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Sobolev-type orthogonal

polynomials and their zeros

D. H. KIM – K. H. KWON – F. MARCELLÁN – S. B. PARK

Riassunto: Nello spazio P dei polinomi in una variabile, essendo σ un funzionale
dei momenti quasi-definito su P, si considera la forma bilineare simmetrica φ(·, ·) defi-

nita in P ×P da φ(p, q) := 〈σ, pq〉+λp(r)(a)q(r)(a)+µp(s)(b)q(s)(b), dove λ, µ, a, b sono
numeri complessi e r, s sono interi non negativi. Si stabilisce una condizione necessa-
ria e sufficiente affinché esista un sistema {Rn(x)}∞

n=0 di polinomi ortogonali relativi
a φ. Si discutono le proprietà algebriche di {Rn(x)}∞

n=0 e si riconosce che, quando σ è
semiclassico, {Rn(x)}∞

n=0 deve soddisfare un’equazione differenziale del secondo ordine
con coefficienti polinomiali. Nel caso in cui σ sia definito positivo e λ, µ, a, b siano reali,
si analizzano le relazioni tra gli zeri di {Rn(x)}∞

n=0 e gli zeri del sistema {Pn(x)}∞
n=0

dei polinomi ortogonali rispetto a σ.

Abstract: When σ is a quasi-definite moment functional on P, the space of poly-
nomials in one variable, we consider a symmetric bilinear form φ(·, ·) on P ×P defined

by φ(p, q) := 〈σ, pq〉+λp(r)(a)q(r)(a)+µp(s)(b)q(s)(b), where λ, µ, a, b are complex num-
bers and r, s are non-negative integers. We find a necessary and sufficient condition
under which there is an orthogonal polynomial system {Rn(x)}∞

n=0 relative to φ and
discuss their algebraic properties. When σ is semi-classical, we show that {Rn(x)}∞

n=0

must satisfy a second order differential equation with polynomial coefficients. When σ
is positive-definite and λ, µ, a, b are real, we investigate the relations between zeros of
{Rn(x)}∞

n=0 and of the system of the orthogonal polinomiels relative to σ.
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1 – Introduction

Let P be the vector space of polynomials with complex coefficients in

one variable and σ a quasi-definite moment functional on P (Chihara [5,

page 16, Def. 3.2]). We consider a symmetric bilinear form on P × P:

(1.1) φ(p, q) := 〈σ, pq〉 + λp(r)(a)q(r)(a) + µp(s)(b)q(s)(b)

where λ, µ, a, b ∈ C with λ &= 0 and r, s are nonnegative integers with

0 ≤ r ≤ s (r < s if a = b). As in the case of moment functionals,

we call φ(·, ·) to be quasi-definite if there is a sequence of polynomials

{Rn(x)}∞
n=0, which are orthogonal relative to φ(·, ·). When r = s = 0,

{Rn(x)}∞
n=0 are ordinary orthogonal polynomials relative to the moment

functional σ + λδ(x − a) + µδ(x − b) and when r + s ≥ 1, {Rn(x)}∞
n=0 are

Sobolev-type orthogonal polynomials.

In this work, we view φ(·, ·) as mass point perturbation of σ. Ever

since H. L. Krall [10] found three new orthogonal polynomials (satis-

fying fourth order differential equations), which are orthogonal relative

to classical weights plus one or two masses at the end points of the in-

terval of orthogonality, many authors handled the problem of adding one

or more mass points to a quasi-definite moment functional. When σ is

positive-definite and λ, µ ≥ 0 and r = s = 0, see [6], [9]. When σ is semi-

classical and µ = r = 0, see [8,14]. When r = s = 0, see [7], [11]. When

σ and λ, a are real and r ≥ 1, µ = 0, see [8], [16], [17]. There are also

many results on various aspects of Sobolev-type orthogonal polynomials

when σ is positive-definite and λ and µ ≥ 0; see [12], [13] and references

therein.

We first find a necessary and sufficient condition for φ(·, ·) to be quasi-

definite (see theorem 2.1), which generalizes results in [7], [11], [14], [16]

and then investigate algebraic properties of {Rn(x)}∞
n=0 in connection

with {Pn(x)}∞
n=0, orthogonal polynomials relative to σ. When σ is semi-

classical, we show that {Rn(x)}∞
n=0 must be solutions of a second order

differential equation with polynomial coefficients, whose degrees are in-

dependent of n. Finally, when σ is positive-definite and λ, µ, a, b are real

3). The third author was partially supported by Dirección General de Investigación
Cientifica y Tecnológica (DGICYT) (PB 93-0229-C02-01) of Spain. This work was

finished during a stay of the third author in KAIST.
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so that Rn(x), n ≥ 0, are real polynomials, we discuss the behavior of

zeros of Rn(x) in connection with zeros of Pn(x).

2 – Orthogonal polynomials {Rn(x)}∞
n=0

For any p(x) in P, we let deg(p) be the degree of p(x) with the

convention that deg(0) = −1.

By a polynomial system (PS), we mean a sequence of polynomials

{Pn(x)}∞
n=0 with deg(Pn) = n, n ≥ 0.

