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Pseudo-symmetric spaces of constant type

in dimension three — elliptic spaces

O. KOWALSKI – M. SEKIZAWA

Riassunto: Diamo una classificazione quasiesplicita delle varietà riemanniane 3-
dimensionali cosiddette “ellittiche”, cioè con autovalori di Ricci ρ1 = ρ2 '= ρ3, ρ3 =
costante '= 0. (Nel caso non ellittico il problema é stato risolto esplicitamente in [14]).
Le classi locali di isometria delle metriche di tali varietà dipendono essenzialmente da
tre funzioni arbitrarie di due variabili. Diamo anche un esempio di famiglie esplicite
di metriche che dipendono da due funzioni arbitrarie di due variabili.

Abstract: We give a quasiexplicit classification of three-dimensional Riemannian
manifolds with Ricci eigenvalues ρ1 = ρ2 '= ρ3, ρ3 = constant '= 0; which are called
“elliptic”. (In the nonelliptic cases the problem was solved explicitly in [14]). The
local isometry classes of metrics of such manifolds depend on essentially three arbitrary
functions of two variables. We also give an example of an explicit family of metrics
depending on two arbitrary functions of two variables.

– Introduction

According to [5], a Riemannian manifold (M, g) is said to be pseudo-

symmetric if the following formula holds for arbitrary vector fields X and

Key Words and Phrases: Riemannian manifold – Pseudo-symmetric space
A.M.S. Classification: 53C20 – 53C20 – 53C21
This research was supported by the grant GA ČR 201/96/0227 and in part by Grant-
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Il contenuto di questo lavoro è stato oggetto di una conferenza tenuta dal primo Autore,
O. Kowalski, al Convegno “Recenti sviluppi in Geometria Differenziale”, Università “La
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Y on M :

(0.1) R(X, Y ) · R = F ((X ∧ Y ) · R) ,

where

a) R denotes the Riemannian curvature tensor of type (1,3) on (M, g)

and

R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ]

denote the corresponding curvature transformations,

b) X ∧Y denotes the endomorphism of the tangent bundle TM defined

by

(0.2) (X ∧ Y )Z = g(Y,Z)X − g(X, Z)Y ,

c) F is a smooth function on M ,

d) the dot in each side of the formula (0.1) denotes the derivation on the

tensor algebra of TM induced by an endomorphism of this tangent

bundle.

We call a pseudo-symmetric space (M, g) of constant type if F =

c̃ = constant. According to [4] we have the following characterization in

dimension three (see [14] for more details):

Proposition 0.1. A three-dimensional Riemannian manifold (M, g)

is pseudo-symmetric of constant type F = c̃ if and only if its principal

Ricci curvatures ρ1, ρ2 and ρ3 locally satisfy the following conditions (up

to a numeration):

(i) ρ3 = 2c̃,

(ii) ρ1 = ρ2 everywhere.

We are not interested in the case when (M, g) is a space of constant

curvature and therefore we assume always ρ1 = ρ2 &= ρ3.

If c̃ = 0, and hence F = 0, we obtain a definition of semi-symmetric

space. The theory of semi-symmetric spaces has been developed in [17],

[18], [19], [9], [6], [1], [2] and especially in the book [3]. For the three-

dimensional case, see the explicit classification in [9], [6] and [3, Chap-

ter 6].
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For c̃ &= 0, the present authors made an explicit classification in [14]

for the so-called “asymptotically foliated” (or “non-elliptic”) spaces in di-

mension three. (See section 4 for the terminology.) The aim of this paper

is to treat the more complicated “elliptic” spaces in the full generality.

Let us mention that the first author in [10] solved the special case

when ρ1 = ρ2 is a constant(∗), and the present authors treated in [13]

a more general case-here ρ1 = ρ2 is supposed to be constant along each

trajectory of the principal Ricci curvature ρ3. The basic methods of [9],

[10] and [13] are used also here but the corresponding calculations became

more complicated. A computer check (the software “Mathematica” by

Wolfram Research Inc.) was also used during this work.

1 – The basic system of partial differential equations for the

problem

Let (M, g) be a three-dimensional Riemannian manifold whose Ricci

tensor R̂ has eigenvalues ρ1 = ρ2 &= ρ3 with nonzero constant ρ3. Choose

a neighborhood Ũ of a fixed point m ∈ M and a smooth vector field E3

of unit eigenvectors corresponding to the Ricci eigenvalue ρ3 in Ũ . Let

S : D2 → Ũ be a surface through m which is transversal with respect to

all trajectories generated by E3 at all cross-points and not orthogonal to

such a trajectory at m. (The vector field E3 determines an orientation

of S.) Then there is a normal neighborhood U of m, U ⊂ Ũ , with the

property that each point p ∈ U is projected to exactly one point π(p) ∈ S

via some trajectory. We fix any local coordinate system (w, x) on S and

then a local coordinate system (w, x, y) on U such that the values w(p)

and x(p) are defined as w(π(p)) and x(π(p)), respectively, for each point

p ∈ U , y(p) is the oriented length d+(π(p), p) of the trajectory joining p

with π(p). Then E3 = ∂/∂y can be extended in U to an orthonormal

moving frame {E1, E2, E3}. Let {ω1, ω2, ω3} be the corresponding dual

coframe. Then the ωi are of the form

(1.1) ωi = aidw + bidx, i = 1, 2, ω3 = dy + Hdw + Gdx .

The Ricci tensor R̂ expressed with respect to {E1, E2, E3} has the form

R̂ij = ρiδij. Because each ρi is expressed through the sectional curvature

(∗) See [11], [12], [15], [16] and [3], Chapter 12, for the related topics.
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Kij by the formula ρi = R̂ii =
∑

j -=i Kij, there exist a function k =

k(w, x, y) of the variables w, x and y, and a constant c̃ such that

(1.2) K12 = k, K13 = K23 = c̃, ρ1 = ρ2 = k + c̃, ρ3 = 2c̃ .

Define now the components ωi
j of the connection form by the standard

formulas

(1.3) dωi −
∑

j

ωj ∧ ωi
j = 0, ωi

j + ωj
i = 0, i, j = 1, 2, 3 .

Because the Riemannian curvature tensor satisfies Rijkl = 0 whenever

at least three of the indices i, j, k and l are distinct, the formulas (1.2)

are equivalent to

(1.4)





dω1
2 + ω1

3 ∧ ω3
2 = k ω1 ∧ ω2 ,

dω1
3 + ω1

2 ∧ ω2
3 = c̃ ω1 ∧ ω3 ,

dω2
3 + ω2

1 ∧ ω1
3 = c̃ ω2 ∧ ω3 .

Next, differentiate the equations (1.4) and substitute from (1.4). We

obtain easily

(1.5) ω1
3 ∧ ω1 ∧ ω2 = 0, ω2

3 ∧ ω1 ∧ ω2 = 0

and

(1.6) d((k − c̃)ω1 ∧ ω2) = 0 .

The relations (1.5) mean that ω1
3 and ω2

3 are linear combinations of ω1

and ω2 only, and from the third equation of (1.3) it follows that dω3 is a

multiple of ω1 ∧ ω2, i.e., a multiple of dw ∧ dx. Then (1.1) implies that

the functions G and H are independent of y.

