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A report on functorial connections and

differential invariants

J. MUÑOZ MASQUÉ – A. VALDÉS

Riassunto: Si presentano alcuni recenti risultati sull’esistenza di connessioni fun-
toriali, relative alle G-strutture e sulla loro utilizzazione nella determinazione di inva-
rianti differenziali e nel calcolo del numero degli invarianti differenziali indipendenti di
un dato ordine.

Abstract: A report of several results on the existence of functorial connections
attached to G-structures, its use in obtaining geometric differential invariants and the
calculation of the number of functionally independent differential invariants of a given
order is presented.

1 – Introduction

We give a survey of results obtained by the authors in the last few

years concerning functorial connections and differential invariants. Al-

though these topics are different they are essentially related as the exis-

Key Words and Phrases: Differential invariants – Differential systems – Functorial
connections – G-structures – Jet bundles – Linear representations.
A.M.S. Classification: 53A55 – 53C10 – 53B05 – 58A20 – 58A30 – 58D27 – 58H05
– 17B65 – 20C33 – 13A50
Partially supported by the Dirección General de Enseñanza Superior (Spain) under
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tence of a functorial connection on the category of G-structures allows

us to construct in a very natural way a number of differential invariants

which in most cases are enough to generate the ring of differential in-

variants and also to solve the equivalence problem for G-structures. In

addition, the non-existence of a functorial connection makes the construc-

tion of differential invariants extremely difficult: for example, think of the

conformal or symplectic structures (cf. [5], [14], 15]), thus showing that

there exists a deep relationship between the existence of a functorial con-

nection on G-structures, the determination of all differential invariants

on G-structures and solving the equivalence problem for G-structures.

2 – Linear connections functorially attached to G-structures

2.1 – Some examples

First of all, let us review some well-known examples of functorial

connections attached to different G-structures.

(a): For the orthogonal group G = O (n) there exists the Levi-Civita

connection ∇, which is defined on the principal bundle of orthonormal

linear frames O (M) of a Riemannian manifold (M, g) (e.g., see [25,

Chapter IV]).

(b): For the unitary group G = U(n), there exists the reduction of the

Levi-Cività connection to the bundle of unitary frames U(M) on a

Kähler manifold (M,J, g)(e.g., see [25, Chapter IX], [§(5·4.111.2)]).

(c): For the group G = Sp1 · Gl(n, IR) we obtain the Obata connection

∇H attached to a hypercomplex structure H = (Jα), α = 1, 2, 3, over

a manifold M (e.g., see [1], [35], [37]).

Remark 2.1. Let A be an n-dimensional IR-algebra (not neces-

sarily commutative). For example: A = IR[x]/(x2 + 1)(almost complex

structures), A = IR[x]/(x3 + x)(Yano structures), A = IR[i, j, k] (almost

hypercomplex structures), A =
∧·(IRs), n = 2s (the Grassmann algebra

of a vector space) or even an arbitrary Clifford algebra. An almost A

-structure (resp. an A-structure) on a C∞-manifold M , dimM = nr, is a

Gl(r;A)-structure (resp. an integrable Gl(r; A)-structure) on M (cf. [36]).

Note that we have a natural representation λr : Gl(r;A) → Gl(rn; IR), as

gl(r, A) = Lie algebra of Gl(r;A) can be identified with the right A-linear

mappings Λ : Ar → Ar. By giving the right notions of A-differentiability
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and A-analyticity (cf. [18], [36], [40], [41]) conditions can be stated on an

A-manifold in order to admit a functorial connection, thus generalizing

the connections introduced in the previous three items.

(d): The Blaschke connection of a three-web is defined as follows. A three-

web is given on a surface M by three foliations of smooth lines which

are in general position, or equivalently (Chern [12]) it is defined by

giving an IR∗-structure P ⊂ F (M) on M , dimM = 2. Blaschke’s

connection is the only symmetric linear connection defined on P

(see [8], [22]).

