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Scattering theory: a possible approach to the

homogenization problem for the Euler equations

E. CAGLIOTI – C. MAFFEI

Riassunto: Si analizza il comportamento asintotico di un “vortex patch” che
evolve secondo le equazioni di Eulero bidimensionali per un fluido incomprimibile. Più
precisamente si studia l’esistenza di dati iniziali tali che, asintoticamente, la vorti-
cità ω(x, t) converga debolmente, nel senso della misura, ad una soluzione stazionaria,
sia ω∞(|x|), dell’equazione di Eulero: in altre parole, si studia se la vorticità sia o
meno “omogeneizzata”. Si dimostra che si può dare una caratterizzazione dell’omoge-
neizzazione formulando un problema di scattering per le equazioni di Eulero; inoltre,
attraverso un approccio iterativo al problema di Eulero, si dimostra che le soluzioni del
primo ordine non banale nell’iterazione omogeneizzano.

Abstract: We are interested in the analysis of the asymptotic behavior of a vortex
patch that evolves according to the two dimensional Euler equation for incompressible
fluids. More precisely, we consider the problem of the existence of initial data, such
that, as t → ∞, the vorticity ω(x, t) weakly converges, in the sense of measures, to a
stationary solution, say ω∞(|x|), of the Euler equations: in other words, we want to
study if or not the vorticity is “homogenized”. In this paper we show that a character-
ization of homogenization can be given in terms of a scattering problem for the Euler
equations. Moreover, via an iterative approach to the Euler problem, we show that the
solutions of the equations of the first non trivial order homogenize.
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1 – Introduction

In this paper we study large time behavior of the solutions of the 2D

(two dimensional) Euler equations describing the evolution of an inviscid

incompressible fluid.

We are interested, in particular, in the asymptotic evolution of an

initial vorticity field given by the characteristic function of a measurable

bounded set D (vortex patch): ω(x, 0) ≡ χD(x). As it is well known, the

Euler equations for a vortex patch can be interpreted as the hamiltonian

evolution of the set D, the time dependent hamiltonian being the stream

function Ψ, which is a linear functional of the characteristic function of

the set.

Time behavior of vortex patches has been widely investigated. It

is known, first of all, that, due to the fact that the hamiltonian flow is

measure preserving, the area of the domain D is constant and its evo-

lution is global in time and unique, see [1]. Moreover it is also known,

see [2], [3] and [4], that, if the boundary ∂D is initially regular, then also

the boundary of the evoluted domain, ∂Dt, is regular and its lenght is

bounded at any finite time.

Furthermore, from the conservation of the inertial momentum of the

vorticity, Mt ≡ ∫
Dt

|x|2ω(x, t)dx, it follows that Dt lives, for all times, in

an essentially bounded domain. In particular it has been proved, see [5],

[6], [7], that a circular patch is stable in the L1 norm. On the other

hand, these results do not exclude very complicated behaviors for Dt as,

for example, long and thin filaments. (The existence of the filaments is,

nowadays, numerically and experimentally proved, see, for example, [8].)

Then a first natural question is if or not the support of the vortex

patch is definitively bounded. This problem is, till now, unsolved in its

generality. Nevertheless partial results on this problem can be found in [9]

and in [10].

A second well known question, strictly related to the previous one

is if or not it is possible to predict the asymptotic behavior of filaments.

More precisely, one can ask, for example, if there exist initial conditions

for the vorticity such that, as t → ∞, ω(x, t) converges, in some suitable

sense, to an equilibrium state of the Euler equations. This is exactly

the question we are concerned with in this paper. We investigate, in

fact, if the vorticity ω(x, t) converges, as t → ∞, to a stationary profile
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of vorticity, say ω∞(|x|), depending only on the distance. This hard

question, known as the problem of “the homogenization of vorticity”, has

been widely investigated, see for example [11], [12], [13], [14] and, in our

opinion, very interesting related problems are still open.

Before illustrating in some detail the result we prove, we only recall

that the problem of the description of organization and asymptotic be-

havior of “vortex blobs” in terms of solutions of the 2D Euler equations

- which is actually strictly related to the question we study - is also of

great interest in understanding turbulence, and has been approached also

from the point of view of the statistical mechanics. But the aim of this

paper is not a detailed discussion on this subject, therefore we refer to

[14]–[22] for some of the results on the argument.

Coming back to this paper, we prove here that, at least for a partic-

ular model, the foresaid homogenization problem for the vorticity can be

solved. More precisely, we consider a circular vortex patch C, encircled

by an annulus A which has a regular boundary. We assume, as particular

model of evolution, that A is passive (that is it evolves only under the

action of the velocity field due to C), then we show that the homogeniza-

tion is realized for the characteristic function of the set D = C ∪A. Let us

remark that this passive model can be regarded, equivalently, as the first

non trivial step of a hierarchy of linear evolutive problems approximating,

in a suitable sense, the Euler equations (see sections 4 and 5 below).

The ingredients we use to prove the result are essentially two.

We remark, first of all, that the solutions of an autonomous one degree of

freedom hamiltonian system homogenize (for the proof see the “ergodic

lemma” of section 2).

It is not difficult, in fact, to see that if one consider an hamiltonian

system in action-angle variables, say (I,φ), and an hamiltonian given

by H(I,φ) ≡ h(I) = I2

2
, then the evolution, at time t, of a patch D

transported by the flow related to h(I) is simply given by Dt = {(I,φ) :

(I,φ − It) ∈ D}. Then, as time goes on, the domain is stretched and

stretched. To have an idea, in the figure below one can see the evolution

of the set D0 = {(φ, I) : φ ∈ [0, 2π), I ∈ (a, b)} under the flow given by

h(I).

If one considers, moreover, the characteristic function associated to

Dt, one may note that it converges, weakly, to a constant in [0, 2π)×(a, b),

and 0 elsewhere.
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Fig. 1

We make here two more remarks: the first one is that the result can

be obtained also if the hamiltonian h(I) does not have the previous simple

form. It is sufficient, in fact, that the anisochronicity condition ∂2h
∂I2 &= 0

is satisfied to transform the hamiltonian in the previous form. Moreover

the anisochronicity condition is necessary: in fact homogenization does

not occur if, for example, all the orbits are covered with the same period

(as in the harmonic oscillator case). It is important, finally, to stress that

the previous behavior is realized because the flow is linear.

The second ingredient that allows us to prove our result is the ap-

proach to the asymptotic problem of homogenization via the scattering

theory.

In general, the scattering theory characterizes the asymptotic be-

havior of a solution of an evolutive, often non linear, equation in terms

of an asymptotically linear evolution. An example of application of the

theory is, as it is well known, the scattering of a particle in a potential

field, [23]. Under suitable assumptions on the potential (behavior at in-

finity, regularity,...) it is possible to find initial conditions for position and

velocity such that the corresponding trajectory asymptotically behaves

as x∗ + v∗t, v∗, i.e. satisfies “the scattering problem”

lim
t→∞

[|x(t) − (x∗ + v∗t)| + |v(t) − v∗|] = 0 .