Now, there is a local coordinate system (w̄, x̄, y) (possibly in a smaller

neighborhood of m) such that w̄ = w̄(w, x) and x̄ = x̄(w, x) are functions

of w and x, and

(1.7) ω1 = P 1dw̄+Q1dx̄, ω2 = P 2dw̄+Q2dx̄, ω3 = dy+H̄(w̄, x̄)dw̄ .
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Indeed, because the surface S is not orthogonal to the vector field E3 at

m, the Pfaffian form Hdw+Gdx from (1.1) is nonzero in a neighborhood

of m in M . Then we define w̄ = w̄(w, x) as a potential function of the

Pfaffian equation Hdw + Gdx = 0, and the second function x̄ = x̄(w, x)

can be defined as an arbitrary smooth function which is functionally

independent of w̄. In addition, there are new Pfaffian forms ω̃1 and ω̃2

such that (ω̃1)2 + (ω̃2)2 = (ω1)2 + (ω2)2 and ω̃1 does not involve the

differential dx̄. We can summarize:

Proposition 1.1. In a normal neighborhood of any point m ∈ M

there exist an orthonormal coframe {ω1, ω2, ω3} and a local coordinate

system (w, x, y) such that

(1.8) ω1 = fdw, ω2 = Adx + Cdw, ω3 = dy + Hdw .

Here f , A and C are smooth functions of the variables w, x and y,

fA &= 0, and H is a smooth function of the variables w and x.

The formula (1.6) can be now written in the form

(1.9) ((k − c̃)fA)′
y = 0, i.e., k − c̃ =

σ

fA

for some function σ = σ(w, x) &= 0.

Now, define the function χ = χ(w, x, y) of the variables w, x and y

by

(1.10) χ =
1

fA
=

k − c̃

σ
.

Then, using (1.8) and (1.10), we obtain easily the following expression

for the components of the connection form:

(1.11)





ω1
2 = −Aαdx + Rdw + βdy ,

ω1
3 = Aβdx + Sdw

ω2
3 = A′

ydx + Tdw ,
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where

(1.12)





α = χ(A′
w − C ′

x − HA′
y) ,

β =
χ

2
(H ′

x + AC ′
y − CA′

y)

and

(1.13)





R = χff ′
x − Cα + Hβ ,

S = f ′
y + Cβ ,

T = C ′
y − fβ .

The curvature conditions (1.4) then give a system of nine partial differ-

ential equations for our problem:

(Aα)′
y + β′

x = 0 ,(A1)

R′
y − β′

w = 0 ,(A2)

(Aα)′
w + R′

x + SA′
y − AβT = −fAk ,(A3)

A′′
yy − Aβ2 = −c̃A ,(B1)

−A′′
yw + T ′

x + A(βR + αS) = c̃AH ,(B2)

T ′
y − Sβ = −c̃C ,(B3)

(Aβ)′
y + A′

yβ = 0 ,(C1)

S′
x − (Aβ)′

w − (AαT + A′
yR) = 0 ,(C2)

S′
y + Tβ = −c̃f .(C3)

2 – The first integrals and the reduction of the basic system of

partial differential equations

The aim of this section is to replace the partial differential equations

of the series (B) and (C) by a system of algebraic equations for the new

functions depending only on the variables w and x.
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First of all, we can eliminate (B2) and (C2) by the same procedure

as in[10]: the equation (B2) is a consequence of (A1) and (B1); the equa-

tion (C2) is a consequence of (A1), (A2) and (C1). Moreover, proposi-

tion 2.3 from [10] still holds (with a slight change of the notation). We

have

Proposition 2.1. The equations (B3) and (C3) are satisfied if and

only if

(2.1) fT − CS = ϕ0 ,

where ϕ0 = ϕ0(w, x) is an arbitrary function of the variables w and x.

Moreover, we have, in the hyperbolic case c̃ = −λ2,

S2 + T 2 = λ[ϕ1 cosh(2λy) + ϕ2 sinh(2λy) − ϕ3] ,(2.2h)

fS + CT = ϕ2 cosh(2λy) + ϕ1 sinh(2λy) ,(2.3h)

f2 + C2 =
1

λ
[ϕ1 cosh(2λy) + ϕ2 sinh(2λy) + ϕ3] ,(2.4h)

where the functions ϕi = ϕi(w, x), i = 1, 2, 3, of the variables w and x

satisfy the single relation

(2.5h) ϕ 2
0 + ϕ 2

2 − (ϕ 2
1 − ϕ 2

3 ) = 0

and in the elliptic case c̃ = λ2,

S2 + T 2 =λ[ϕ1 cos(2λy) − ϕ2 sin(2λy) + ϕ3] ,(2.2e)

fS + CT =ϕ2 cos(2λy) + ϕ1 sin(2λy) ,(2.3e)

f2 + C2 =
1

λ
[−ϕ1 cos(2λy) + ϕ2 sin(2λy) + ϕ3] ,(2.4e)

where the functions ϕi = ϕi(w, x), i = 1, 2, 3, of the variables w and x

satisfy the single relation

(2.5e) ϕ 2
0 + ϕ 2

2 + ϕ 2
1 − ϕ 2

3 = 0 .
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Proposition 2.2. From the equations (A1), (A2), (B1), (C1) and

(C3), we have, in the hyperbolic case,

(2.6h) fA = f1 cosh(2λy) + f2 sinh(2λy) + f3

and, in the elliptic case,

(2.6e) fA = f1 cos(2λy) + f2 sin(2λy) + f3 ,

where fi = fi(w, x), i = 1, 2, 3, are some functions of the variables w

and x.

There is a function ϕ4 = ϕ4(w, x) of the variables w and x such that,

in the hyperbolic case,

(2.7h) SA = λf2 cosh(2λy) + λf1 sinh(2λy) + ϕ4

and, in the elliptic case,

(2.7e) SA = λf2 cos(2λy) − λf1 sin(2λy) + ϕ4 .

Further, the equation (A3) is reduced to the equation

(2.8) (Aα)′
w + R′

x + τ = 0 ,

where

(2.9) τ = (SA)′
y + fA ρ1

is a function of the variables w and x.

Proof. From (C3) we obtain, using also (1.13),

(2.10)
(SA)′

y = SA′
y − AβT − c̃fA =

= f ′
yA

′
y + β(CA′

y − AC ′
y) + f(Aβ2 − c̃A) .

Due to (B1) we obtain

(2.11)
(SA)′

y = f ′
yA

′
y + A′′

yyf + β(CA′
y − AC ′

y) =

= (A′
yf)′

y + β(CA′
y − AC ′

y) .
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On the other hand, using (1.13) first and (C1) later, we get

(2.12) (SA)′
y = [f ′

yA + (Aβ)C]′y = (f ′
yA)′

y − β(CA′
y − AC ′

y) .

As the sum of (2.11) and (2.12) we obtain

(2.13) 2(SA)′
y = (fA′

y)
′
y + (f ′

yA)′
y = (fA)′′

yy .

Using (A1) and (A2), we obtain

(2.14) [(Aα)′
w + R′

x]
′
y = 0 .

Due to (2.10), (1.10) and ρ1 = k + c̃, the equation (A3) takes in the form

(2.15) (Aα)′
w + R′

x + (SA)′
y + fA ρ1 = 0 .

According to (2.14), the function τ defined by (2.9) does not depend on y.

This together with (2.15) implies (2.8). Also, the equations (2.13) and

(2.9) imply

(2.16) (fA)′′
yy + 2fA ρ1 = 2τ .

Substituting (1.10) and ρ1 = k + c̃ into (2.16), we obtain

(2.17)

(
σ

k − c̃

)′′

yy

+
2(k + c̃)σ

k − c̃
− 2τ = 0 .

Because σ does not depend on y, putting

(2.18) F =
1

k − c̃
− τ − σ

2c̃σ
,

we obtain

(2.19) F ′′
yy + 4c̃F = 0 .

Moreover we get, from (2.18) and (1.10),

(2.20) fA = Fσ + f3 ,



486 O. KOWALSKI – M. SEKIZAWA [10]

where f3 = f3(w, x) is an arbitrary function of the variables w and x.

