2(0) = 0.

(ii) φ2(z) = (z − α)(z − β) with |α| &= 1 |β| &= 1, αβ &= 0 and α &= β.

(iii) φ2(z) = (z − α)2, |α| &= 1 and α &= 0.

In the case (i) φ2(z) = zφ1(z). If we distinguish the following situations:

– If φ1(α) &= 0 and φ1(β) &= 0 then (z −α)(z −β) = (z2 +α2z +β2) and

φ1(z) = z.
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– If φ1(α) = φ1(β) = 0 then φ1(z) = (z − α).

– If φ1(α) = 0 and φ1(β) &= 0 then φ1(z) = z − α. From (3.1) for n = 1

it holds that β1 = 0 and α1 = −β.

In the case (ii), from (3.1) for n = 2

(z − α)(z − β)
[
z − α + β

2

]
= (z + α2)(z − α)(z − β) + β2φ1(z) .

Taking z = α and z = β in the last expression we obtain β2 = 0 and

α2 = −α+β
2

.

Well now, by applying the descending recurrence relation it holds

that

φ∗
1(z) =

|αβ|2 − 1 + (α + β − |α|2β − |β|2α)z

|αβ|2 − 1
,

then

φ1(z) = z +
α(1 − |β|2) + β(1 − |α|2)

|αβ|2 − 1
.

In the case (iii) from (3.1) for n = 2

(z − α)(z − β)(z − α) = (z + α2)(z − α)2 + β2φ1(z) ,

putting z = α it holds β2φ1(α) = 0.

Taking derivatives in the previous relation and putting z = α in the

resulting expression we get α2 = −β.

By applying the descending recurrence relation we obtain as in (ii)

φ1(z) = z − 2α

1 + |α|2 .
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Remark. If we take into account that the only sequences {φn(z)}
such that the sequences of monic kernel polynomials {K̃n(z, c)} are or-

thogonal are the following

φn(z) = zn−2(z − 1

c
)(z − b) for each n ≥ 2

with 0 &= |c| &= 1 and |c| &= |b| &= 1, (see [11] and [3]), we conclude:

Corollary 1. If {φn(z)} is a M.O.P.S. related to T such that

verifies (3.1) then {φn(z)} is the sequence related to the Lebesgue measure

or {φn(z)} is such that the sequence of normalized kernels {K̃n(z, 1
α
)} are

orthogonal with 0 &= |α| &= 1.

Remark. The sequences of polynomials {φn(z)} given in theorem 3

are solutions of the difference-differential equation (3.1). Next, we obtain

the difference-differential equation for each case.

By substituting in (3.1) after some easy calculations we have:

– If {φn(z)} is given by (3.16) then

(z − α)(z − β)
φ′

n(z)

n
= (z − (α + β)) φn(z) + αβφn−1(z).

In this case the difference-differential equation can be reduced to the

following
φ′

n(z)

n
= φn−1(z)

– If {φn(z)} is given by (3.17) then

(z −α)(z −β)
φ′

n(z)

n
=

(
z − (β +

n − 1

n
α)

)
φn(z)+

n − 1

n
αβφn−1(z).

In this case the difference-differential equation can be reduced to the

following

(z − α)
φ′

n(z)

n
= φn(z) − n − 1

n
αφn−1(z).

– If {φn(z)} is given by (3.18) then

(z − α)(z − β)
φ′

n(z)

n
=

(
z − (β +

n − 2

n
α)

)
φn(z)+

+
n − 2

n
αβφn−1(z),∀ n ≥ 2
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and α1 = α−β−|α|2(α+β)

1+|α|2 , β1 =
α(|α|2−1)(β(|α|2+1)−2α)

(1+|α|2)2

– At last, if {φn(z)} is given by (3.19) then

(z − α)(z − β)
φ′

n(z)

n
=

(
z − n − 1

n
(α + β)

)
φn(z)+

+
n − 2

n
αβφn−1(z),∀ n ≥ 2 .

and

(z − α)(z − β)φ′
1(z) = (z + α1)φ1(z) + β1

with

α1 =
β|α|2(1 − |β|2) + α|β|2(1 − |α|2)

|αβ|2 − 1

and

β1 =
αβ(|αβ|2 − 1)2 − αβ|α|2(1 − |β|2)2

(|αβ|2 − 1)2
+

+
−(α2|β|2 + β2|α|2)(1 − |α|2)(1 − |β|2) − αβ|β|2(1 − |α|2)2

(|αβ|2 − 1)2

4 – The smallest class

Definition 1. Given a linear, regular and hermitian functional L,

we say that L is semiclassical if there exist two polynomials A(z) &= 0 and

B(z) such that

D (A(z)L) = B(z)L

The derivative of a linear hermitian functional means

< DL, P (z) >= −i < L, zP ′(z) > ∀P ∈ Λ.