The case we deal with here is more complicated than the previous one,

but the idea is essentially the same. One can ask if there exist solutions

of the 2D Euler equation (which is nonlinear), that, as t → ∞, behave as

the solutions of a suitable linear evolutive problem (the solutions of the

Euler problem which have this asymptotic behavior are said to satisfy a

scattering condition, see section 3).
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It is not difficult to see, moreover, that solutions which satisfy a scat-

tering condition homogenize. Therefore the problem of homogenization

reduces to the one of the existence of solutions of the Euler equation

which satisfy the scattering condition.

In this paper we show, via an iterative approach to the Euler problem,

that, at least for the first non trivial step of the procedure (which cor-

responds to the passive model), the previous problem admits a solution,

see section 4, 5 and 6.

We anticipate that the main tool in proving this result is the study of

the asymptotic expansion, with respect to t, of the stream function related

with our model. In particular it is possible to prove that, as t → ∞, this

function converges to the “free” hamiltonian of the scattering problem,

and, moreover the correction, which is of order t−3/2, can be explicitely

computed and depends, in a simple way, on the critical points of the

boundary of the patch one is evolving. To conclude we note that this

result reminds, as it is natural, the stationary phase method for integrals

of fast oscillating functions, [24], [25], but it is obtained with a more

direct approach (see the Appendix).

To conclude, a final remark. It is well known that there is an analogy

between the 2D Euler equations and the 1D Vlasov-Poisson equation for

an uncollisional charged plasma, see, for example [26]. For the 1D Vlasov-

Poisson problem, in [27], [28], Landau predicts, in particular, that, due

to the spatial dispersion of the plasma, an uncollisional dissipation is

realized. Then the plasma, as t → ∞, relaxes towards an homogeneous

equilibrium state. This phenomenon is known as “the Landau damping”.

For a complete discussion on this phenomenon and its implications

one can see the papers quoted above, we only recall here that the rigorous

proof of the previous behavior is given only for the linear problem, ob-

tained by considering the linear part of Vlasov-Poisson equation around

the homogeneous equilibrium.

In a forthcoming paper, [29], it is proved, in the same spirit of the

results obtained here, that the homogenization phenomenon and the Lan-

dau damping are related and the mechanism of the Landau damping is

realized for a suitable class of solutions of the full 1D Vlasov-Poisson

equation.
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2 – General definitions, notations and an “ergodic lemma”

In this section we briefly recall some well known notions, and prove

a lemma which will play an important role in what follows.

Let us start, in particular, with the definition of a 2D hamiltonian

system and the corresponding Liouville equation.

Given a C 2 hamiltonian H(x, t), and a vector x = (x1, x2), the dif-

ferential system:
ẋ1 = ∂x2

H

ẋ2 = −∂x1
H

is a 2D hamiltonian system in the phase space.

Setting ∇⊥ = (∂x2
,−∂x1

), the previous system can be rewritten, more

compactly, as

(2.1) ẋ = ∇⊥H(x, t) .

Definition 2.1 (evolution operator in the phase space). The evolution

operator TH
t1,t2 : Λ → Λ, Λ ⊂ IR2, from time t1 to time t2, is the solution

of the problem

∂t1TH
t1,t2x = −∇⊥H(TH

t1,t2x, t1) ,

∂t2TH
t1,t2x = ∇⊥H(TH

t1,t2x, t2) ,

TH
t,tx = x .

In other words, by y=TH
t1,t2x, we mean that y is the evoluted, along (2.1),

at time t2, of the point that, at time t1, is in x. In the particular case

t1 = 0, t2 = t, we set, from now on

T 0,t
H ≡ T t

H .

Furthermore it is useful to notice that, by construction, TH
t1,t2 is a canon-

ical trasformation of Λ in itself, and therefore, TH
t1,t2 is a bijective, mea-

sure preserving map.

Given a C 1 function f : Λ × IR → IR, f(x, t) = ft(x), the Liouville

equation, associated with the hamiltonian H(x, t) is, as it is well known,
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given by

(2.2)
∂tf + ∇⊥H · ∇f = 0,

f(x, 0) = f0(x) .

If f(x, t) is a solution of (2.2), then we say that the density f is “constant

along the solutions of (2.1)” (or that f is “a first integral”). In this case,

for any t1, t2 one has

(2.3) f(x, t2) = f(TH
t2,t1x, t1).

Definition 2.2 (evolution operator for the Liouville equation). Given

a function g(x, t) ≡ gt(x), gt : Λ → IR, the operator UH
t1,t2 : IR → IR is

defined, for all t1, t2, by

(2.4) UH
t1,t2gt1(x) = gt1(TH

t2,t1x).

This definition is consistent with the definition of first integral, and allows

us to rewrite (2.3) in the following form:

f(x, t2) = UH
t1,t2f(x, t1) .

If t1 = 0, t2 = t, we write f(x, t) = UH
tf(x, 0) = UH

tf0(x).

We recall, moreover, that the 2D Euler equation for a vorticity field

ω(x, t), in a domain Λ ∈ IR2, is the following problem

(2.5)
∂tω(x, t) + (u · ∇)ω(x, t) = 0

u(x, t) = ∇⊥Ψ(x, t),

where u(x, t) is the divergence-less velocity vector field, and the stream

function Ψ(x, t) satisfies the Poisson problem

−∆Ψ(x, t) = ω(x, t) on Λ
(2.6)

Ψ(x, t) = 0 on ∂Λ.

Because of (2.6)1, from now on, we use the compact notation Ψ(x, t) =

(−∆)−1ω(x, t).
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Let us notice that 2D Euler equation (2.5) may be seen, because of (2.5)2,

as a nonlinear Liouville equation for the density ω(x, t) associated with

the hamiltonian Ψ(x, t).

We introduce also an evolution operator associated with the prob-

lem (2.5), (2.6).

Definition 2.3 (evolution operator for the Euler equation). Given

ω(x, t), solution of (2.5), (2.6), the evolution operator Et1,t2 is defined, for

all t1, t2, by

ω(x, t2) = Et1,t2ω(x, t1) .

We conclude the section with a lemma that, as we already pointed out,

will play an important role in the proof of our result.

Let us consider an hamiltonian, depending only on one of the two

components of x. To be more specific, assume that H(x, t) = h(x2), h ∈
C 2(IR), h′′(x2) &= 0. Assume, furthermore, that x = (x1, x2), x1 ∈ [0, 2π],

x2 ∈ IR, and that the function f(x, t) = ft(x), is conserved along the

solutions of the hamiltonian system with hamiltonian h(x2), i.e.