The general solution of the partial differential equation (2.19) is, in

the hyperbolic case,

(2.21h) F = F1 cosh(2λy) + F2 sinh(2λy)

and, in the elliptic case,

(2.21e) F = F1 cos(2λy) + F2 sin(2λy) ,

where F1 = F1(w, x) and F2 = F2(w, x) are arbitrary functions of the

variables w and x. This together with (2.20) implies (2.6h) and (2.6e).

From (2.6he) and (2.13) we obtain (2.7he), respectively.

Proposition 2.3. The equations (B1) and (C1) are satisfied if and

only if

(2.22) βA2 = λa0 ,

where a0 = a0(w, x) is an arbitrary function and, moreover, we have

(a) in the hyperbolic case,

(2.23h) A2 = a1 cosh(2λy) + a2 sinh(2λy) + a3 ,

where ai = ai(w, x), i = 1, 2, 3, are functions of the variables w and x

satisfying

(2.24h) a 2
0 + a 2

2 − (a 2
1 − a 2

3 ) = 0 ;

(b) in the elliptic case,

(2.23e) A2 = a1 cos(2λy) + a2 sin(2λy) + a3 ,

where ai = ai(w, x), i = 1, 2, 3, are functions of the variables w and x

satisfying

(2.24e) a 2
0 + a 2

2 + a 2
1 − a 2

3 = 0 .
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The proof is the same as for proposition 2.5 in [10] (with a slight

change of the notation).

Proposition 2.4. We have, in the hyperbolic case,

(2.25h)

2λa0AC = [a1ϕ5 + 2λ(a2f3 − a3f2)] cosh(2λy)+

+ [a2ϕ5 − 2λ(a3f1 − a1f3)] sinh(2λy)+

+ a3ϕ5 − 2λ(a2f1 − a1f2)

and, in the elliptic case,

(2.25e)

2λa0AC = [a1ϕ5 + 2λ(a2f3 − a3f2)] cos(2λy)+

+ [a2ϕ5 + 2λ(a3f1 − a1f3)] sin(2λy)+

+ a3ϕ5 + 2λ(a2f1 − a1f2) ,

where ϕ5 = ϕ5(w, x) is an arbitrary function of the variables w and x.

Proof. Subtracting equations (2.11) and (2.12), we get

(fA′
y − f ′

yA)′
y + 2β(A′

yC − AC ′
y) = 0 ,

that is,

(fA′
y − f ′

yA)′
y = 2βA2

AC ′
y − A′

yC

A2
.

Using (2.22), we get

(2.26) (fA′
y − f ′

yA)′
y = 2λa0

(
C

A

)′

y

.

Integrating (2.26) with respect to y and multiplying by A3, we get

(2.27) 2λa0AC = ϕ5A
2 + (fA)(A2)′

y − A2(fA)′
y ,

where ϕ5 = ϕ5(w, x) is an arbitrary function of the variables w and x.

Substituting (2.6he) and (2.23he) into (2.27), we obtain our assertions,

respectively.
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The following proposition is more explicit.

Proposition 2.5. We have, in the hyperbolic case,

(2.28h) AC = b1 cosh(2λy) + b2 sinh(2λy) + b3

and, in the elliptic case,

(2.28e) AC = b1 cos(2λy) + b2 sin(2λy) + b3 ,

where bi = bi(w, x), i = 1, 2, 3, are functions of the variables w and x.

Proof. For a0 &= 0, the assertion (2.28he) is a direct consequence

of (2.25he), respectively.

Suppose now c̃ = ελ2, ε = ±1, and a0 = 0. Then β = 0 by (2.22) and

we get from (1.13)3 and (B3) that

C ′′
yy = −c̃ C = −ελ2C .

Hence we get, in the hyperbolic case,

(2.29h) C = r cosh(λy) + s sinh(λy)

and, in the elliptic case,

(2.29e) C = r cos(λy) + s sin(λy) ,

where r = r(w, x) and s = s(w, x) are arbitrary functions of the variables

w and x. On the other hand, (2.23he) and (2.24he) with a0 = 0 imply,

in the hyperbolic case,

(2.30h) A = p cosh(λy) + q sinh(λy)

and, in the elliptic case,

(2.30e) A = p cos(λy) + q sin(λy)

with some functions p = p(w, x) and q = q(w, x) of the variables w and

x. Hence (2.28he) follows.
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Remark. We denote sgn c̃ by ε in the sequel. This notation will be

used later to unify many formulas for the hyperbolic and the elliptic case.

Now we introduce the function h = h(w, x) by

(2.31) h = H ′
x .

Proposition 2.6. We have

(2.32)





ha1 = 2λ[a0f1 + a2b3 − a3b2] ,

ha2 = 2λ[a0f2 + ε(a3b1 − a1b3)] ,

ha3 = 2λ[a0f3 − (a1b2 − a2b1)] .

Proof. From (1.12)2 we get

h = 2fA β − (AC)′
y + 2A′

yC .

Then (2.22) and (1.10) imply

(2.33) hA2 = 2λa0fA − A2(AC)′
y + (AC)(A2)′

y .

Now we use (2.6he), (2.23he) and (2.28he) to get (2.32he).

From (2.21he), (1.10) and (2.1) we obtain

(2.34) S = fχQ, T = CχQ + ϕ0χA ,

where, in the hyperbolic case,

(2.35h) Q = λf2 cosh(2λy) + λf1 sinh(2λy) + ϕ4

and, in the elliptic case,

(2.35e) Q = λf2 cos(2λy) − λf1 sin(2λy) + ϕ4 .

Substituting from (2.34) into the partial differential equation (C3), we

obtain, using also (2.22),

(
fχQ′

y − A′
y

A2
Q

)
A2 + λa0CχQ + λa0ϕ0χA = −c̃fA2 .
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Multiplying this equation by A and using (2.27) and (1.10), we get

(2.36) 2fAQ′
y + ϕ5Q − Q(fA)′

y + 2λa0ϕ0 + 2c̃(fA)2 = 0 .

Substituting from (2.6he) and (2.35he) into (2.36), we obtain

(2.37)

{
f1(ϕ5 − 2ϕ4) = 0, f2(ϕ5 − 2ϕ4) = 0 ,

ϕ4ϕ5 + 2λa0ϕ0 − 2λ2[f 2
2 + ε(f 2

1 − f 2
3 )] = 0 .

Substituting (2.35he) into (2.34), we obtain, in the hyperbolic case,

S =fχ[λf2 cosh(2λy) + λf1 sinh(2λy) + ϕ4] ,(2.38h)

T =Cχ[λf2 cosh(2λy) + λf1 sinh(2λy) + ϕ4] + ϕ0χA(2.39h)

and, in the elliptic case,

S =fχ[λf2 cos(2λy) − λf1 sin(2λy) + ϕ4] ,(2.38e)

T =Cχ[λf2 cos(2λy) − λf1 sin(2λy) + ϕ4] + ϕ0χA .(2.39e)

Hence we obtain, in the hyperbolic case,

(2.40h)
fA(CT + fS) =

=ϕ0AC + [λf2 cosh(2λy) + λf1 sinh(2λy) + ϕ4](f
2 + C2)

and, in the elliptic case,

(2.40e)
fA(CT + fS) =

=ϕ0AC + [λf2 cos(2λy) − λf1 sin(2λy) + ϕ4](f
2 + C2) .

Substituting (2.3he), (2.4he) and (2.6he) into (2.40he), we get in the

hyperbolic case,

(2.41h)

ϕ0AC = (f3ϕ2 − f2ϕ3 − 1

λ
ϕ1ϕ4) cosh(2λy)+

+ (f3ϕ1 − f1ϕ3 − 1

λ
ϕ2ϕ4) sinh(2λy)+

+ f1ϕ2 − f2ϕ1 − 1

λ
ϕ3ϕ4
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and, in the elliptic case,

(2.41e)

ϕ0AC = (f3ϕ2 − f2ϕ3 +
1

λ
ϕ1ϕ4) cos(2λy)+

+ (f3ϕ1 + f1ϕ3 − 1

λ
ϕ2ϕ4) sin(2λy)+

+ f1ϕ2 + f2ϕ1 − 1

λ
ϕ3ϕ4 .