For any symmetric bilinear form φ(·, ·) on P × P, we let

φi,j := φ(xi, xj), i and j ≥ 0 ,

the moments of φ(·, ·) and call φ(·, ·) to be quasi-definite if

∆n(φ) := det[φi,j]
n
i,j=0 &= 0, n ≥ 0 .

It’s easy to see that φ(·, ·) is quasi-definite if and only if there is a unique

monic PS {Rn(x)}∞
n=0 such that

φ(Rm, Rn) = knδmn, m and n ≥ 0 ,

where kn, n ≥ 0, are non-zero constants. In this case, we call {Rn(x)}∞
n=0

the monic orthogonal polynomial system (MOPS) relative to φ(·, ·).
In the following, we always assume that φ(·, ·) is given by (1.1), where

σ is quasi-definite. Let {Pn(x)}∞
n=0 be the MOPS relative to σ and

Kn(x, y) :=
n∑

j=0

Pj(x)Pj(y)

〈σ, P 2
j 〉 , n ≥ 0 ,

the n-th kernel polynomial for {Pn(x)}∞
n=0. We denote ∂i

x∂
j
yKn(x, y) by

K(i,j)
n (x, y).

Theorem 2.1. The symmetric bilinear form φ(·, ·) is quasi-definite

if and only if

(2.1) dn :=

∣∣∣∣∣
1 + λK(r,r)

n (a, a) µK(r,s)
n (a, b)

λK(r.s)
n (a, b) 1 + µK(s,s)

n (b, b)

∣∣∣∣∣ &= 0, n ≥ 0 .
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When φ(·, ·) is quasi-definite, we have

(2.2)

Rn(x) = Pn(x) − λ

dn−1

∣∣∣∣∣
P (r)

n (a) µK
(r,s)
n−1 (a, b)

P (s)
n (b) 1 + µK

(s,s)
n−1 (b, b)

∣∣∣∣∣ K
(0,r)
n−1 (x, a)+

− µ

dn−1

∣∣∣∣∣
1 + λK

(r,r)
n−1 (a, a) P (r)

n (a)

λK
(r,s)
n−1 (a, b) P (s)

n (b)

∣∣∣∣∣ K
(0,s)
n−1 (x, b)

and

(2.3) φ(Rn, Rn) =
dn

dn−1

〈σ, P 2
n〉, n ≥ 0 ,

where K−1(x, y) ≡ 0 and d−1 = 1.

Proof. Assume that φ(·, ·) is quasi-definite and expand Rn(x) as

Rn(x) = Pn(x) +
n−1∑

j=0

Cn
j Pj(x), n ≥ 1,

where

Cn
j =

〈σ, PjRn〉
〈σ, P 2

j 〉 =
−λP

(r)
j (a)R(r)

n (a) − µP
(s)
j (b)R(s)

n (b)

〈σ, P 2
j 〉 , 0 ≤ j ≤ n − 1 .

So, we obtain

(2.4) Rn(x) = Pn(x)−λR(r)
n (a)K

(0,r)
n−1 (x, a)−µR(s)

n (b)K
(0,s)
n−1 (x, b) , n ≥ 0 ,

and

(2.5)

(
1 + λK

(r,r)
n−1 (a, a) µK

(r,s)
n−1 (a, b)

λK
(r,s)
n−1 (a, b) 1 + µK

(s,s)
n−1 (b, b)

)(
R(r)

n (a)

R(s)
n (b)

)
=

(
P (r)

n (a)

P (s)
n (b)

)
, n ≥ 0.

We also have from (2.4)

φ(Rn, Pj) = 〈σ, RnPj〉 + λR(r)
n (a)P

(r)
j (a) + µR(s)

n (b)P
(s)
j (b) =

= 〈σ, PnPj〉 − λR(r)
n (a)〈σ,K

(0,r)
n−1 (x, a)Pj(x)〉+

− µR(s)
n (b)〈σ,K

(0,s)
n−1 (x, b)Pj(x)〉+

+ λR(r)
n (a)P

(r)
j (a) + µR(s)

n (b)P
(s)
j (b) =(2.6)

= {〈σ, P 2
n〉 + λR(r)

n (a)P
(r)
j (a)+

+ µR(s)
n (b)P

(s)
j (b)}δjn, 0 ≤ j ≤ n ,

since 〈σ,K
(0,r)
n−1 (x, a)Pj(x)〉 = (1 − δjn)P

(r)
j (a), 0 ≤ j ≤ n.
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We now show that dn &= 0, n ≥ 0, by induction on n. For n = 0, d0 =
φ(1,1)

〈σ,1〉 &= 0. Assume dn &= 0, 0 ≤ n ≤ m for some integer m ≥ 0. Then the

system of equations (2.5) is uniquely solvable for 0 ≤ n ≤ m + 1 so that

we have from (2.6)

(2.7)

φ(Rn, Rn) = φ(Rn, Pn) = 〈σ, P 2
n〉 + λR(r)

n (a)P (r)
n (a)+

+ µR(s)
n (b)P (s)

n (b) =

= 〈σ, P 2
n〉 +

λP (r)
n (a)

dn−1

∣∣∣∣∣
P (r)

n (a) µK
(r,s)
n−1 (a, b)

P (s)
n (b) 1 + µK

(s,s)
n−1 (b, b)

∣∣∣∣∣ +

+
µP (s)

n (b)

dn−1

∣∣∣∣∣
1 + λK

(r,r)
n−1 (a, a) P (r)

n (a)

λK
(r,s)
n−1 (a, b) P (s)

n (b)

∣∣∣∣∣ ,

0 ≤ n ≤ m + 1 .