(e): For the trivial subgroup G = {I} ⊂ Gl(n, IR), where I stands for the

identity map, G-structures are the linear parallelisms. If (X1, . . ., Xn)

is a linear frame on a parallelizable manifold, then there exists a

unique linear connection ∇ such that ∇Xi
Xj = 0, for all 1 ≤ i ≤ n,

1 ≤ j ≤ n.

(f): For the center of the full linear group, i.e., G = {λI ; λ ∈ IR∗} ⊂
Gl(n, IR), G-structures correspond with projective parallelisms; that

is, with the fields of projective frames of the projective bundle associ-

ated to the tangent bundle. These are the IR∗-structures P ⊂ F (M)

on a manifold of arbitrary dimension M , dimM = n. We thus obtain

a generalization of the Blaschke notion of a web. In this case it is

shown that there exists a unique linear connection on P such that

Trace(Tor∇) = 0 (see [39]). The above condition imposes the vanish-

ing of a one-form. Also note that for dimM = n = 2, the vanishing

of the trace of the torsion tensor is equivalent to saying that ∇ is

symmetric.

2.2 – Existence of functorial connections and obstructions to exist

In all previous examples the connection ∇(σ) attached to a G-struc-

ture σ on M satisfies a naturality condition which can be expressed as

f · ∇(σ) = ∇(f · σ), for every diffeomorphism f from M onto M ′, where

the dot stands for either the natural action of a diffeomorphism on con-

nections or on G-structures. More precisely,

Definition 2.1. Let π : F (M) → M be the bundle of linear frames.

Two G -structures π : P → M , π′ : P ′ → M ′ are said to be equivalent if

there exists a diffeomorphism f : M → M ′ such that f̃(P ) = P ′, where
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f̃ : F (M) → F (M ′) is the isomorphism of the bundles of linear frames

induced from f̃ ; i.e., f̃(X1, . . . , Xn) = (f∗X1, . . . , f∗Xn) (cf. [25, VI.1]).

Let G ⊆ Gl(n, IR) be a closed subgroup. As is well-known (cf. [7],

[24]), G-structures P ⊆ F (M) can be identified with the sections σP :

M → F (M)/G of the quotient bundle π̄ : F (M)/G → M by setting:

P 4→ σP : σP (x) = ux · G, ux ∈ Px

σ 4→ Pσ : (Pσ)x = σ (x) , x ∈ M

DiffM acts on the sections of the classifying bundle π̄ : F (M)/G → M as

f ·σP = f̄ ◦σP ◦f−1, where f̄ : F (M)/G → F (M ′)/G is the map induced

from f̃ : F (M) → F (M ′). We have

f̃ (P ) = P ′ ⇔ f · σP = σP ′ .

That is, two G-structures P, P ′ are equivalent if and only if the corre-

sponding sections σP , σP ′ are DiffM -equivalent.

Definition 2.2. A functorial connection is an assignment σ 4→
∇(σ), that associates a linear connection ∇(σ) over M to each section σ of

the classifying bundle F (M)/G, satisfying the following three properties:

(i): ∇(σ)is adapted to σ; i.e., ∇(σ) is reducible to the subbundle Pσ.

(ii): Naturality: for every diffeomorphism f of M , ∇(f · σ) = f · ∇(σ),

where the dot on the right hand side stands for the image of ∇(σ)

via f onto Pf ·σ = f̃(Pσ).

(iii): Continuity: ∇(σ) depends continuously on σ with respect to the

C∞ topologies of the spaces of sections of the classifying bundle

and of the bundle of linear connections. This is equivalent to:

(iii′): Finiteness: there exists an integer r ≥ 0 such that ∇(σ)(x) only

depends on jr
xσ, for every point x ∈ M .

theorem 2.1. If a functorial connection exists for G-structures,

then the first prolongation of the Lie algebra of G must vanish; i.e.,

g(1) = 0.
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For the particular case in which ∇(σ)(x) only depends on j1
xσ (i.e.,

with the additional assumption that the connection only depends on the

first contact of the G-structure) the above result is obtained in [39 theo-

rem 1.3].