Another consequence of (2.38he) and (2.39he) is, in the hyperbolic

case,

(2.42h)

(fA)2(S2 + T 2) =
[
λ2f 2

2 cosh2(2λy)+

+ λ2f 2
1 sinh2(2λy) + 2λ2f1f2 cosh(2λy) sinh(2λy)+

+ 2λf2ϕ4 cosh(2λy) + 2λf1ϕ4 sinh(2λy) + ϕ 2
4

]
(f2 + C2)+

+ 2ϕ0AC[λf2 cosh(2λy) + λf1 sinh(2λy) + ϕ4] + ϕ 2
0 A2

and, in the elliptic case,

(2.42e)

(fA)2(S2 + T 2) =
[
λ2f 2

2 cos2(2λy)+

+ λ2f 2
1 sin2(2λy) − 2λ2f1f2 cos(2λy) sin(2λy)+

+ 2λf2ϕ4 cos(2λy) − 2λf1ϕ4 sin(2λy) + ϕ 2
4

]
(f2 + C2)+

+ 2ϕ0AC[λf2 cos(2λy) − λf1 sin(2λy) + ϕ4] + ϕ 2
0 A2 .

Using the formulas (2.2he), (2.4he), (2.6he), (2.23he) and (2.41he), we

obtain from (2.42he)

(2.43)





λϕ 2
0 a1 = ϕ1[λ

2(f 2
1 − εf 2

2 + f 2
3 ) − εϕ 2

4 ]+

+2λ2f1(εf3ϕ3 − f2ϕ2) + 2λϕ4(f2ϕ3 − f3ϕ2) ,

λϕ 2
0 a2 = εϕ2[λ

2(f 2
1 − εf 2

2 − f 2
3 ) + εϕ 2

4 ]+

+2λ2f2(f1ϕ1 + εf3ϕ3) − 2λϕ4(f3ϕ1 + εf1ϕ3) ,

λϕ 2
0 a3 = εϕ3[λ

2(f 2
1 + εf 2

2 + f 2
3 ) + εϕ 2

4 ]+

+2λ2f3(f1ϕ1 − f2ϕ2) − 2λϕ4(f1ϕ2 + εf2ϕ1) .

Consider now the identity (AC)2 = A2(f2 + C2) − (Af)2. Substituting

from (2.4he), (2.6he), (2.23he) and (2.28he), we get a system of quadratic
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equations

(2.44)





λ(b 2
1 − εb 2

2 + f 2
1 − εf 2

2 ) = −ε(a1ϕ1 + a2ϕ2) ,

λ(b 2
1 +εb 2

2 +2b 2
3 +f 2

1 +εf 2
2 +2f 2

3 )=−ε(a1ϕ1 − a2ϕ2)+2a3ϕ3 ,

2λ(b1b2 + f1f2) = a1ϕ2 − εa2ϕ1 ,

2λ(b1b3 + f1f3) = a1ϕ3 − εa3ϕ1 ,

2λ(b2b3 + f2f3) = a2ϕ3 + a3ϕ2 .

In the notation (2.28he) we can rewrite (2.25he) in the form

(2.45)





2λa0b1 = a1ϕ5 + 2λ(a2f3 − a3f2) ,

2λa0b2 = a2ϕ5 + 2ελ(a3f1 − a1f3) ,

2λa0b3 = a3ϕ5 − 2λ(a1f2 − a2f1) .

Also, we can rewrite (2.41he) in the form

(2.46)





λϕ0b1 = −λ(f2ϕ3 − f3ϕ2) + εϕ1ϕ4 ,

λϕ0b2 = λ(f3ϕ1 + εf1ϕ3) − ϕ2ϕ4 ,

λϕ0b3 = λ(f1ϕ2 + εf2ϕ1) − ϕ3ϕ4 .

Proposition 2.7. If a0 &= 0, then we have

(2.47) h = −2λ[ε(a1f1 − a3f3) + a2f2]

a0

.

Proof. The assertion follows from (2.32), (2.45) and (2.24he).

Now we have the main results of this section.

Theorem 2.8. Let λ be a nonzero constant. Let ϕ0, ϕ1, . . . , ϕ5, a0,

a1, a2, a3, b1, b2, b3, f1, f2, f3 and h be functions of two variables w and

x defined in some domain V ⊂ IR2(w, x), satisfying eight collections of

algebraic equations (2.5), (2.24), (2.32), (2.37)2, (2.43), (2.44), (2.45) and

(2.46) (either of hyperbolic type, or of elliptic type) with the corresponding

parameter λ, and such that a 2
1 + a 2

2 + a 2
3 > 0 in V .
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Let A, f , C and H be functions defined in a domain U ⊂ IR3(w, x, y),

where A &= 0, by the formulas (2.23), (2.6), (2.28) and (2.31) of the cor-

responding type, and let the metric g be defined on U by (1.8). Further,

let α, β and R be defined as in (1.12)1, (2.22), (1.13)1. Then the cur-

vature conditions (1.4) are satisfied for some function k = k(w, x, y) of

the variables w, x and y, and for the corresponding constant c̃ = ±λ2 if

and only if the system of partial differential equations (A1) and (A2) is

satisfied.

Proof. The assertion follows from the whole series of propositions

and formulas given in this section. The only point here is to show that, if

we do not prescribe the function k = k(w, x, y) in advance, then the equa-

tion (A3) (or, equivalently, (2.8)) does not give any additional condition.

But, due to (2.9) and (1.2), the equation (2.8) can be considered just as

a formula for calculating the Ricci eigenvalue ρ1 or the scalar curvature

Sc(g) = 2k + 4c̃ of (M, g).

Remark. The algebraic conditions mentioned above are, of course,

far from being independent, but they are all useful.

We conclude this section by proving additional algebraic equations

between our basic functions.

Proposition 2.9. We have

(2.48) ϕ5 = 2ϕ4 ,

(2.49) ϕ0A
2 − λa0(f

2 + C2) + ϕ5AC + hfA = 0 .

Proof. If f 2
1 + f 2

2 &= 0, then (2.48) follows from (2.37)1,2. If f1 =

f2 = 0, then we proceed as in the proof of proposition 4.1 in [10].

To derive (2.49), we rewrite (2.37) using (2.48) in the form

(2.50) λa0ϕ0 = λ2[f 2
2 + ε(f 2

1 − f 2
3 )] − ϕ 2

4 .
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Suppose a0 &= 0. Then (2.45) and (2.48) imply

(2.51)





b1 =
a1ϕ4 + λ(a2f3 − a3f2)

λa0

,

b2 =
a2ϕ4 + ελ(a3f1 − a1f3)

λa0

,

b3 =
a3ϕ4 − λ(a1f2 − a2f1)

λa0

.

Now we substitute for A2, f2+C2, AC, ϕ5, h and fA of the left hand side

of (2.49) from (2.23he), (2.4he), (2.28he), (2.48) and (2.6he), respectively.

Then the identity (2.49) follows. If a0 = 0, we use the direct check as

in [10].

Proposition 2.10. The following algebraic formulas hold

2λ(a1f1 + εa2f2 − a3f3) = − εa0h ,(2.52)

4λ2(b1f1 + εb2f2 − b3f3) = − εϕ5h ,(2.53)

2λ(ϕ1f1 − ϕ2f2 − ϕ3f3) = εϕ0h ,(2.54)

2λ(a1b1 + εa2b2 − a3b3) = − εa0ϕ5 .(2.55)

Proof. From (2.24he) and (2.32) we obtain

2λa0(a1f1 + εa2f2 − a3f3) = −εa 2
0 h .