If deg A(z) = p′ and max{p′ − 1, deg ((p′ − 1)A(z) + iB(z))} = q, we say

that L belongs to the class (p′, q).

Remark. It is obvious that if L is a functional that belongs to the

class (p′, q) then L is a functional that belongs to the class (p′ +1, q +1).

It is known that the sequences {φn(z)} given in theorem 3 are semi-

classical families.
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– If {φn(z)} is given by (3.16) then A(z) = 1 and B(z) = 0 then

(p′, q) = (0, 0).

– If {φn(z)} is given by (3.17) then A(z) = (z −α)(1−αz) and B(z) =

iA(z) then (p′, q) = (2, 1).

– If {φn(z)} is given by (3.18) then A(z) = (z − α)2(1 − αz)2 and

B(z) = 2iA(z) then (p′, q) = (4, 4).

– If {φn(z)} is given by (3.19) then A(z) = (z−α)(z−β)(1−αz)(1−βz)

and B(z) = 2iA(z) then (p′, q) = (4, 4).

Next, we study if the class can be reduced. At first, we recall some

results about semiclassical functionals (see [11]).

Theorem 4. Let S(z) be the series given as follows:

S(z) =
+∞∑

k=0

ckz
k.

If L is a regular functional such that D (A(z)L) = B(z)L, then:

(4.1) zA(z)S′(z) + i (B(z) − izA′(z)) S(z) = C(z)

where C(z) is a polynomial such that deg C(z) ≤ max(p′, q).

Theorem 5. Let L be a regular functional such that D (A(z)L) =

B(z)L and assume that

z − z0 divides gcd(A(z), B(z) − izA′(z)).

Then L verifies

(4.2) D
(
Ã(z)L

)
= B̃(z)L

with A(z) = (z − z0)Ã(z) and B̃(z) = izÃ′(z) + B(z)−izA′(z)

z−z0
if and only if

C(z0) = 0.
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Definition 2. Given a semiclassical functional L. We say that

D (A(z)L) = B(z)L is a smallest class for L if

gcd (A(z), B(z) − izA′(z), C(z)) = 1,

where C(z) is defined in theorem 4.

Corollary 2. If {φn(z)} is given by (3.16) the smallest class is (0, 0).

If {φn(z)} is given by (3.17) the smallest class is (2, 1).

If {φn(z)} is given by (3.18) the smallest class is (2, 2) with Ã(z) =

(z − α)(1 − αz) and B̃(z) = i [(|α|2 + 1)z − 2α].

If {φn(z)} is given by (3.19) the smallest class is (4, 4).

Proof. The first statement is obvious and the second statement it

follows taking into account that the class (1, 0) is the empty set (see [11]).

Next, we prove the third statement.

Let {φn(z)} the M.O.P.S. given by (3.18). In this situation B(z) −
izA′(z) = 2i(1 − αz)(z − α)(αz2 − α).

On the other hand, taking into account that L (φn(z)) = 0 ∀n ≥ 1 it

holds

c1 =
2α

1 + |α|2
and

cn − 2αcn−1 + α2cn−2 = 0 ∀n ≥ 2.

On the assumption c0 = 1 we solve the previous difference equation and

we obtain

cn =
αn

1 + |α|2
(
(n + 1) + (1 − n)|α|2) ∀n ≥ 0,

hence

S(z) =
1

1 + |α|2
(

1 + |α|2 − 2α|α|2z
(1 − αz)2

)
.

From theorem 4, C(z) = 2
1+|α|2 (z − α)(1 − αz) (|α|2z + α(|α|2 + 1)) and

from theorem 5 it follows the result.

In the last case, we obtain B(z) − izA′(z) = i(αz2 − α) whose roots

belong to T. Then gcd(A(z), B(z)− izA′(z)) = 1 and the class cannot be

reduced.
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