On the other hand, we have

(2.8)

dn = dn−1 +
λP (r)

n (a)

〈σ, P 2
n〉

∣∣∣∣∣
P (r)

n (a) µK
(r,s)
n−1 (a, b)

P (s)
n (b) 1 + µK

(s,s)
n−1 (b, b)

∣∣∣∣∣ +

+
µP (s)

n (b)

〈σ, P 2
n〉

∣∣∣∣∣
1 + λK

(r,r)
n−1 (a, a) P (r)

n (a)

λK
(r,s)
n−1 (a, b) P (s)

n (b)

∣∣∣∣∣ , n ≥ 0.

Hence, (2.3) holds for 0 ≤ n ≤ m + 1 and dm+1 &= 0. Therefore, by

induction, dn &= 0,n ≥ 0, and (2.3) holds for all n ≥ 0. We also have (2.2)

from (2.4) and (2.5).

Conversely, we assume that dn &= 0, n ≥ 0, and define Rn(x) by (2.2).

Then {Rn(x)}∞
n=0 is a monic PS and (2.5) holds. We also have (2.4) so

that (2.6) and (2.7) hold. Hence, φ(·, ·) is quasi-definite since {Rn(x)}∞
n=0

is the MOPS relative to φ(·, ·).

Remark 2.1. Several special cases of theorem 2.1 are proved in [7],

[12], [14], [16] under various stronger restrictions on φ(·, ·). See also [6],

[8], [9], [17] for other special examples.
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We now set

Ψ(x) =





x if µ = 0, r = 0

(x − a)r+1 if µ = 0, r ≥ 1

x if µ &= 0, r = s = 0

(x − b)s+1 if µ &= 0, 0 = r < s, a &= b

or µ &= 0, 0 ≤ r < s, a = b

(x − a)r+1(x − b)s+1 if µ &= 0, r, s ≥ 1.

and deg(Ψ) = u (1 ≤ u ≤ r + s + 2). Then

φ(Ψp, q) = 〈σ, Ψpq〉 = φ(p, Ψq), p(x) and q(x) ∈ P.

Proposition 2.2 (Recurrence Relations). The MOPS {Rn(x)}∞
n=0

satisfies 2u + 1-term recurrence relations:

(2.9) Ψ(x)Rn(x) =
n+u∑

j=n−u

Cn
j Rj(x), (n ≥ u)

where

(2.10)
Cn

j =
φ(ΨRn, Rj)

φ(Rj, Rj)
=

〈σ, ΨRjRn〉
φ(Rj, Rj)

,

n − u ≤ j ≤ n + u (Cn
n+u = 1, Cn

n−u &= 0)

and

(2.11)

Cn−i
n−j

φ(Rn−i, Rn−i)
=

Cn−j
n−i

φ(Rn−j, Rn−j)
,

0 ≤ i ≤ n − u and i − u ≤ j ≤ i + u .
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Proof. We may expand Ψ(x)Rn(x) as

Ψ(x)Rn(x) =
n+u∑

j=0

Cn
j Rj(x) .

Then

Cn
i φ(Ri, Ri) = φ(ΨRn, Ri) = φ(Rn,ΨRi) = 〈σ, ΨRnRi〉, 0 ≤ i ≤ n + u,

so that

Cn
i =

φ(Rn,ΨRi)

φ(Ri, Ri)
=

{
0 if i < n − u
〈σ,ΨRnRi〉
φ(Ri,Ri)

if i ≥ n − u ,

and

Cn
n−u =

φ(Rn,ΨRn−u)

φ(Rn−u, Rn−u)
&= 0, Cn

n+u = 1.

Now, it’s easy to deduce (2.11) from (2.10).

Explicit expressions for Cn
j in terms of coefficients of the three term

recurrence relations for {Pn(x)}∞
n=0 are given in [7], [11], [14] in case

r = s = 0 and in [15] in case µ = 0, r = 1.

We now let

Ln(x, y) =
n∑

j=0

Rj(x)Rj(y)

φ(Rj, Rj)
, n ≥ 0 ,

be the n-th kernel polynomial for {Rn(x)}∞
n=0.

Proposition 2.3 (cf. propositions 5.1 and 5.2 in [15]). For any

integers n, k ≥ 0 and any polynomial p(x) of degree at most n, we have

(reproducing property):

(2.12) φ(L(0,k)
n (x, y), p(x)) = p(k)(y)

and

(2.13)

Ln(x, y) =

= Kn(x, y) − λ

dn

∣∣∣∣∣
K(r,0)

n (a, y) µK(r,s)
n (a, b)

K(s,0)
n (b, y) 1 + µK(s,s)

n (b, b)

∣∣∣∣∣ K
(0,r)
n (x, a)+

− µ

dn

∣∣∣∣∣
1 + λK(r,r)

n (a, a) K(r,0)
n (a, y)

λK(r,s)
n (a, b) K(s,0)

n (b, y)