Hence we obtain (2.52) if a0 &= 0. From (2.45) and (2.24he) we obtain

2λa0(b1f1 + εb2f2 − b3f3) = ϕ5(a1f1 + εa2f2 − a3f3) ,

which together with (2.52) implies (2.53) when a0 &= 0. From (2.46) we

obtain

ϕ4(ϕ1f1 − ϕ2f2 − ϕ3f3) = −λϕ0(b1f1 + b2f2 − b3f3) ,
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hence, if a0ϕ4 &= 0, we obtain (2.54) using (2.53) and (2.48). Finally from

(2.45) we obtain

2λa0(a1b1 + εa2b2 − a3b3) = −εa 2
0 ϕ5 .

Thus we obtain (2.55) when a0ϕ4 &= 0.

For a0ϕ4 = 0 we use the continuity argument or a rather lengthy

direct check (cf. proposition 4.10 in [9]).

3 – The Riemannian invariants

Let (M, g) be given locally as in proposition 1.1. We rewrite the

formulas (1.11) using the forms ω1, ω2 and ω3 as a basis. It follows

(3.1)





ω1
2 = χf ′

x ω1 − α ω2 + β ω3 ,

ω1
3 =

f ′
y

f
ω1 + β ω2 ,

ω2
3 = (β − hχ) ω1 +

A′
y

A
ω2, h = H ′

x .

We also write, for brevity,

(3.2) ω1
3 = a ω1 + b ω2, ω2

3 = c ω1 + e ω2 ,

where

(3.3) a =
f ′

y

f
, b = β, c = β − hχ, e =

A′
y

A
.

Using the standard formula ∇Ej
Ei =

∑
k ωk

i (Ej)Ek, i, j = 1, 2, 3, from [7],

we obtain

(3.4)





∇E1
E1 = −χf ′

xE2 − aE3, ∇E1
E2 = χf ′

xE1 − cE3 ,

∇E2
E1 = αE2 − bE3, ∇E2

E2 = −αE1 − eE3 ,

∇E1
E3 = aE1 + cE2, ∇E2

E3 = bE1 + eE2 ,

∇E3
E1 = −bE2, ∇E3

E2 = bE1 , ∇E3
E3 = 0 .
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The last formula shows that the trajectories of the unit vector field E3

(consisting of the eigenvectors of the Ricci tensor R̂ corresponding to

ρ3 = 2c̃) are geodesics.

For the Ricci tensor R̂ we get, using the notation (1.2) and the

adapted local orthonormal coframe {ω1, ω2, ω3},

(3.5) R̂ = (k + c̃)(ω1 ⊗ ω1 + ω2 ⊗ ω2) + 2c̃ (ω3 ⊗ ω3) .

Using (3.1), (3.2) and the standard formula ∇Xωi = − ∑
j ωi

j(X)ωj, we

obtain

(3.6)

∇R̂ =dk ⊗ (ω1 ⊗ ω1 + ω2 ⊗ ω2)+

+ (c̃ − k){(a ω1 + b ω2) ⊗ (ω1 ⊗ ω3 + ω3 ⊗ ω1)+

+ (c ω1 + e ω2) ⊗ (ω2 ⊗ ω3 + ω3 ⊗ ω2)} ,

where a, b, c and e are given by (3.3). Hence we also get

(3.7)
||∇R̂||2 =2||dk||2 + 2(c̃ − k)2(a2 + b2 + c2 + e2) =

=2||dρ1||2 + 2(ρ1 − ρ3)
2(a2 + b2 + c2 + e2) .

Because R̂ is a Riemannian invariant tensor, ∇R̂ is an invariant ten-

sor. Also, because E3 = ∂/∂y is uniquely determined by the geometry of

(M, g) up to sign, ω3 ⊗ω3 is an invariant tensor. Hence we see from (3.5)

and (3.6) that the tensor

(3.8)
Q =(a ω1 + b ω2) ⊗ (ω1 ⊗ ω3 + ω3 ⊗ ω1)+

+ (c ω1 + e ω2) ⊗ (ω2 ⊗ ω3 + ω3⊗2)

is also invariant. Now because E1 and E2 are determined up to an or-

thogonal transformation (with functional coefficients), the functions

(3.9)

{
Q(E1, E1, E3) + Q(E2, E2, E3) = a + e ,

Q(E2, E1, E3) − Q(E1, E2, E3) = b − c

are Riemannian invariants up to sign.

The square of the norm ||Q||2 = 2(a2 + b2 + c2 + e2) is a Riemannian

invariant and hence (equivalently) ae− bc is a Riemannian invariant. We

summarize:
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Proposition 3.1. The function ae−bc is a Riemannian invariant,

and a + e and b − c are Riemannian invariants up to sign (i.e., depend-

ing on the orientation of the principal geodesics). Further, the partial

derivative of any Riemannian invariant with respect to y is a Rieman-

nian invariant up to sign.

Using (1.10), we get

(3.10)





a + e = (ln(fA))′
y = −(ln(k − ελ2))′

y ,

b − c = hχ =
h(k − ελ2)

σ
.

Further we have

(3.11) ae − bc = ε(2λ2f3χ − λ2) .

The last formula is obtained by lengthy calculations using (2.52) and the

obvious identities

(AA′
y)

2 + λ2a 2
0 = − ελ2[(A2 − a3)

2 − a2
3] ,(3.12)

A3f ′
y =(fA)′

yA
2 − (fA)(AA′

y) .(3.13)

Using (3.11) we see that, in the hyperbolic case,

(3.14h)
fA

f3

=
f1 cosh(2λy) + f2 sinh(2λy) + f3

f3

is a Riemannian invariant and, in the elliptic case,

(3.14e)
fA

f3

=
f1 cos(2λy) + f2 sin(2λy) + f3

f3

is a Riemannian invariant (assuming f3 &= 0 everywhere). (According

to (3.10)2, fA/h and f3/h are then Riemannian invariants up to sign

assuming h &= 0 everywhere.)

Next, we give some simple results concerning isometry of Riemannian

manifolds with the Ricci eigenvalues ρ1 = ρ2 and nonzero constant ρ3 to
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be used later. Let (M, g) be such a manifold with the metric g given

by (1.8) and let (M̄, ḡ) be another such manifold with the metric ḡ given

by the orthonormal coframe

(3.15) ω̄1 = f̄dw̄, ω̄2 = Ādx̄ + C̄dw̄, ω̄3 = dȳ + H̄dw̄ .

Suppose that there is an isometry Φ : (M, g)−→(M̄, ḡ) given by

(3.16) w̄ = w̄(w, x, y), x̄ = x̄(w, x, y), ȳ = ȳ(w, x, y) .

Here we identify w̄, x̄ and ȳ with w̄ ◦ Φ, x̄ ◦ Φ and ȳ ◦ Φ, respectively.

Propositions 5.2 and 5.3 from [9] still hold without change. We have:

Proposition 3.2. The equation (3.16) can be reduced to the form

(3.17) w̄ = w̄(w, x), x̄ = x̄(w, x), ȳ = εy + φ(w, x), ε = ±1 ,

where φ = φ(w, x) is an arbitrary function of the variables w and x.

4 – The asymptotic foliations and four types of spaces

Recall that the principal geodesics are trajectories of the vector field

E3. We introduce two basic definitions.

Definition 4.1. A smooth surface N ⊂ (M, g) is called an asymp-

totic leaf if it is generated by the principal geodesics and its tangent

planes are parallel along these principal geodesics with respect to the

Riemannian connection ∇ of (M, g).