(2.7) ft(x1, x2) = f0(x1 − h′(x2)t, x2) .

The following result holds.

Lemma 2.1 (ergodic lemma). If ft ∈ L1 ∩ L∞([0, 2π] × IR), then

for t → ∞, ft(x) weakly converges, in the sense of measure, to f∞(x2),

where f∞(x2) = 1
2π

∫ 2π

0 f0(x1, x2)dx1.

Proof. The lemma is proved in the particular case h(x2) =
x2
2
2

. In

the general case h(x2) = F (x2
2), the result can be showed following essen-

tially the same path, taking into account the fact that the hamiltonian

system ẋ1 = h′(x2), ẋ2 = 0 can be transformed, because of the hypoth-

esis h′′(x2) &= 0, into system ẏ1 = y2, ẏ2 = 0.

In the case we deal with, the (2.7) becomes

(2.8) ft(x1, x2) = f0(x1 − x2t, x2) .

Given a test function φ ∈ C 0, let us consider the scalar product in L2

〈ft, φ〉. From (2.8) one has

(2.9) 〈ft, φ〉 = 〈f0, φt〉 ,
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where φt(x1, x2) = φ(x1 + x2t, x2).

Let us call now φ̂(k1, k2) the Fourier transform of φt, that is

φ̂(k1, k2) =

∫ ∞

−∞
dx2

∫ 2π

0

e−i(k1x1+k2x2)φt(x1, x2)dx1 .

It is not difficult to show that it is

(2.10) φ̂(k1, k2) = φ̂(k1, k2 + k1t) .

Now, from (2.8), (2.9), (2.10) and the Parceval formula, it follows that

〈ft(x1, x2), φ(x1, x2)〉=〈f̂(k1, k2)φ̂(k1, k2)〉=〈f̂(k1, k2)φ̂(k1, k2 + k1t)〉=

=
∑

k1≥0

∫ ∞

−∞
[f̂(k1, k2)φ̂(k1, k2 + k1t)]dk2 =

=

∫ ∞

−∞
[f̂(0, k2)φ̂(0, k2)]dk2+

+
∑

k1>0

∫ ∞

−∞
[f̂(k1, k2)φ̂(k1, k2 + k1t)]dk2.

The first integral in the previous sum gives exactly f∞(x2).

If one applies to the remainder terms the Lebesgue’s dominated con-

vergence theorem, having in mind that f̂(k1, k2)φ̂(k1, k2 + k1t) → 0 as

t → ∞, the lemma is proved.

3 – Homogenization and scattering theory for 2D Euler equa-

tions

Let us start the section with an important definition.

Definition 3.1 (homogenization). Given an initial vorticity ω0(x),

we say that homogenization occurs if there exists a function ω∞(|x|) such

that

(3.1)
ω(x, t) → ω∞(r),

r = |x|,



454 E. CAGLIOTI – C. MAFFEI [10]

where ω(x, t) is the solution of the Euler equation with initial condition

ω0(x), and the convergence is weak, in the sense of measure.

Let us remark that lemma 2.1 states that the solutions ft of the linear

Liouville equation, associated with h(x2), homogenize.

It is not difficult to see, moreover, that an immediate consequence

of (3.1) is that, if ω0 ∈ L1 ∩ L∞, then for t → ∞,

u(x, t) → u∞(r)

Ψ(x, t) → Ψ∞(r),

where both u and Ψ converge pointwise. Moreover u∞ and Ψ∞ are re-

spectively C1−ε and C2−ε functions. (For the proof, and more details on

the subject one can refer to [20] .)

We are ready now to define the “scattering problem” for the Euler

equations.

Set, first of all, x = (r cos θ, r sin θ). Suppose now that H(r, θ, t) ≡
Ψ∞(r) is a given hamiltonian and call Ωt(x) a solution of the linear Li-

ouville equation associated with Ψ∞(r).

If one wants to study the asymptotic behavior of Etω0(x), solution of

the Euler problem with initial datum ω0(x), it seems natural to compare

it, in L1, with the solution U t
Ψ∞Ω0(x) of the linear Liouville equation

associated with the “free” hamiltonian Ψ∞(r).

More precisely, it is quite natural to assume the following definition.

Definition 3.2 (scattering). Given Ω0(x) and Ψ∞(r), if there exists

an initial condition ω0(x) of the Euler equation such that

(3.2) ||U t
Ψ∞Ω0(x) − Etω0(x)||L1

→ 0 as t → ∞,

we say that Etω0(x) = ω(x, t) satisfies a scattering condition.

Remark. Notice that we are not interested here in discussing the

scattering theory for the Euler equation in its generality. But rather,

we discuss rigorously the connection between the problem (3.2) and the

homogenization.

For an exstensive, clear and complete discussion of the scattering

problems and relative techniques, one can see [23].

As usual, in the scattering theory, we introduce a scattering operator.
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Definition 3.3 (scattering operator). Given Ψ∞(r), the operator

S : L1 ∩ L∞(IR2) → L1 ∩ L∞(IR2) such that

(3.3) S : Ω0 → ω0,

is said the scattering operator.

We want to show, now, that there is a strict connection between the

scattering problem and the occurrence of homogenization.

Lemma 3.2. Given the two functions ω0(x), and Ω0(x), and a

function Ψ∞(r), r = |x|, if the triple ω0(x), Ω0(r) and Ψ∞(r) solves the

the scattering problem (3.2), then there exists a function ω∞(r) such that

Etω0(x) weakly converges, in the sense of measure, to ω∞(r), that is

homogenization is realized for ω(x, t).

Proof. The proof easily follows from definitions 3.2 and 3.1, taking

into account the ergodic lemmma.

Remark. Assuming that it is possible to solve the scattering problem

for a vorticity profile ω0, that is assuming that homogenization occurs for

the correspondent solution of the 2D Euler equation, nothing is known

on the set of vorticity profiles satisfying these hypotheses. Of course

it can be empty, except for the trivial radial solutions. Nevertheless,

we think that it may be fruitful to approach the homogenization as a

scattering problem, mainly if one is interested in studying the question

from a numerical point of view.

We end the section by noting that, because of the nonlinearity of the

Euler equation, the scattering problem seems very hard to be approached

directly. Then, as usual in the theory, one introduces a perturbative,

iterative approach.

More precisely, call x = (r cos θ, r sin θ), |x| = r. Given a function

Ω0(x), set Ψ∞(r) = (−∆)−1〈Ω0(r)〉, where 〈Ω0(r)〉=(1/2π)
∫ 2π

0 Ω0(r, θ)dθ.

For n = 0, 1, 2, ..., let us consider the following sequence of Liouville

equations

(3.7) ∂tω
(n+1)(x, t) + (u(n) · ∇)ω(n+1)(x, t) = 0 ,
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where, at any step, the velocity field is given by the solution of the pre-

vious step by

(3.8) u(n)(x, t) = ∇⊥Ψn(x, t) = ∇⊥(−∆)−1ω(n)(x, t),

and

u(0)(x, t) = ∇⊥Ψ∞(r) .