∣∣∣∣∣ K
(0,s)
n (x, b) .
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Proof. Let p(x) ∈ P be such that deg(p) ≤ n. Then

p(x) =
n∑

i=0

φ(p, Ri)

φ(Ri, Ri)
Ri(x)

so that

φ(L(0,k)
n (x, y), p(x)) =

n∑

i=0

φ(p, Ri)

φ(Ri, Ri)
φ(L(0,k)

n (x, y), Ri(x)) =

=
n∑

i=0

φ(p, Ri)

φ(Ri, Ri)

n∑

j=0

R
(k)
j (y)

φ(Rj, Rj)
φ(Rj(x), Ri(x)) =

=
n∑

i=0

φ(p, Ri)

φ(Ri, Ri)
R

(k)
i (y) = p(k)(y).

Expand Ln(x, y) as Ln(x, y) =
∑n

j=0 A
(n)
j (y)Pj(x), where

A
(n)
j (y) =

〈σ, Ln(x, y)Pj(x)〉
〈σ, P 2

j 〉

=
Pj(y)

〈σ, P 2
j 〉 − λ

〈σ, P 2
j 〉L

(r,0)
n (a, y)P

(r)
j (a)

− µ

〈σ, P 2
j 〉L

(s,0)
n (b, y)P

(s)
j (b) by (2.12).

Hence, we have

(2.14)
Ln(x, y) = Kn(x, y) − λL(r,0)

n (a, y)K(0.r)
n (x, a)+

− µL(s,0)
n (b, y)K(0,s)

n (x, b)

so that

(2.15)

(
1+λK(r,r)

n (a, a) µK(r,s)
n (a, b)

λK(r,s)
n (a, b) 1+µK(s,s)

n (b, b)

)(
L(r,0)

n (a, y)

L(s,0)
n (b, y)

)
=

(
K(r,0)

n (a, y)

K(s,0)
n (b, y)

)
.

Now, (2.13) follows immediately from (2.14) and (2.15).
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From the recurrence relation (2.9) and (2.11), we can easily deduce

the following Christoffel-Darboux type formula for {Rn(x)}∞
n=0.

Proposition 2.4 (cf. proposition 4.3 in [15]). The MOPS{Rn(x)}∞
n=0

satisfies

(Ψ(x) − Ψ(y))Ln(x, y) =

=
t∑

j=1

n∑

i=n−j+1

Ci+j
i

φ(Ri+j, Ri+j)
(Ri+j(x)Ri(y) − Ri(x)Ri+j(y)), n ≥ 0.

We now set

(2.16) π(x)=

{
(x − a)s+1 if a=b and λ &=0, µ &=0

(x − a)(r+1)sgn|λ|(x − b)(s+1)sgn|µ| if a &=b

and deg(π) = t (0 ≤ t ≤ r + s + 2). Then

φ(πp, q) = 〈σ, πpq〉 = φ(p, πq), p(x) and q(x) ∈ P.

Proposition 2.5 (quasi-orthogonality). The MOPS {Rn(x)}∞
n=0 is

quasi-orthogonal of order 2t relative to σ:

(2.17) π(x)Rn(x) =
n+t∑

j=n−t

Dn
j Pj(x), (n ≥ t) ,

where

Dn
j =

〈σ,πPjRn〉
〈σ, P 2

j 〉 =
φ(Rn, πPj)

〈σ, P 2
j 〉 , n−t ≤ j ≤ n+t, (Dn

n+t = 1, Dn
n−t &= 0) .

Proof. We may expand π(x)Rn(x) as

π(x)Rn(x) =
n+t∑

j=0

Dn
j Pj(x) .

Then

Dn
j 〈σ, P 2

j 〉 = 〈σ,πRnPj〉 = φ(Rn, πPj), 0 ≤ j ≤ n + t ,

so that the conclusion follows.
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3 – Second order differential equations

The MOPS {Pn(x)}∞
n=0 satisfies three term recurrence relations:

(3.1)
Pn+1(x) = (x − bn)Pn(x) − cnPn−1(x) ,

n ≥ 0 (P−1(x) = 0 and cn &= 0, n ≥ 1) .

In the following, we will denote πk(x, n) a polynomial such that its coef-

ficients may depend on n but the degree is at most k, independent of n.

The polynomial πk(x, n) may not be the same in different contexts.

We have by (3.1) and induction on k = 1, 2, · · · that

(3.2) Pn+k(x) = πk(x, n)Pn(x) + πk−1(x, n)Pn−1(x), n ≥ 0 ,

and

(3.3) Pn−k−1(x) = πk−1(x, n)Pn(x) + πk(x, n)Pn−1(x), n ≥ k + 1.

We now assume that σ is a semi-classical moment functional satisfying

(3.4) (A(x)σ)′ − B(x)σ = 0,

where deg(A)≥0, deg(B)≥1. We set deg(A)=α and β=max(deg(A)−2,

deg(B) − 1). Then {Pn(x)}∞
n=0 satisfies the so-called structure rela-

tions [18]

(3.5) A(x)P ′
n(x) =

n+α−1∑

n−β−1

Qn
j Pj(x), n ≥ β + 1 .