Definition 4.2. An asymptotic distribution on M is a two-dimen-

sional distribution which is integrable and whose integral manifolds are

asymptotic leaves. The integral manifolds of an asymptotic distribution

determine a foliation of M , which is called an asymptotic foliation.

Let N be an asymptotic leaf. Then we see as in [10] that the tangent

distribution of N satisfies the quadratic equation

(4.1) c(ω1)2 + (e − a)ω1ω2 − b(ω2)2 = 0 ,
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where a, b, c and e are given by (3.3). Of course, an asymptotic distribu-

tion must satisfy these equations locally on the whole of M . Conversely,

any smooth distribution satisfying (4.1) is an asymptotic distribution.

The following proposition is almost obvious.

Proposition 4.3. Let ∆ = (e − a)2 + 4bc be the discriminant of

the quadratic equation (4.1). Then we have:

(E) If ∆ < 0 on (M, g), then there is no real asymptotic distribution

on M .

(H) If ∆ > 0 on (M, g), then there are exactly two different asymptotic

distributions on M .

(P) If ∆ = 0 on (M, g) and some of the functions a0, ϕ0 and ϕ5 are

nonzero at each point, then there is a unique asymptotic distribution

on M .

(P8) If a0 = ϕ0 = ϕ5 = 0 on M , then any π-projectable smooth two-

dimensional distribution on M is asymptotic.

(For the last part we only have to prove b = c = e − a = 0, which

follows from the formulas (2.22), (2.27) and (2.49).)

Definition 4.4. A space (M, g) is said to be of subtype (E), (H), (P)

or (P8), respectively, if the corresponding case of proposition 4.3 holds

on the whole of M .

Let us remark that the above symbols are abbreviations for “elliptic”,

“hyperbolic”, “parabolic” and “planar” (cf. [9]). Yet, the reader should

keep in mind that, e.g., “elliptic subtype” from proposition 4.3 and “ellip-

tic case” from proposition 2.1 are completely different geometric notions,

which can be combined.

We add some more details:

Proposition 4.5. The equation (4.1) is equivalent to the equation

(4.2) λa0dx2 + ϕ5dxdw − ϕ0dw2 = 0 .

Proof. We can apply the same procedure as in [9] (proof of theo-

rem 6.5). Here we use formulas (2.49) and (2.27) for this purpose.
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Hence we can decide about the subtype of the space (M, g) according

to the following

Proposition 4.6. Let ∆′ = ϕ 2
5 + 4λa0ϕ0 be the discriminant of

the quadratic equation (4.2). Then the analogue of proposition 4.3 holds

if ∆ is replaced by ∆′.

Proof. One can show easily that ∆′ = (fA)2∆.

Also, notice that ∆′ is given alternatively by the formula

(4.3) ∆′ = 4λ2[f 2
2 + ε(f 2

1 − f 2
3 )] .

Indeed, combining (2.37)3 with (2.48), we obtain at once

(4.4) ϕ 2
5 + 4λa0ϕ0 − 4λ2[f 2

2 + ε(f 2
1 − f 2

3 )] = 0 .

Here we stop our consideration about asymptotically foliated spaces,

i.e., those of the non-elliptic subtype. These spaces have been treated

in [3, Chapter 11 (see [14]). The present authors showed that, for each

asymptotically foliated space, there is an adapted system of local coordi-

nates such that a0 = 0 identically. Then the expression for A, C and f

are “linearized” (cf. (2.29he) and (2.30he) above) and the solution of the

problem is dramatically simplified. In [14] we have shown that (generi-

cally), for each subtype (H), (P) and (P8), the general solution can be

expressed in a closed form, i.e., in the form involving only arbitrary func-

tions, algebraic operations, elementary functions, differentiations and in-

tegrations.

In the rest of this paper we concentrate ourselves only on the more

complicated elliptic subtype (E).

5 – The quasiexplicit classification of spaces of elliptic subtype

The spaces of elliptic subtype are much more difficult to deal with

because the coefficients A, f and C in (1.8) cannot be expressed in general

in the form of linear combinations of cosh(λy) and sinh(λy); or of cos(λy)

and sin(λy). We are not able to solve the classification problem explic-

itly, but we can still prove the local isometry classes of metrics depend
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on essentially three arbitrary functions of two variables. Also, we give

an example of an explicit family of metrics depending on two arbitrary

functions of two variables.

We see first that the functions a0 and ϕ0 are always non-zero on a

space of subtype (E) (cf. (4.2)). Also, we must have h &= 0. (If h = 0,

then b = c in (3.3) and hence ∆ ≥ 0 in proposition 4.3.) From (2.24he)

and (2.5he) we see that

(5.1) ε(a 2
1 − a 2

3 ) + a 2
2 < 0, ε(ϕ 2

1 − ϕ 2
3 ) + ϕ 2

2 < 0 ,

and, from (4.3), we have

(5.2) ε(f 2
1 − f 2

3 ) + f 2
2 < 0 .

We start with the following simplification:

Proposition 5.1. Every metric g of subtype (E) can be expressed

locally, using the convenient coordinates and convenient coframe, in the

form (1.8), where f2 = 0, a2 &= 0 and b2 = 0.

The proof is a modification of that of proposition 8.1 from [9] using

the fact that fA/f3 is a Riemannian invariant ( cf. (3.14he)). Notice that

the two cases in proposition 8.1 from [9] are reduced to one case only. In

fact, if f2 = a2 = 0, then, making substitution ȳ = y + 1, we have ā2 &= 0.

Now we study the “fine structure” of the partial differential equations

(A1) (Aα)′
y + β′

x = 0

and

(A2) R′
y − β′

w = 0

with β &= 0, that is, we shall write (A1) and (A2) as a system of partial

differential equations for functions of two variables only.

We substitute into (A1) the function Aα in the form

Aα =
1

2fA

[
(A2)′

w − 2(AC)′
x +

AC

A2
(A2)′

x − H(A2)′
y

]
,
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which follows from (1.12) and (1.10), and the function β in the form

β = λa0/A
2 (see (2.22)). Taking the common denominator 2A4(fA)2 and

using (2.6he), (2.23he) and (2.28he), respectively, we obtain the nomina-

tor of the left-hand side of the equation (A1) as a linear combination of

c3, c2s, c2, cs, c, s and 1, where c = cosh(2λy) and s = sinh(2λy) in the

hyperbolic case; c = cos(2λy) and s = sin(2λy) in the elliptic case. Each

coefficient of this linear combination depends on w and x only, and thus

it must vanish if (A1) is satisfied. This gives seven partial differential

equations which are linear with respect to a′
0x, a′

1x, a′
2x, a′

3x, V1, V2 and

V3, where

(5.3)





V1 = a′
1w − 2b′

1x − 2λHa2 ,

V2 = a′
2w − 2b′

2x + ε2λHa1 ,

V3 = a′
3w − 2b′

3x .