Assume, furthermore, that every equation has to be solved with the scat-

tering condition

(3.9) ||U t
Ψ∞Ω0(x) − U t

Ψn
ω

(n+1)
0 (x)||L1

→ 0 as t → ∞ .

In other words, we have to solve, for all n, a linear (in fact the hamil-

tonian pertaining to the (n+1)-th order equation is given in terms of

the solution of the n-th order problem) Liouville equation, satisfying the

condition (3.9) (which is indeed an equation).

Remark, moreover, that one can define a scattering operator at every

step.

Assume now to be able to solve the problem (3.7), (3.8), (3.9) at every

step. To conclude with the homogenization for the full Euler problem, one

would have to show that there is an Ω0 (that is a “free” hamiltonian Ψ∞)

such that the solutions of previous hierarchy of evolutive linear problems

converge to the solutions of the Euler equations, in some suitable norm.

These problems, which look very hard, are not studied in this context,

and will be the subject of further investigations. In this paper we confine

ourselves to study the previous iterate problems up to the first non trivial

order. To be more specific, in what follows we show that:

(a) for any choice of Ω0(x), first step of the iteration is trivially solved;

(b) for a particular choice of Ω0(x) and ω
(2)
0 (x), also the second step

can be studied in all details and the homogenization can be proved for

the related problem.

4 – The model: second order perturbation theory

Let us consider the first step in the iterative procedure of previous

section. Assume that a function Ψ∞(r) is given. One has to solve the
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problem

(4.1)
∂tω

(1)(x, t) + (u(0) · ∇)ω(1)(x, t) = 0,

u(0)(x, t) = ∇⊥Ψ∞(r),

with the scattering condition

(4.2) ||U t
Ψ∞Ω0(x) − U t

Ψ∞ω
(1)
0 (x)||L1

→ 0 as t → ∞ .

But it is immediate to see that (4.2) is trivially satisfied if and only

if ω
(1)
0 (x) = Ω0(x). Remark that the scattering operator is, in this case,

the identity.

We approach now the second order in the iteration. To do this, as a

particular model, we assume from now on, that Ω0(x) = ω
(1)
0 (x) = χD(x),

where χD is the characteristic function of a domain D = {x ∈ IR2, x =

(r cos θ, r sin θ), θ ∈ [0, 2π], r ∈ [0, f(θ)]}, where f is a non negative 2π-

periodic function.

Let us write (3.7), (3.8) for n = 1. One has

(4.3)
∂tω

(2)(x, t) + (u(1) · ∇)ω(2)(x, t) = 0,

u(1)(x, t) = ∇⊥Ψ1(x, t) = ∇⊥(−∆)−1〈ω(1)(x, t)〉 ,

and (3.9) reads

(4.4) ||U t
Ψ∞Ω0(x) − U t

Ψ1
ω

(2)
0 (x)||L1

→ 0 as t → ∞ .

We want to prove, in what follows, that we are able to solve completely

the problem (4.3), (4.4). Taking into account the fact that lemma 3.2

holds, this will imply the homogenization for the solutions of second order

approximation.

5 – The stream function Ψ1

In order to study the problem (4.3), (4.4), we need to know the func-

tion Ψ1(x, t). In this section we give, in particular, a representation of the

stream function as a function of t.

Let us recall, first of all, a well known definition.
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Definition 5.1 (Morse function). A C2 function h(x), x ∈ I ⊂ IR is

said to be a Morse function if, for all x1, ..., xn, critical points of h in I ,

one has h′(xi) = 0, and h′′(xi) &= 0 for i = 1, ..., n.

Let us give, now, a preliminary lemma.

Lemma 5.1. Assume that g(x) is a C2 function and h(x) is a C3

Morse function. Call x1, ..., xn the critical points of h(x) belonging to an

interval [a, b]. Then the following expansion holds

(5.1)

∫ b

a

g(x)eith(x)dx =
1

t1/2

(π1/2

2

) n∑

k=1

Cke
ith(xk)+

− i

t

[ g(b)

h′(b)
eith(b) − g(a)

h′(a)
eith(a)

]
+ O

( 1

t3/2

)
,

where Ck = Ck(xk) = g(xk)√
|h′′(xk)|

for k = 1, ..., n

Remark. Previous (5.1) holds also if a = x1, or b = xn or, eventually

if a = x1, b = xn. More precisely one has, respectively

(5.11)

∫ b

x1

g(x)eith(x)dx =
1

t1/2

(π1/2

2

){
C1ie

ith(x1) +
n∑

k=1

Cke
ith(xk)

}
+

− i

t

g(b)

h′(b)
eith(b) + O

( 1

t3/2

)
,

or

(5.12)

∫ xn

a

g(x)eith(x)dx=
1

t1/2

(π1/2

2

){ n∑

k=1

Cke
ith(xk)eith(xk)−Cnieith(xn)

}
+

+
i

t

g(a)

h′(a)
eith(a) + O

( 1

t3/2

)
,

or, finally

(5.13)

∫ xn

x1

g(x)eith(x)dx =
1

t1/2

(π1/2

2

){ n∑

k=1

Cke
ith(xk)+

+ i
[
C1e

ith(x1) − Cneith(xn)
]}

+ O
( 1

t3/2

)
,
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Proof. See Appendix.

Let us come back to the stream function Ψ1.

As it is well known, from (4.3)2 we can write

(5.2) Ψ1(y, t) =

∫

IR2
G(x, y)ω(1)(x, t)dx,

where G(x, y) = − 1
2π

ln |x − y| is the Green function of IR2.

Assume that y = (ρ cos φ, ρ sinφ) and x = (r cos θ, r sin θ), that

ω
(1)
0 (x) = χD(r, θ), where χD is the characteristic function of D ( which is

the same set of the previous section 4), and assume, furthermore, that the

function f(θ), defining the boundary of D, is a non negative, 2π-periodic,

Morse function. Call θα, α = 1, ..., n its critical points, θα ∈ [0, 2π], and

let be M = max(f(θ), θ ∈ [0, 2π]).

For all ρ ≤ M, call, moreover ij = ij(ρ), j = 1, ..., p, the values of

θ such that f(ij) = ρ. Let finally be Ψ∞(r) = (−∆)(−1)〈ω(1)
0 (r)〉, where

〈ω(1)
0 (r)〉 = (1/2π)

∫ 2π

0 ω
(1)
0 (r, θ)dθ.

The “free” evolution law is given by rθ̇ = ∂rΨ∞(r), ṙ = 0. Set, by

definition, 1
r
∂rΨ∞(r) ≡ v(r). (Let us remark that, by definition, v(r) > 0

for all r > 0).