By (3.2) and (3.3), we may review (3.5) and (2.17) as

(3.6) A(x)P ′
n(x) = πβ+1(x, n)Pn(x) + πβ+2(x, n)Pn−1(x)

and

(3.7) π(x)Rn(x) = πt(x, n)Pn(x) + πt−1(x, n)Pn−1(x).
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Differentiating (3.7) and then multiplying by A(x) yields via (3.1)

and (3.6)

(3.8)
A(x)π(x)R′

n(x) + A(x)π′(x)Rn(x) =

= πt+β+1(x, n)Pn(x) + πt+β+2(x, n)Pn−1(x).

We then obtain from (3.7) and (3.8)

(3.9) π2t+β+2(x, n)Pn(x) = π2t+α−1(x, n)R′
n(x) + π2t+β+2(x, n)Rn(x)

and

(3.10) π2t+β+2(x, n)Pn−1(x) = π2t+α(x, n)R′
n(x) + π2t+β+1(x, n)Rn(x) .

Differentiating (3.8) and then multiplying by A(x) yields via (3.1)

and (3.6)

(3.11)
A2πR

′′
n(x) + A(A′π + 2Aπ′)R′

n(x) + A(A′π′ + Aπ′′)Rn(x)

= πt+2β+4(x, n)Pn(x) + πt+2β+5(x, n)Pn−1(x).

From (3.9), (3.10), and (3.11), we finally obtain:

Theorem 3.1. When σ is a semi-classical moment functional sat-

isfying (3.4), the MOPS {Rn(x)}∞
n=0 satisfies a second order differential

equation with polynomial coefficients of the form

(3.11) S(x, n)R′′
n(x) + T (x, n)R′

n(x) + U(x, n)Rn(x) = 0 ,

where deg(S) ≤ 3t + 2α + β + 2,deg(T ) ≤ 3t + α + 2β + 5, and deg(U) ≤
3t + 3β + 6.

Theorem 3.1 was proved in [16] for µ = 0 and r = 1 and in [17] for

positive-definite σ, µ = 0, λ > 0. Explicit construction of the differential

equation (3.11) can be found in [7], [16] for σ to be the Bessel moment

functional and in [17] for σ to be the Hermite moment functional.
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4 – Zeros of Rn(x)

We now consider the quasi-definite bilinear form φ(·, ·) as in (1.1) for

which we assume further that σ is positive-definite and λ, µ, a, b are real

so that {Rn(x)}∞
n=0 is the real MOPS relative to φ(·, ·). We let

xn,1 < xn,2 < · · · < xn,n

be the zeros of Pn(x), n ≥ 1, and

ξ = lim
n→∞

xn,1 (≥ −∞), η = lim
n→∞

xn,n (≤ ∞)

so that I = [ξ, η] is the true interval of orthogonality for σ (see [5, page 29,

Definition 5.2]).

Then the quasi-orthogonality (2.17) of {Rn(x)}∞
n=0 relative to σ im-

plies that π(x)Rn(x) has at least n − t nodal zeros (i.e., zeros of odd

multiplicity) in
◦
I = (ξ, η). Hence, Rn(x) has at least n − t − 2 nodal

zeros in
◦
I . Zeros of Rn(x) are handled by many authors [1]-[4], [11],

[15], [19], [20], [21], in all of which, except [1], φ(·, ·) is assumed to be

positive-definite.

Let N = N(n)(0 ≤ N ≤ n) be the number of nodal zeros of Rn(x)

in
◦
I and ΦN(x) the monic polynomial of degree N having simple zeros

at nodal zeros of Rn(x) in
◦
I . Then ΦN(x)Rn(x) has the constant sign on

◦
I , which we may assume to be positive.

In order to find a lower bound for N(n), we consider

Case I: µ = 0, Case II: a = b, λ &= 0, µ &= 0, and Case III: a &= b, λ &=
0, µ &= 0 separately.

In the following, we always assume n ≥ r + 1 unless stated otherwise

since if 0 ≤ n ≤ r then Rn(x) = Pn(x) and N(n) = n.

Case I: µ = 0.

Then π(x) = (x − a)r+1 so that N(n) ≥ n − r − 2.

Proposition 4.1. Assume µ = 0 and a ∈
◦
I . If a is a nodal zero

of Rn(x) or r is odd, then N(n) ≥ n − r − 1.
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Proof. When a is a nodal zero of Rn(x), it is trivial. Hence, we

assume r is odd. Then π(x)ΦN(x)Rn(x) ≥ 0 on I so that by (2.17)

〈σ,πΦNRn〉 =
n+r+1∑

n−r−1

Dn
j 〈σ, ΦNPj〉 > 0.

Hence, deg(πΦN) = N(n) + r + 1 ≥ n.

Proposition 4.2. Assume µ = 0 and a /∈
◦
I . Then N(n) ≥ n−1 so

that Rn(x) has n simple real zeros. Moreover, zeros of Pn(x) and Rn(x)

interlace each other.

Proof. Assume a ≥ η. (Proof for a ≤ ξ runs the same.) Let

ln,k(x) =
Pn(x)

x − xn,k

and πn,k(x) = ln,k(x)Rn(x), 1 ≤ k ≤ n.