Using the formula (2.24he) in the form

(5.4) a 2
0 = −ε(a 2

1 − a 2
3 ) − a 2

2

and its derivative

(5.5) a0a
′
0x = −ε(a1a

′
1x − a3a

′
3x) − a2a

′
2x ,

we can eliminate the derivative a′
0x in all equations. We obtain the final

form of the equation (A1) as the system of partial differential equations

(5.6)
3∑

i=1

a0P
i
αVi +

3∑

i=1

Qi
αa′

ix = 0, α = 1, 2, . . . , 7 ,

where

P 1
1 = 2a1a2f3, P 2

1 = (a 2
1 − εa 2

2 )f3, P 3
1 = −2a1a2f1,

P 1
2 = (a 2

1 −εa 2
2 )f3, P 2

2 = −2εa1a2f3, P 3
2 = −(a 2

1 − εa 2
2 )f1,

P 1
3 = 2a2a3f3, P 2

3 = (a 2
1 − εa 2

2 )f1 + 2a1a3f3, P 3
3 = −2a2a3f1,

P 1
4 = a1a3f3, P 2

4 = −εa2(a1f1 + a3f3), P 3
4 = −a1a3f1,

P 1
5 = 2a1a2f3, P 2

5 = −2a1a3f1−(εa 2
2 +a 2

3 )f3, P 3
5 = −2a1a2f1,

P 1
6 = (a 2

2 +εa 2
3 )f3, P 2

6 = −2a2a3f1, P 3
6 = −(a 2

2 +εa 2
3 )f1,

P 1
7 = 2a2a3f3, P 2

3 = −(εa 2
2 + a 2

3 )f1, P 3
7 = −2a2a3f1,
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Q1
1 = − a0a2b3f1 + a0a2b1f3 + (a 2

2 − εa 2
3 )f 2

1 ,

Q1
2 = − a0(a1b3 − a3b1)f1 + a0a1b1f3 + a1a2f

2
1 ,

Q1
3 = − a0a2b1f1 − εa1a3f

2
1 + 2(a 2

2 − εa 2
3 )f1f3 ,

Q1
4 = − a0a3b1f3 + a1a2f1f3 ,

Q1
5 = 2a0a2b1f3 − (a 2

2 − εa 2
3 )f 2

3 + 2εa1a3f1f3 ,

Q1
6 = εa0a3b3f3 + εa1a2f

2
3 ,

Q1
7 = a0a2b3f3 + εa1a3f

2
3 ,

Q2
1 = − a0(a1b3 − a3b1)f1 + a0a1b1f3 − a1a2f

2
1 ,

Q2
2 = εa0a2b3f1 − εa0a2b1f3 − (a 2

1 − a 2
3 )f 2

1 ,

Q2
3 = a0a1b1f1 + 2a0a3b1f3 − a2a3f

2
1 − 2a1a2f1f3 ,

Q2
4 = − (a 2

1 − a 2
3 )f1f3 ,

Q2
5 = − 2a0a1b3f1 − a0a3b3f3 + a1a2f

2
3 + 2εa2a3f1f3 ,

Q2
6 = − a0a2b3f1 + a0a2b1f3 − (a 2

1 − a 2
3 )f 2

3 ,

Q2
7 = − a0a3b3f1 − a0(a1b3 − a3b1)f3 + εa2a3f

2
3 ,

Q3
1 = − a0a2b1f1 + εa1a3f

2
1 ,

Q3
2 = − a0a1b1f1 − a2a3f

2
1 ,

Q3
3 = − 2a0a2b3f1 + (εa 2

1 − a 2
3 )f 2

1 + 2εa1a3f1f3 ,

Q3
4 = − a0a1b3f1 − a2a3f1f3 ,

Q3
5 = a0a2b3f3 − εa1a3f

2
3 + 2(εa 2

1 + a 2
2 )f1f3 ,

Q3
6 = − a0a3b3f1 − εa0(a1b3 − a3b1)f3 − εa2a3f1f

2
3 ,

Q3
7 = − a0a2b3f1 + a0a2b1f3 − (εa 2

1 + a 2
2 )f 2

3 .

Next, we substitute into (A2) the function R in the form

R =
1

2fA

[
(f2 + C2)′

x + H(h + (AC)′
y) − AC

A2
(A2)′

w

]
,

which we obtain from (1.13)1, (1.12) and (1.10), and the function β in

the form β = λa0/A
2. By the same argument as that for the previous

equation (A1), we obtain once more seven partial differential equations.
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They are now linear with respect to a′
0w, a′

1w, a′
2w, a′

3w, W1, W2 and W3,

where

(5.7)





W1 = −ε
1

λ
ϕ′

1x + 2λHb2 ,

W2 =
1

λ
ϕ′

2x + 2ελHb1 ,

W3 =
1

λ
ϕ′

3x + Hh .

Using (5.4) and the formula for a′
0w similar to (5.5), we can also elim-

inate the derivative a′
0w in all equations. We obtain the final form of

the equation (A2) as a system of partial differential equations analogous

to (5.6):

(5.8)
3∑

i=1

a0P
i
αWi −

3∑

i=1

Qi
αa′

iw = 0 , α = 1, 2, . . . , 7 .

The following proposition will be crucial for reducing our partial dif-

ferential equations to essentially independent ones.

Proposition 5.2. The rank of the matrix [P i
α, Qi

α] is at most two.

Proof. Since a2 &= 0 and b2 = f2 = 0, we have from (2.51)

(5.9) ϕ4 = ε
λ(a1f3 − a3f1)

a2

,

and hence we have

(5.10)





b1 =
a 2

2 f3 + εa1(a1f3 − a3f1)

a0a2

,

b3 =
a 2

2 f1 + εa3(a1f3 − a3f1)

a0a2

.

Substituting from (5.10) for b1 and b3 in the entries of the matrix [Qi
α],
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we see that

[
P 3

α

]
= −f1

f3

[
P 1

α

]
,

[
Q1

α

]
= ε

a1f3 − a3f1

a2

[
P 1

α

] − εf3

[
P 2

α

]
,

[
Q2

α

]
= −f 2

1 − f 2
3

f3

[
P 1

α

]
+ ε

a1f3 − a3f1

a2

[
P 2

α

]
,

[
Q3

α

]
= −ε

f1(a1f3 − a3f1)

a2f3

[
P 1

α

]
+ εf1

[
P 2

α

]
,

which prove the assertion.

Corollary 5.3. Each system of partial differential equations (5.6)

or (5.8) contains at most two linearly independent equations.

Thus, the equations (A1) and (A2) are essentially reduced to four

partial differential equations in two variables. We shall see later that, as

in [9], we can make an additional reduction to only two equations (one

of the form (5.6) and one of the form (5.8)).

Proposition 5.4. The following algebraic formulas are consequences

of the algebraic equations from theorem 2.8 and of the assumptions of

proposition 5.1:

(5.11) ϕ1 = νa1, ϕ2 = ενa2, ϕ3 = −ενa3 ,

where

ν =
λ[a 2

2 (f 2
1 − f 2

3 ) − ε(a1f3 − a3f1)
2]

a 2
0 a 2

2

, ν = ε
ϕ0

a0

,(5.12)

a 2
0 = −ε(a 2

1 − a 2
3 ) − a 2

2 .(5.13)

Further, f2 = 0 and

(5.14)





b1 =
a 2

2 f3 + εa1(a1f3 − a3f1)

a0a2

,

b2 = 0 ,

b3 =
a 2

2 f1 + εa3(a1f3 − a3f1)

a0a2

,
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(5.15) h = −ε
2λ(a1f1 − a3f3)

a0

, ϕ4 = ε
λ(a1f3 − a3f1)

a2

, ϕ5 = 2ϕ4 .

Conversely, if a1, a2, a3, f1 and f3 are arbitrary functions, and if the

other basic functions are defined as above, then all algebraic equations of

theorem 2.8 hold.

Proof. We show only the necessity of (5.11)-(5.15). The sufficiency

will be proved by the direct check. The equations (2.44)3 and (2.44)5

imply a1ϕ2 − εa2ϕ1 = 0 and a2ϕ3 + a3ϕ2 = 0. Hence the formulas

(5.11) hold with some function ν = ν(w, x) of the variables w and x.