The following result can be proved.

Theorem 5.1. Let v(r) be a monotone function of r. The stream

function Ψ1(y, t) can be expanded, as function of t, as follows

(5.3) Ψ1(y, t) = Ψ∞(ρ2) − 1

t3/2

n∑

α=1

cαFα(y, t) − 1

t2

p∑

j=1

Lj(y, t) + O
( 1

t5/2

)

where the Fα’s α = 1, ..., n are given by the formula

Fα(y, t) =

√
π

2

∑

k≥1

1

k5/2
Rk

α sin[k(θα − φ + tvα)],

with vα ≡ v(f(θα)), the cα’s are suitable constants depending on θα,

Rα = Rα(θα, ρ) =





ρ

f(θα)
if ρ < f(θα)

f(θα)

ρ
if ρ > f(θα) ,
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and finally

Lj(y, t) =
∑

k≥1

1

k3(v′(ρ))2
l(ij) sin[k(ij − φ + tv(ρ))]

where

l(ij) =

{
signf ′(ij) if ρ ≤ M

0 if ρ > M.

Proof. See Appendix.

Remark. Before concluding the section it is interesting to remark

that the functions Fα(y, t) of formula (5.3) can be suitably interpreted.

More precisely, for α = 1, ..., n, let us introduce the functions

(5.4) gα(y, t) = δ(ρ − f(θα))
∑

h≥1

1

h3/2
sin k(φ − θα + tvα) ,

where δ(∗) is the usual delta-function, and vα are the same as in the

previous theorem 5.1. Then it is not difficult to see that

(5.5) Fα(y, t) = (−∆)−1gα(y, t) ,

that is, the Fα’s are, for all α, the “stream functions” of a Poisson problem

for which the “vorticity” is given by (5.4).

The proof of (5.5) can be obtained, by a direct computation, from

the fact that Fα(y, t) =
∫
IR2 G(x, y)gα(x, t)dx, and from the usual rep-

resentation of the Green function (see the proof of theorem 5.1 in the

Appendix).

6 – The scattering problem

Assuming that the stream function Ψ1 is given by (5.3), we want

to show, in this section, that the scattering problem (4.3), (4.4) can be

completely solved.

As first step, we perform a variables transformation. More precisely

let us set ρ2

2
= I. The function Ψ1, in terms of the new coordinates,
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becomes

(6.1) Ψ1(I, φ, t)=Ψ∞(I)− 1

t3/2

n∑

α=1

cαFα(I, φ, t)− 1

t2

p∑

j=1

Lj(I, φ, t)+O
( 1

t5/2

)

where

Fα(I, φ, t) =

√
π

2

∑

k≥1

1

k5/2
Rk

α(I) sin[k(θα − φ + tvα)] ,

Rα = Rα(I) =





√
2I

f(θα)
if I < f2(θα)/2

f(θα)√
2I

if I > f2(θα)/2 ,

and

Lj(I, φ, t) =
∑

k≥1

1

k3(v′(I))2
l(ij) sin[k(ij − φ + tv(I))] ,

∂IΨ∞ ≡ v(I).

Let us remark that the previous transformation is not canonical, but

the function Ψ1(I, φ, t), given by (6.1) turns out to be hamiltonian.

We give now a preliminary lemma, which is important for our main

result.

Lemma 6.1. For all (I, φ) ∈ [0, M 2/2]× [0, 2π], except at most a set

whose measure tends to zero as t → ∞, there exists a T = T (θα, M) such

that, for t ≥ T, the hamiltonian Ψ1 given by (6.1), can be transformed,

via two canonical transforms, into the new hamiltonian

H(I,Φ, t) =
1

t2

p∑

j=1

hj(I,Φ) + O
( 1

t5/2

)
,

where the ij’s are the same as in theorem 5.1, and

hj(I,Φ) = −
∑

k≥1

1

k3(v′(I))2
sin k(ij − Φ) .
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Proof. Let us perform, as first step, a time-dependent canonical

transform, say C1 : (I, φ) → (I ′, φ′), such that the hamiltonian Ψ1 is

transformed into a new hamiltonian Ψ′
1(I ′, φ′, t) = Ψ∞(I ′) + O( 1

t2
).

In order to do this, let us consider, as usual in the theory of canonical

transforms, [30], a generating function

(6.2) G1(I ′, φ, t) = I ′φ +
1

t3/2
g1(I ′, φ, t) ,

where g1 must be a suitable function. From (6.2) it follows that

I =
∂G1

∂φ
= I ′ +

1

t3/2

∂g1

∂φ

φ′ =
∂G1

∂I ′ = φ +
1

t3/2

∂g1

∂I ′ ,

and

(6.3)
Ψ′

1(I ′, φ′, t) = Ψ1(I, φ, t)
∣∣∣
C1

+
∂G1

∂t

∣∣∣
C1

=

= Ψ1(I, φ, t)
∣∣∣
C1

+
1

t3/2

∂g1

∂t
+ o

( 1

t3/2

)
.

Moreover, in order to obtain φ′ as a function of I, φ and t, it must be,

from (6.2),

(6.4)
1

t3/2

∂2g1

∂φ∂I ′ &= 1 .

It is not difficult to see that, setting

g1(I ′, φ, t) =
n∑

α=1

cα

v(I) − vα

∑

k≥1

1

k7/2
Rk

α(I) cos[k(θα − φ + t(vα))] ,

(6.4) is satisfied for all t ≥ T, T = T (θα, M).

Then C1 is given by

(6.5)
I ′ = I + O

( 1

t3/2

)

φ′ = φ + O
( 1

t3/2

)
.
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Moreover, from (6.3) one can obtain

(6.6) Ψ′
1(I ′, φ′, t) = Ψ∞(I ′) − 1

t2

p∑

j=1

Lj(I ′, φ′, t) + O
( 1

t5/2

)

where

Lj(I ′, φ′, t) =
∑

k≥1

1

k3(v′(I ′))2
l(ij) sin[k(ij − φ′ + tv(I ′))] .

Let us consider now a second time-dependent canonical transform. Call

it C2 : (I ′, φ′) → (I,Φ). Then Ψ′
1 is transformed into the hamiltonian

H(I,Φ, t) = O( 1
t2

).

This transformation can be constructed via the generating function

(6.7) G2(I,φ′, t) = Iφ′ − Ψ∞(I)t .

As before, (6.7) implies that I ′ = ∂G2
∂φ′ , Φ = ∂G2

∂I
, that is, taking into

account that, by definition ∂Ψ∞/∂I = v(I), C2 is given by

(6.8)
I = I ′

Φ = φ′ − v(I)t ,

and

H(I,Φ, t) = Ψ′
1(I ′, φ′, t)

∣∣∣
C2

+
∂G2

∂t

∣∣∣
C2

=

= Ψ′
1(I ′, φ′, t)

∣∣∣
C2

− Ψ∞(I) =
1

t2

p∑

j=1

hj(I,Φ) + O
( 1

t5/2

)
,

where

hj(I,Φ) =
∑

k≥1

1

k3(v′(I))2
sin k(ij − Φ) .