Recall that the first prolongation of the Lie subalgebra g ⊆ gl(n, IR) ∼=
(IRn)∗ ⊗ IRn is defined by the exact sequence (cf. [24]),

0 → g(1) → (IRn)
∗ ⊗ g

δ−→
2∧

(IRn)
∗ ⊗ IRn,

δ : ⊗2(IRn)∗ ⊗ IRn → ∧2(IRn)∗ ⊗ IRn being the antisymmetrization

(or Spencer) operator; or equivalently,

g(1) =

{
symmetric bilinear maps A : IRn × IRn → IRn,

such that A(v,−) ∈ g, ∀v ∈ IRn

}

For example, theorem 2.1 explains why functorial connections do not exist

neither in Symplectic Geometry nor in Conformal Geometry. Recall:

sp (n; IR)
(r) ∼= Sr+2

(
(IRn)

∗)
, ∀r ≥ 0.





co (n)
(1) ∼= (IRn)

∗
, ∀n ≥ 2,

co (n)
(r)

= 0, ∀r ≥ 2, ∀n ≥ 3,

co (2)
(r) ∼= gl (1; C)

(r) ∼= C, ∀r ≥ 1.

Remark 2.2. The conformal Cartan connection attached to a con-

formal structure is not a linear connection.

Remark 2.3. The first prolongation of a general subalgebra g ⊆
gl(n, IR) vanishes. E. Cartan classified the exceptions (cf. [10]).

Theorem 2.2. Assume the following two conditions hold true:

1. g(1) = 0,

2. there exists a G-invariant subspace W such that,
∧2(IRn)∗ ⊗ IRn =

δ((IRn)∗ ⊗ g) ⊕ W .

Then, G-structures admit at least one functorial connection.
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Proof. It is not difficult to prove (e.g., see [7, III.6.2]) that in this

case there exists a unique linear connection ∇ defined on each G-structure

such that the δ((IRn)∗ ⊗ g)-component of its torsion tensor vanishes; or

equivalently, Tor∇ takes values in W .

Remark 2.4. The second condition in the theorem can be re-stated

by saying that the injection

0 → (IRn)
∗ ⊗ g

δ−→
2∧

(IRn)
∗ ⊗ IRn,

admits an equivariant retract,

0 → (IRn)
∗ ⊗ g

ρ←−
2∧

(IRn)
∗ ⊗ IRn.

Theorem 2.3. Assume the subalgebra g ⊆ gl(n, IR) satisfies the

following condition:

(
T ∈ (IRn)

∗ ⊗ g, Trace (A ◦ ivδ (T )) = 0, ∀A ∈ g, ∀v ∈ IRn)
=⇒ T = 0.

Then g(1) = 0, and W exists.

Proof. (cf. [39]) First of all we define a subspace W ⊆ ∧2(IRn)∗⊗IRn

as follows:

W =

{
T ∈

2∧
(IRn)

∗ ⊗ IRn | Trace (A ◦ ivT ) = 0, ∀A ∈ g, ∀v ∈ IRn

}
.

We claim that W is G-invariant. We recall that G acts on
∧2(IRn)∗ ⊗ IRn

by restricting the natural Gl(n, IR)-action on
∧2 (IRn)

∗ ⊗ IRn and also

that this action is given by

(g · T ) (v, w) = g
(
T

(
g−1(v), g−1(w)

))
, ∀g ∈ Gl (n, IR) , ∀v, w ∈ IRn.