Then by Gauss’ quadrature formula, there are positive constants An
j,k,

1 ≤ j, k ≤ n, such that

(4.1) 〈σ,πn,k〉 =
n∑

j=1

An
j,kπn,k(xn,j) = An

k,kP
′
n(xn,k)Rn(xn,k) .

On the other hand, we also have from (1.1) and (2.5)

(4.2) 〈σ,πn,k〉 = −λl
(r)
n,k(a)R(r)

n (a) =
−λ

dn−1

l
(r)
n,k(a)P (r)

n (a) .

Since sgnP ′
n(xn,k) = (−1)n−k, l

(r)
n,k(a) > 0, and P (r)

n (a) > 0, we have

from (4.1) and (4.2)

(4.3) sgnRn(xn,k) = (−1)n−k+1sgn(λdn−1), 1 ≤ k ≤ n .

Hence, Rn(x) has at least one and, in fact, exactly one nodal zero in each

interval (xn,k, xn,k+1), 1 ≤ k ≤ n − 1.
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Proposition 4.1 and proposition 4.2 are also obtained in [20] in case

λ > 0 and r = 1. Meijer [20] also showed that a may be chosen so that

Rn(x) has two complex zeros for large enough λ. In this case, a must be

in
◦
I by proposition 4.2.

Proposition 4.2 implies that Rn(x) has n simple zeros

zn,1 < zn,2 < · · · < zn,n

all of which, except zn,1 or zn,n, lie in (xn,1, xn,n). The location of zn,1 or

zn,n not in (xn,1, xn,n) depends on sgn(λdn−1), sgnRn(ξ), and sgnRn(η).

Below, we handle the case a ≥ η. The case a ≤ ξ can be handled

similarly.

Lemma 4.3. Assume µ = 0 and a ≥ η. Then

(4.4) λdn−1 < 0 if and only if
−1

K
(r,r)
n−1 (a, a)

< λ < 0 ;

(4.5) λdn−1 > 0 if and only if λ <
−1

K
(r,r)
n−1 (a, a)

or λ > 0 .

Proof. Since a ≥ η and Pj(x) is a monic polynomial with all zeros

in (−∞, a), P
(r)
j (a) = 0 for 0 ≤ j < r and P

(r)
j (a) > 0 for j ≥ r. Hence

K
(r,r)
n−1 (a, a) > 0 so that dn−1 = 1 + λK

(r,r)
n−1 (a, a) > 0 if λ > 0. Now (4.4)

and (4.5) follow immediately.

Proposition 4.4. Assume µ = 0 and a ≥ η.

(i) If −1

K
(r,r)
n−1

(a,a)
< λ < 0 and (−1)n+1Rn(ξ) ≥ 0, then

zn,1 ≤ ξ < xn,1 < zn,2 < · · · < zn,n < xn,n < η.

(ii) If −1

K
(r,r)
n−1

(a,a)
< λ < 0 and (−1)n+1Rn(ξ) < 0, then

ξ < zn,1 < xn,1 < zn,2 < · · · < zn,n < xn,n < η.
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(iii) If λ < −1

K
(r,r)
n−1

(a,a)
or λ > 0 and Rn(η) > 0, then

ξ < xn,1 < zn,1 < · · · < xn,n < zn,n < η.

(iv) If λ < −1

K
(r,r)
n−1

(a,a)
or λ > 0 and Rn(η) ≤ 0, Rn(a) > 0, then

ξ < xn,1 < zn,1 < · · · < xn,n < η ≤ zn,n < a.

(v) If λ < −1

K
(r,r)
n−1

(a,a)
or λ > 0 and Rn(η) ≤ 0, Rn(a) ≤ 0, then

ξ < xn,1 < zn,1 < · · · < xn,n < η ≤ a ≤ zn,n.

Hence, N(n) = n only in cases (ii) and (iii).

Proof. (i) and (ii): Assume −1

K
(r,r)
n−1

(a,a)
< λ < 0. Then λdn−1 < 0

by lemma 4.3 and Rn(xn,n) > 0 by (4.3). Hence, zn,1 < xn,1 and

sgnRn(xn,1) = (−1)n+1 from which (i) and (ii) follow immediately. In

particular, we note that ξ > −∞ in case (i).

(iii), (iv), and (v): Assume λ < −1

K
(r,r)
n−1

(a,a)
or λ > 0. Then λdn−1 > 0

by lemma 4.3 and Rn(xn,n) < 0 by (4.3). Hence, xn,n < zn,n and (iii),

(iv), and (v) follow immediately.

Special case of proposition 4.2 and proposition 4.4 is also handled by

Meijer [19] when λ > 0, a = 0, r ≥ 1, and [ξ, η] = [0,∞].

Proposition 4.5. Assume µ = 0 and a ≥ η. If λ < −1

K
(r,r)
n−1

(a,a)
or

λ > 0, then zeros of Rn(x) also interlace with zeros of Pn−1(x). More

precisely, we have

(4.6) xn,k < zn,k < xn−1,k < xn,k+1 < zn,k+1, 1 ≤ k ≤ n − 1.
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Proof. Assume λ < −1

K
(r,r)
n−1

(a,a)
or λ > 0, that is, λdn−1 > 0. Then,

by proposition 4.4, Rn(x) has n real zeros {zn,k}n
k=1 such that

(4.7) xn,k < zn,k < xn,k+1 < zn,k+1, 1 ≤ k ≤ n − 1.