The proof is concluded by remarking that, for v(I) = vα, that is on

n circles of radius Iα = v−1(vα), α = 1, ..., n, the transformation (6.4)

is not defined. However, taking into account the explicit form of the

transformation C2, one can say that for all ε > 0, there exists a τ = τ(ε),
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such that |ρ(t) − I(t)| < ε for all t ≥ τ. Call now T ∗ = max(T, τ). If

one has |I(T ∗)− Iα)| ≥ 2ε, then the transformation is defined everywhere

except, at most a set whose measure tends to zero for t → ∞. And this

concludes our proof.

We are ready now for the main result of the section. More precisely,

we are ready to solve the scattering problem (4.4).

Theorem 6.1 (homogenization). Let us assume that Ω0(x) = χD(x),

where χD is the characteristic function of the set D, and D is the same

as in the theorem 5.1. Assume, furthermore, that Ψ1 is given by (6.1).

Then there exists a function ω
(2)
0 ∈ L1 ∩ L∞(IR2) such that

(6.9) ||U t
Ψ∞Ω0(x) − U t

Ψ1
ω

(2)
0 (x)||L1

→ 0 ,

as t → ∞.

Proof. Let us remark that the left hand side of (6.9) can be rewrit-

ten as

(6.10) ||U t
Ψ∞Ω0(x) − U t

Ψ1
ω

(2)
0 (x)||L1

= ||Ω0(T
t,0
Ψ∞x) − ω

(2)
0 (T t,0

Ψ1
x)||L1

.

But T t,0
Ψ1

x = T T,0
Ψ1

T T,t
H C2C1x, therefore (6.10) is equivalent to

(6.11) ||Ω0(T
t,0
Ψ∞C−1

1 C−1
2 T T,t

H T 0,T
Ψ1

x) − ω
(2)
0 (x)||L1

.

If we show that T t,0
Ψ∞C−1

1 C−1
2 T T,t

H T 0,T
Ψ1

x converges, as t → ∞, taking into

account the fact that Ω0 is a characteristic function, we have proved

that (6.9) holds.

But, due to the explicit form of C1, C2, H, Ψ∞ it is not difficult to

verify that

lim
t→∞

T t,0
Ψ∞C−1

1 C−1
2 T T,t

H T 0,T
Ψ1

x =
(
c1 + O

( 1

t1/2

)
, c2 + O

( 1

t1/2

))
,

where the ci’s, i = 1, 2, depend on the initial conditions (I,Φ) and c2

depends also on T. This concludes the theorem.
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– Appendix

Proof of lemma 5.1. We prove, as a particular case, (5.1). The

other cases can be handled analogously.

We remark, first of all, that

∫ b

a

g(x)eith(x)dx =

∫ x1

a

g(x)eith(x)dx+

+
n−1∑

j=1

∫ xj+1

xj

g(x)eith(x)dx +

∫ b

xn

g(x)eith(x)dx .

Set z = h(x) and F (z) = g(h−1(z))

h′(h−1(z))
. Call zj = h(xj), j = 1, ...n − 1, and

let us compute

Ij =

∫ xj+1

xj

g(x)eith(x)dx =

∫ zj+1

zj

F (z)eitzdz =

=

∫ zj+dj

zj

F (z)eitzdz +

∫ zj+1−dj+1

zj+dj

F (z)eitzdz +

∫ zj+1

zj+1−dj+1

F (z)eitzdz ,

where [zj, zj +dj] (or [zj+1−dj+1, zj+1], ) zj < zj +dj < zj+1−dj+1 < zj+1

is the neighborhood of zj (resp. zj+1) where, taking into account that h

is a Morse function, we can write

F (z) = Cj|z − zj|−(1/2) + Aj + O(|z − zj|1/2) ,

where Cj = Cj(xj) =
g(xj)

(2|h′′(xj)|)1/2 , Aj = Aj(xj) =
g′(xj)

h′′(xj)
for j = 1, ..., n−1.

One can write

zj+dj∫

zj

F (z)eitzdz =
Cje

itzj

t

zj+dj∫

zj

[ eit(z−zj)

(z − zj)1/2
+ o(|z − zj|−(1/2))

]
d(tz) =

=
Cje

itzj

t1/2

{ ∫ ∞

0

eiu

u1/2
du −

∫ ∞

tdj

eiu

u1/2
du

}
+ O

( 1

t3/2

)
.

Because of the fact that the Fresnel’s integral
∫ ∞
0

eiu

u1/2 du converges to√
π
2
(1 + i), integrating by parts the second integral, we conclude that

(A.1)

∫ zj+dj

zj

F (z)eitzdz = Cje
itzj

{ 1

t1/2

√
π

2
(1+i)+

1

t

( eitdj

id
1/2
j

)
+O

( 1

t3/2

)
.
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Integrating again by parts, it is immediate to verify that

(A.2)

∫ zj+1−dj+1

zj+dj

F (z)eitzdz =
1

it

[
F (zj+1 − dj+1)e

it(zj+1−dj+1)+

− F (zj + dj)e
it(zj+dj)

]
+ O

( 1

t3/2

)
.

Finally, the third integral of Ij can be calculated following the same path

of the first integral. Then

Ij =
1

t1/2

√
π

2

{
Cje

itzj (1 + i) + Cj+1e
it(zj+1(1 − i)

}
+

+
1

it

{
eit(zj+dj)

[C − j

d
1/2
j

− F (zj + dj)
]
+

+ eit(zj+1−dj+1)
[
F (zj+1 − dj+1) − Cj+1

d
1/2
j+1

]}
+ O

( 1

t3/2

)
.

The integrals all over [a, x1] and [xn, b] can be computed performing anal-

ogous calculations.

Summing all the contributions and taking into account the explicit

expression of the function F (z), the lemma is proved.

Proof of theorem 5.1. Let us remark, first of all, that ω(1) is

conserved along the solutions of (4.1)2, that is ω(1)(x, t) = ω
(1)
0 (T t,0

Ψ∞x).

Set, by definition, z = T t,0
Ψ∞x. Then (5.2) can be rewritten as

Ψ1(y, t) =

∫

IR2
G(y, T t

Ψ∞z)ω
(1)
0 (z)dz .

Taking into account the explicit formula for G, the fact that ω
(1)
0 (z) =

χD(z), and the free evolution law, the previous formula becomes, in polar

coordinates,

Ψ1(y, t) = − 1

4π

∫ 2π

0

dθ

∫ f(θ)

0

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r))]rdr .