Substituting (5.11) and (5.10)1 into (2.44)1, and using (2.24he), we obtain

(5.12)1. The formula (5.13) is a direct consequence of (2.24he). The

formulas (5.14)1,3 and (5.15)2 follow from b2 = f2 = 0 as shown in the

proof of proposition 5.2. Next, from (5.11), (2.5he) and (2.24he), we have

ϕ 2
0 = ν2a 2

0 . Here, the relation (4.3) implies that ε(f 2
1 − f 2

3 ) is negative

because the discriminant ∆′ is negative, hence εν is negative. On the

other hand, (4.4) together with (4.3) implies that a0ϕ0 is negative. Hence

we obtain (5.12)2. We obtain (5.15)1 from (2.47) and f2 = 0. Finally,

(5.15)3 is the same as (2.48).

We need later the relation

(5.16) ν =
λ(f1b3 − f3b1)

a0a1

,

which follows from (5.14) and (5.12).

Now let us return to the system of partial differential equations (5.6)

and (5.8). Specifying corollary 5.3, we see easily that the system (5.6)

reduces to two partial differential equations

(5.17) a0V2 − εf3a
′
1x + ε

a1f3 − a3f1

a2

a′
2x − f1a

′
3x = 0

and

(5.18)

a0f3V1 +
a0(a1f3 − a3f1)

a2

V2 − a0f1V3+

+

[
ε

(
a1f3 − a3f1

a2

)2

− (
f 2

1 − f 2
3

)
]

a′
2x = 0 .
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The system (5.8) reduces to two analogous equations

(5.19) a0W2 + εf3a
′
1w − ε

a1f3 − a3f1

a2

a′
2w + f1a

′
3w = 0

and

(5.20)

a0f3W1 +
a0(a1f3 − a3f1)

a2

W2 − a0f1W3+

−
[
ε

(
a1f3 − a3f1

a2

)2

− (
f 2

1 − f 2
3

)
]

a′
2w = 0 .

Using (5.3), (5.7), (5.11), (5.14) and (5.16), we see, after lengthy but

routine calculations, that (5.18) and (5.20) are consequences of (5.17)

and (5.19).

Substituting (5.3)2 and (5.7)2 into (5.17) and (5.19), respectively, and

using (5.11)2, we have

(5.21)





a0a
′
2w + ε2λHa0a1 − εa2f3

(
a1

a2

)′

x

+ εa2f1

(
a3

a2

)′

x

= 0 ,

a0(νa2)
′
x − 2λ2Ha0b1 + λa2f3

(
a1

a2

)′

w

− λa2f1

(
a3

a2

)′

w

= 0 .

Further, due to (5.15)1, we have the relation

(5.22) 2λ(a1f1 − a3f3) = −εa0H
′
x .

Introducing new functions u = u(w, x) and v = v(w, x) of the variables

w and x such that

(5.23) a1 = ua2, a3 = va2, −ε(u2 − v2) > 0 ,

we rewrite (5.21) in the form

(5.24)

{
a0a

′
2w + ε2λHa0a1 − εa2f3u

′
x + εa2f1v

′
x = 0 ,

a0(νa2)
′
x − 2λ2Ha0b1 + λa2f3u

′
w − λa2f1v

′
w = 0 .
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Here, from (5.12)-(5.14), we get

(5.25)





a0 =
√

−ε(u2 − v2) − 1 a2 ,

b1 =
f3 + εu(uf3 − vf1)√

u2 − v2 − 1
,

ν =
λ

[
f 2

1 − f 2
3 − ε (uf3 − vf1)

2
]

(u2 − v2 − 1) a 2
2

,

where we normalize the signs of a2 and a0 to make them positive.

Let now u, v and H be arbitrary analytic functions. Substituting

for a0 from (5.25)1 into (5.22) and into (5.24)1, and solving them with

respect to f1 and f3, we can express f1 and f3 in the form

(5.26)

{
f1 = g1a

′
2w + g2a2 + g3 ,

f3 = h1a
′
2w + h2a2 + h3 ,

where gi’s and hi’s are known functions. Substituting (5.26) into (5.24)2

which has been transformed by (5.25), we obtain a partial differential

equation of the form

(5.27) a′′
2wx = Ψ(a′

2w, a′
2x, a2, w, x) ,

where Ψ is a fixed analytic function of five variables. The general solution

of (5.27) depends on two arbitrary (analytic) functions of one variable.

Thus, the generic family of metrics of subtype (E) depends on three arbi-

trary functions of two variables, namely, u, v and H.

Now, we can go further and prove that even the local isometry classes

of our metrics still depend essentially on three functions. The proof is a

modification of that of theorem 8.5 from [9]. We use the fact that fA/f3

is a Riemannian invariant (see (3.14he)) and that the hyperbolic cosine

function and the cosine function are even functions.

Theorem 5.5. The local isometry classes of metrics of subtype (E)

are parametrized by three arbitrary functions of two variables modulo two

arbitrary functions of one variable.
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The equation (5.27) can not be solved explicitly, in general. Yet, we

give here an explicit family of the metrics of subtype (E).

Example 5.6. Consider the “singular” case a2 = 0 of proposi-

tion 5.4. Then we have

(5.28)

{
ϕ1 = νa1, ϕ2 = a2 = 0, ϕ3 = −ενa3 ,

ϕ0 = ενa0, ϕ5 = 2ϕ4

and

(5.29) b2 = f2 = 0 .

From (2.45)2 we see that there is a function ξ = ξ(w, x) of the variables

w and x such that

(5.30) f1 = ξa1, f3 = ξa3 .

Hence, using (5.22) and (2.51), we have

a0h = − ε2λξ(a 2
1 − a 2

3 ) ,(5.31)

b1 =
a1ϕ4

λa0

, b3 =
a3ϕ4

λa0

.(5.32)

Finally, we have

(5.33) a 2
0 = −ε(a 2

1 − a 2
3 ) ,

and, from (2.43)1 or (2.44)1, we deduce

(5.34)
ϕ 2

4

λa 2
0

+ λξ2 = −εν .

Here a1, a3, ξ and ϕ4 are arbitrary functions of the variables w and x.

Conversely, if a1, a3, ξ and ϕ4 are arbitrary functions of the variables w

and x, and if the other basic functions are given by (5.28)-(5.34), then all

algebraic equations mentioned in theorem 2.8 are satisfied.
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In addition, from (5.31) and (5.33), we get

(5.35) h = 2λξa0, h = H ′
x .

Further, a careful check shows that the system of partial differential equa-

tions (5.6) and (5.8) can be now reduced, instead of the form (5.21), to

the form

a0V2 − ε(f3a
′
1x − f1a

′
3x) =0 ,(5.36)

a0W2 + ε(f3a
′
1w − f1a

′
3w) =0 .(5.37)

All other partial differential equations are consequences of (5.36) and

(5.37). Putting U = a3/a1, we can rewrite (5.36) and (5.37) in the form

2λHa0 + ξa1U
′
x =0 ,(5.38)

2Hϕ4 + ξa1U
′
w =0 .(5.39)

Then we have the following explicit family of solutions satisfying the

equations (5.38) and (5.39) and the condition (5.35). Choose U and H

as arbitrary functions of the variables w and x, and put

(5.40)





a1 = −ε
hU ′

x

4λ2H(U 2 − 1)
, a3 = a1U, a0 = a1

√
ε(U 2 − 1) ,

ξ = −2λH
√

ε(U 2 − 1)

U ′
x

, ϕ4 = − hU ′
w

4λH
√

ε(U 2 − 1)
, h = H ′

x .

Here we always assume U ′
x &= 0 and ε(U 2 − 1) > 0. (Also, we normalize

the signs of a1, a3 and a0 to make them all positive.) Then the function

ν is calculated from (5.34) and remaining coefficients are given by (5.28)-

(5.30) and (5.32). This defines the wanted class of metrics.
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[18] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying R(X, Y ) ·
R = 0, II, Global version, Geom. Dedicata, 19 (1985), 65-108.
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