Let Q(x) = Rn(x)−Pn(x) and πn−1,k(x) = Q(x)ln−1,k(x). Then deg(Q) ≤
n − 1 and deg(πn−1,k) ≤ 2n − 3. As in the proof of proposition 4.2, we

have positive constants An−1
j,k , 1 ≤ j, k ≤ n − 1, such that

〈σ,πn−1,k〉 =An−1
k,k Q(xn−1,k)P

′
n−1(xn−1,k) =

−λ

dn−1

l
(r)
n−1,k(a)P (r)

n (a),

1 ≤ k ≤ n − 1,

so that sgnQ(xn−1,k) = (−1)n−k, 1 ≤ k ≤ n − 1. Since sgnPn(xn−1,k) =

(−1)n−k,

(4.8)
sgnRn(xn−1,k) =sgn(Pn(xn−1,k) + Q(xn−1,k)) = (−1)n−k,

1 ≤ k ≤ n − 1,

so that Rn(x) has at least one and at most three zeros in each interval

(xn−1,k, xn−1,k+1), 1 ≤ k ≤ n − 2. If a certain (xn−1,k, xn−1,k+1) has

three zeros of Rn(x), then they must be in (xn,k, xn,k+2), which is im-

possible by (4.7). Hence, Rn(x) has exactly one zero in each interval

(xn−1,k, xn−1,k+1), 1 ≤ k ≤ n − 2.

Since xn,n < zn,n, Rn(xn,n) < 0 by (4.3), and Rn(xn−1,n−1) < 0

by (4.8), Rn(x) has no zero in (xn−1,n−1, xn,n). Hence, xn,n−1 < zn,n−1 <

xn−1,n−1 from which (4.6) follows inductively on k = n−1, n−2, · · · , 1.

When µ = r = 0 and a /∈
◦
I

Rn(a) =
1

dn−1

Pn(a) &= 0, n ≥ 0 ,

so that we can modify proposition 4.4 as:

Proposition 4.6. Assume µ = r = 0 and a ≥ η.
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(i) If −1
Kn−1(a,a)

< λ < 0 and (−1)n+1Rn(ξ) ≥ 0, then

zn,1 ≤ ξ < xn,1 < zn,2 < · · · < zn,n < xn,n < η.

(ii) If −1
Kn−1(a,a)

< λ < 0 and (−1)n+1Rn(ξ) < 0, then

ξ < zn,1 < xn,1 < zn,2 < · · · < zn,n < xn,n < η.

(iii) If λ > 0 and Rn(η) > 0, then Rn(a) > 0 and

ξ < xn,1 < zn,1 < · · · < xn,n < zn,n < η ≤ a.

(iv) If λ > 0 and Rn(η) ≤ 0, then Rn(a) > 0 and

ξ < xn,1 < zn,1 < · · · < xn,n < η ≤ zn,n ≤ a.

(v) If λ < −1
Kn−1(a,a)

, then Rn(a) > 0 and

ξ < xn,1 < zn,1 < · · · < xn,n < η ≤ a < zn,n.

Proof. (i) and (ii) are the same as in proposition 4.4.

(iii) and (iv): Assume λ > 0. Then dn−1 > 0 and Rn(xn,n) < 0 so

that Rn(a) > 0 since Pn(a) > 0. Hence, the conclusions follow.

(v): Assume λ < −1
Kn−1(a,a)

. Then λ < 0, dn−1 < 0, and Rn(xn,n) < 0

so that Rn(a) < 0. Hence, a < zn,n.

When µ = r = 0,

φ(p, q) = 〈τ, pq〉,
where τ = σ + λδ(x − a) is a moment functional. Let

λ0 :=
−1

lim
n→∞

Kn(a, a)
.

Then

−〈σ, 1〉 < λ0 ≤ 0
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since 0 < 〈σ, 1〉−1 = K0(a, a)≤K1(a, a)≤ · · · and Kn(a, a) < Kn+2(a, a),

n≥0.

Lemma 4.7. For τ = σ + λδ(x − a), the following statements are

equivalent:

(i) τ is positive-definite;

(ii) en := 1 + λKn(a, a) > 0, n ≥ 0;

(iii) λ ≥ λ0.

Proof. When µ = r = 0, dn = en, n ≥ 0, so that τ is quasi-definite

if and only if en &= 0, n ≥ 0 by theorem 2.1. Moreover, when τ is quasi-

definite (cf. (2.3))

〈τ, Q2
n〉 =

en

en−1

〈σ, P 2
n〉, n ≥ 0, (e−1 = 1) ,

where {Qn(x)}∞
n=0 is the MOPS relative to τ . Hence, (i) ⇔ (ii). Then

(ii) ⇔ (iii) since { −1
Kn(a,a)

}∞
n=0 increases to λ0.

When λ ≥ λ0 so that τ is also positive-definite, let I1 = [ξ1, η1] be

the true interval of orthogonality of I. How are I and I1 related? If λ > 0

and a /∈
◦
I , then τ is positive-definite on [ξ, η] ∪ {a} so that

[ξ1, η1] ⊆ ch([ξ, η] ∪ {a}) ,

where ch(A) stands for the convex-hull of A. More precisely we have:

Corollary 4.8. Assume µ = r = 0, a ≥ η, and λ ≥ λ0 so that τ

is also positive-definite.