Let us call M the (positive) maximum of f(θ), θ ∈ [0, 2π].

We prove (5.3) in the case ρ ∈ [0, M ]. If ρ > M, that is if x /∈ D, the

proof reduces to a particular case, and can be performed following the

same ideas below.
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Assume, without loss of generality, that the function f(θ) is given,

for example, as in the figure

f(θ)

ρ

θi1 i2 i3 i4 i5 i6

Fig. 2

Define θ = i1, ..., θ = im the intersections f(θ) = ρ. Then it is [0, 2π] =

∪m
j=1Ij where Ij = [ij, ij+1] and we set im+1 ≡ i1. Then the Ψ1 can be

rewritten as

(A.3) Ψ1(y, t) = − 1

4π

m∑

α=1

∫

Ij

A(θ, y, t)dθ,

where one has, by definition,

(A.4) A(θ, y, t) =

∫ f(θ)

0

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r))]rdr .

To estimate A, we assume, from now on, that, for all j, the critical points

of f(θ) belong to the interior of Ij (as in the previous figure). If this is

not the case, the proof can be performed analogously, by applying, when

it is necessary, formula (5.11) (or (5.12) or (5.13)) instead of (5.1).

To estimate (A.3), let us remark, first of all, that from the definition

of Ij, it follows that, for all θ ∈ Ij, one has ρ ≤ f(θ) or ρ ≥ f(θ). To

show our result, we study
∫

Ij
A(θ, y, t)dθ, and

∫
Ij+1

A(θ, y, t)dθ, and we

assume, without loss of generality, that for θ ∈ Ij it is ρ ≤ f(θ), (that is

for θ ∈ Ij+1 it is ρ > f(θ)).
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Let us note, first of all, that (A.4), can be rewritten as follows

(A.5)

A(θ, y, t) =

∫ ρ−ε

0

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r)]rdr+

+

∫ f(θ)

ρ+ε

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r)]rdr+

+

∫ ρ+ε

ρ−ε

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r)]rdr ,

where ε is so small as we want.

We remark, first of all, that

∫

Ij

∫ ρ+ε

ρ−ε

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r))]rdrdθ

tends to zero as ε tends to zero. Then we have to study the first and the

second term in (A.5).

Let us estimate the first integral in the previous sum.

Taking into account the fact that, whenever r
ρ

< 1, the following

formula holds

− ln(1 + (r/ρ)2 − 2(r/ρ) cos x) =
∑

k≥1

(r/ρ)k

k
cos kx ,

it is

∫ ρ−ε

0

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r))]rdr =

= ln ρ2 (ρ − ε)2

2
−

∑

k≥1

1

2k

∫ ρ−ε

0

rk+1

ρk
eik(θ−φ+tv(r))dr + c.c.t.,

where, from now on, by “c.c.t.”, we mean “complex conjugate terms”.

Integrating by parts twice, it is possible to verify that

∫ ρ−ε

0

rk+1

ρk
eik(θ−φ+tv(r))dr =

1

iktρk

[(ρ − ε)k+1

v′(ρ − ε)
eik(θ−φ+tv(ρ−ε))+

−
∫ ρ−ε

0

eik(θ−φ+tv(r))
((k + 1)rkv′(r) − rk+1v′′(r)

(v′(r))2

)]
dr =



[25] Scattering theory: a possible approach to the etc. 469

=
eik(θ−φ+tv(ρ−ε))

k

{1

t

[ (ρ − ε)k+1

iρkv′(ρ − ε)

]
+

1

t2

[ k + 1

k(v′(ρ − ε))2

(ρ − ε

ρ

)k

+

− v′′(ρ − ε)

k(v′(ρ − ε))3

(ρ − ε)k+1

ρk

]
+ O

( 1

t3

)}
+ c.c.t.

Then
∫ ρ−ε

0

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r))]rdr =

= ln ρ2 (ρ − ε)2

2
−

∑

k≥1

eik(θ−φ+tv(ρ−ε))

2k2

{1

t

[ (ρ − ε)k+1

iρkv′(ρ − ε)

]
+

+
1

t2

[k + 1

k

(ρ − ε

ρ

)k 1

(v′(ρ − ε))2
− v′′(ρ − ε)(ρ − ε)k+1

k(v′(ρ − ε))3ρk

]
+

+ O
( 1

t3

)
} + c.c.t.

We study now the second integral of (A.5).

One has, taking into account that ρ
r

< 1, and integrating again by

parts,

∫ f(θ)

ρ+ε

ln[r2 + ρ2 − 2rρ cos(θ − φ + tv(r))]rdr =
1

2
[f2(θ)(ln f2(θ) − 1)+

− (ρ + ε)2(ln(ρ + ε)2 − 1)]+

−
∑

k≥1

ρk

2k

∫ f(θ)

ρ+ε

1

rk−1
eik(θ−φ+tv(r))dr + c.c.t. =

=
1

2
[f2(θ)(ln f2(θ) − 1) − (ρ + ε)2(ln(ρ + ε)2 − 1)]+

−
∑

k≥1

eik(θ−φ+tv(f(θ))

2k2

{1

t

[ ρk

iv′(f(θ))(f(θ))k−1

]
+

+
1

t2

[k − 1

k

( ρ

f(θ)

)k 1

(v′(f(θ))2
− v′′(f(θ))

k(v′(f(θ))3

(ρ)k

(f(θ))k−1

]
+

+
∑

k≥1

eik(θ−φ+tv(ρ+ε))

2k2

{1

t

[ ρk

i(v′(ρ + ε))(ρ + ε)k−1

]
+

+
1

t2

[k − 1

k

( ρ

ρ + ε

)k 1

(v′(ρ + ε))2
− v′′(ρ + ε)

k(v′(ρ + ε))3

(ρ)k

(ρ + ε)k−1

]}
+

+ O
( 1

t3

)
+ c.c.t.
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Then, for ε → 0, (A.5) becomes

A(θ, y, t) =
1

2
[f2(θ)(ln f2(θ) − 1) + ρ2]+

− 1

t

∑

k≥1

1

2k2

eik(θ−φ+tv(f(θ))

iv′(f(θ))

ρk

(f(θ))k−1
− 1

t2

∑

k≥1

1

2k2
×

×
{eik(θ−φ+tv(f(θ))

(v′(f(θ)))2

[k − 1

k

( ρ

f(θ)

)k

+

− ρk

k(f(θ))k−1

v′′(f(θ))

(v′(f(θ))

]
+

2eik(θ−φ+tv(ρ))

(v′(ρ))2

}
+

+ O
( 1

t3

)
+ c.c.t.

We have now to study
∫

Ij
A(θ, y, t)dθ. One has

∫

Ij

A(θ, y, t)dθ =
1

2

∫

Ij

[f2(θ)(ln f2(θ) − 1) + ρ2]dθ+

− 1

t

∑

k≥1

ρk

2k2i
Ak(Ij) − 1

t2

∑

k≥1

ρk

2k2
[Bk(Ij) − Ck(Ij)]+

− 1

t2

∑

k≥1

1

ik3

1

(v′(ρ))2
(eik(ij+1−φ+tv(ρ)) − eik(ij−φ+tv(ρ))) + O

( 1

t3

)
+ c.c.t.

where we set, by definition,

Ak(Ij) =

∫ ij+1

ij

1

v′(f(θ))(f(θ))k−1
eik(θ−φ+tv(f(θ))dθ ,(A.6)

Bk(Ij) =
k − 1

k

∫ ij+1

ij

eik(θ−φ+tv(f(θ))

(v′(f(θ)))2
1

(f(θ))k
dθ ,(A.7)

and

Ck(Ij) =
1

k

∫ ij+1

ij

eik(θ−φ+tv(f(θ))

(v′(f(θ)))3
v′′(f(θ))

(f(θ))k−1
dθ .(A.8)
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Let us apply now to (A.6), (A.7), and (A.8) lemma 5.1 assuming that, in

the first case,

g = g(θ) =
eik(θ−φ)

v′(f(θ))(f(θ))k−1
, h = h(θ) = kv(f(θ)) ,

in the second case

g(θ) =
eik(θ−φ)

(v′(f(θ)))2(f(θ))k
, h(θ) = kv(f(θ)) ,

and finally

g(θ) =
eik(θ−φ)v′′(f(θ)

(v′(f(θ)))3(f(θ))k−1
, h(θ) = kv(f(θ)) ,

Call θh, θh+1, ..., θl the critical points of f that, following the hypothesis,

are in the interior of the interval Ij. From formula (5.1), taking into

account that, by definition, f(ij) = ρ for all j, one has

∫

Ij

A(θ, y, t)dθ = A(ρ2)+

− 1

t3/2

√
π

4

∑

k≥1

1

k5/2i

l∑

α=h

( ρ

f(θα)

)k

f(θα)
eik(θα−φ+tv(f(θα)))

(|(v′(f(θα))3f ′′(θα)|)1/2
+

− 1

t2

∑

k≥1

{ 1

k3(v′(ρ))2

{ρ

2

[eik(ij+1−φ+tv(ρ))

f ′(ij+1))
− eik(ij−φ+tv(ρ))

f ′(ij)

]
+

+
1

i

[
eik(ij+1−φ+tv(ρ)) − eik(ij−φ+tv(ρ))

]}
+

− 1

t5/2

√
π

4

∑

k≥1

1

k7/2

l∑

α=h

( ρ

f(θα)

)k eik(θα−φ+tv(f(θα)))

(|(v′(f(θα))5f ′′(θα)|)1/2
×

×
[
k − 1 − v′′(f(θα))f(θα)

v′(f(θα))

)]
+ O

( 1

t3

)
+ c.c.t.,

where we set, by definition, A(ρ2) = 1
2

∫
Ij

f2(θj)(ln f2(θj) − 1) + ρ2)dθ.

Analogously we can study
∫

Ij+1
A(θ, x, t)dθ, where A is given by (A.4)

and now f(θ) < ρ (that is r
ρ

< 1).



472 E. CAGLIOTI – C. MAFFEI [28]

Assuming, as before, that θl+1, ..., θm are critical points in the interior

of Ij+1, it is

∫

Ij+1

A(θ, y, t)dθ =

∫ ij+2

ij+1

1

2
ln ρ2f2(θ)dθ+

− 1

t

∑

k≥1

1

2k2ρki
Ak(Ij+1) − 1

t2

∑

k≥1

1

2k2ρk
[Bk(Ij+1)+

− Ck(Ij+1)] + O
( 1

t3

)
+ c.c.t.,

where, as before,

Ak(Ij+1) =

∫

Ij+1

(f(θ))k+1

v′(f(θ))
eik(θ−φ+tv(f(θ)))dθ ,

Bk(Ij+1) =
k + 1

k

∫ ij+2

ij+1

eik(θ−φ+tv(f(θ))(f(θ))k

(v′(f(θ)))2
dθ ,

and

Ck(Ij+1) =
1

k

∫ ij+2

ij+1

eik(θ−φ+tv(f(θ))(f(θ))k+1v′′(f(θ))

(v′(f(θ)))3
dθ .

Applying lemma 5.1 again, one has

∫

Ij+1

A(θ, y, t)dθ = B(ρ2)+

− 1

t3/2

√
π

4

∑

k≥1

1

k5/2i

[ m∑

α=l+1

(f(θα)

ρ

)k

f(θα)
eik(θα−φ+tv(f(θα)))

(|(v′(f(θα))3f ′′(θα)|)1/2

]
+

− 1

t2

∑

k≥1

ρ

2k3

[ eik(ij+2−φ+tv(ρ))

(v′(ρ))2f ′(ij+2)
− eik(ij+1−φ+tv(ρ))

(v′(ρ))2f ′(ij+1)

]
+

− 1

t5/2

√
π

4

∑

k≥1

1

k7/2

[ m∑

α=l+1

(f(θα)

ρ

)k eik(θα−φ+tv(f(θα)))

(|(v′(f(θα))5f ′′(θα)|)1/2
×

×
(

− v′′(θα)(f(θα))

v′(f(θα))
+ (k + 1)

)]
+ O

( 1

t3

)
+ c.c.t.,
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where we set, by definition, B(ρ2) = ln ρ2

2

∫
Ij+1

f2(θ)dθ.

Then, it follows that

∫

Ij∪Ij+1

A(θ, y, t)dθ =

= C(ρ2) − 1

t3/2

√
π

4

∑

k≥1

1

k5/2

m∑

α=h

Rk
αcα

eik(θα−φ+tv(f(θα))

i
+

− 1

t2

∑

k≥1

1

k3(v′(ρ))2

{ρ

2

[eik(ij+2−φ+tv(ρ))

f ′(ij+2)
+

− eik(ij−φ+tv(ρ))

f ′(ij)

]
+

+
1

i
[eik(ij+1−φ+tv(ρ)) − eik(ij−φ+tv(ρ))]}+

− 1

t5/2

√
π

4

∑

k≥1

1

k7/2

m∑

α=h

Rk
αf(θα)

eik(θα−φ+tv(f(θα))

(|(v′(f(θα))7f ′′(θα)|)1/2
×

× [−2f(θα)v′′(f(θα)) + 2v′(f(θα))] + O
( 1

t3

)
+ c.c.t.

where C(ρ2) = A(ρ2) + B(ρ2) is a suitable function of ρ2, the Rα’s are

the same as in formula (5.3), and the cα’s are suitable constants.

Taking into account the periodicity of f, and summing all over the

intervals Ij, the theorem is proved.
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