(i) If λ0 ≤ λ < 0, then ξ1 ≤ ξ < η1 ≤ η ≤ a.

(ii) If λ0 ≤ λ < 0 and (−1)n+1Rn(ξ) < 0 for all n large enough, then

ξ1 = ξ < η1 ≤ η ≤ a.

(iii) If λ > 0, then ξ ≤ ξ1 < η ≤ η1 ≤ a.

(iv) If λ > 0 and Rn(η) > 0 for all n large enough, then ξ ≤ ξ1 < η =

η1 ≤ a.
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Proof (i) and (ii). Assume λ0 ≤ λ < 0. Then −1
Kn−1(a,a)

<λ0 ≤ λ<0,

n ≥ 0, so that by proposition 4.7 (i) and (ii).

zn,1 < xn,1 and zn,n < xn,n < η .

Hence, ξ1 = lim
n→∞

zn,1 ≤ ξ = lim
n→∞

xn,1 and η1 = lim
n→∞

zn,n ≤ η = lim
n→∞

xn,n.

If furthermore (−1)n+1Rn(ξ) < 0 for n ≥ k, then by proposition 4.7 (ii),

ξ < zn,1 < xn,1, n ≥ k

so that ξ1 = ξ.

Proof (iii) and (iv). Assume λ > 0. Then by proposition 4.7 (iii),

(iv), and (v)

ξ < xn,1 < zn,1 and xn,n < zn,n ≤ a

so that ξ ≤ ξ1 and η ≤ η1 ≤ a.

If furthermore Rn(η) > 0 for n ≥ k, then by proposition 4.7 (iii)

xn,n < zn,n < η ≤ a

so that η = η1 ≤ a.

Remark. It’s easy to see that τ = σ +λδ(x−a) cannot be negative-

definite.

Case II: a = b, λ &= 0, µ &= 0, and 0 ≤ r < s.

Then π(x) = (x − a)s+1 so that N(n) ≥ n − s − 2.

Proposition 4.9. Assume a = b, λ &= 0, µ &= 0, 0 ≤ r < s, and

a ∈
◦
I . If a is a nodal zero of Rn(x) or s is odd, then N(n) ≥ n − s − 1.

Proof. The proof is the same as in proposition 4.1.

Proposition 4.10. Assume a = b, λ &= 0, µ &= 0, 0 ≤ r < s, and

a /∈
◦
I . Then N(n) ≥ n − 1 for r + 1 ≤ n ≤ s and N(n) ≥ n − 2 for

n ≥ s + 1.

Proof. See theorem 2.2 in [1].
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More results on zeros of Rn(x) can be found in [4] in case λ > 0, µ > 0,

and 1 ≤ r < s. When r = 0 and τ = σ+λδ(x−a) is also positive-definite,

we can have more precise information on the zeros of Rn(x).

Proposition 4.11. Assume a = b, λ ≥ λ0(λ &= 0), µ &= 0, and

r = 0 < s.

(i) If a /∈
◦
I 1, then Rn(x), n ≥ s + 1, has n real simple zeros, which

interlace with the zeros of {Qn(x)}∞
n=0.

(ii) If λ > 0 and a /∈
◦
I , then Rn(x), n ≥ s + 1, has n simple real zeros of

which at least n − 1 lie in (ξ, a) when a ≥ η or in (a, η) when a ≤ ξ.

Furthermore, if a = ξ or η, then N(n) ≥ n − 1.

Proof. When λ ≥ λ0 and r = 0, φ(p, q) = 〈τ, pq〉 + µp(s)(a)q(s)(a)

and τ is positive-definite. When λ > 0 and a /∈
◦
I , τ is positive-definite

on ch(I ∪ {a}). Hence, the conclusion follows from proposition 4.2

Proposition 4.11 (ii) was also proved in [2] for λ > 0, µ > 0, r = 0,

s = 1 and a = ξ or η. See also [21] for further informations on zeros of

Rn(x) in case λ > 0, µ > 0, r = 0, s = 1, and a /∈
◦
I .

Case III: a &= b, λ &= 0, µ &= 0, 0 ≤ r ≤ s.

Then π(x) = (x − a)r+1(x − b)s+1 so that N(n) ≥ n − r − s − 4. In

this case, we have not much to say yet about zeros of Rn(x) unless r = 0

and λ ≥ λ0 or n ≤ s + 1. When r = 0 and λ ≥ λ0,

φ(p, q) = 〈τ, pq〉 + µp(s)(b)q(s)(b),

where τ = σ + λδ(x − a) is positive-definite, so that it can be handled as

in Case I with σ replaced by τ . When a /∈
◦
I and r + 1 ≤ n ≤ s + 1, we

can show (see lemma 2.1 and theorem 2.2 in [1]) that

N(n) ≥
{

n − 1 if n = r + 1 or r + 2 ≤ n ≤ s ,

n − 2 if 0 ≤ r < s and n = s + 1.



[21] Sobolev-type orthogonal etc. 443

REFERENCES
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