Furthermore, it is not difficult to check that iv(g · T ) = g ◦ ig−1(v)T ◦ g−1

for all T ∈ ∧2(IRn)∗ ⊗ IRn, v ∈ IRn. Hence

Trace (A ◦ iv (g · T )) = Trace
(
A ◦ g ◦ ig−1(v)T ◦ g−1

)
=

= Trace
(
g ◦ (

g−1 ◦ A ◦ g ◦ ig−1(v)T
) ◦ g−1

)
=

= Trace
((

g−1 ◦ A ◦ g
) ◦ ig−1(v)T

)
= 0,



[7] A report on functorial connections and etc. 555

as A ∈ g, g ∈ G ⇒ g−1 ◦ A ◦ g ∈ g, and T ∈ W . If T ∈ g(1) then δ(T ) = 0

and by virtue of the assumption we can conclude that T = 0. Hence

dim δ((IRn)∗ ⊗ g) = mn, where m = dimG. Moreover, if A1, . . . , Am is a

basis of g and v1, . . . , vn is the standard basis of IRn, then the subspace is

defined by the following system of mn linear equations: Trace (Ai◦ivj
T ) =

0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Therefore dimW ≥ (n
2

)
n − mn. As the

assumption implies δ((IRn)∗ ⊗ g) ∩ W = {0} we obtain
∧2(IRn)∗ ⊗ IRn =

δ((IRn)∗ ⊗ g) ⊕ W , thus finishing the proof.

Theorem 2.4. The previous theorem applies to subalgebras such that

1. g(1) = 0,

2. g is invariant under transposition; i.e., A ∈ g ⇒ tA ∈ g.

In particular the above two conditions hold true for Lie subgroups

G ⊆ O(n). In this way, we obtain a common definition of the complement

W for a wide class of subalgebras.

Remark 2.5. Probably the most part of results still hold true by only

using pseudoconnections instead of linear connections, cf. [9]. A pseudo-

connection is a g-valued 1-form ω on a G-structure P → M whose re-

striction to each fibre coincides with the Maurer-Cartan form, ω(A∗) = A,

∀A ∈ g, but ωis not necessarily AdG -equivariant. Each pseudoconnec-

tion gives rise to a pseudotorsion function T : P → ∧2(IRn)∗ ⊗ IRn. The

reduction of T in

[T ] : P → H0,2 (g) =
2∧

(IRn)
∗ ⊗ IRn/Im δ

is AdG-equivariant and independent of the pseudoconnection chosen.

Hence [T ] induces a map M → H0,2(g)/G canonically associated to P ,

called the torsion of the G-structure. Nevertheless, linear connections are

highly desirable in order to obtain scalar differential invariants. Think of

the difficulties in conformal geometry (cf. [4], [6]).

3 – Differential invariants

3.1 – The notion of an invariant

Given a fibred manifold p : N → M , we denote by pr : Jr(N) → M

the r-jet bundle of local sections of p, and for r ≥ s, prs : Jr(N) → Js(N)
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is prs(j
r
xσ)=js

xσ, σ being a local section of p. If (V ;x1, . . . , xn, y1, . . . , ym),

dimM = n, dimN = m + n is a fibred coordinate system for the sub-

mersion p, V ⊆ N being an open subset, then we denote by (xj; y
i
α),

1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ |α| ≤ r, α = (α1, . . . , αn) ∈ INn,

|α| = α1 + . . . + αn, with yi
0 = yi, 1 ≤ i ≤ m, the coordinate system

induced on p−1
r0 (V ); i.e., yi

α(jr
xσ) = (∂|α| (yi ◦ σ) /∂xα1

1 . . . ∂xαn
n )(x).

Definition 3.1. (cf. [29]) A (scalar) rth-order differential invariant

on G-structures is a differentiable function F : Jr(F (M)/G) → IR such

that for every G-structure σ defined on a neigbourhood of x ∈ M and

every diffeomorphism f : M → M , we have F (jr
f(x)(f̄ ◦σ◦f−1)) = F (jr

xσ).

Remark 3.1. This definition covers “in abstracto” what is usually

understood to be an invariant in different settings; e.g., the scalar curva-

ture of a metric, the trace of a tensor field of type (1, 1), etc.

3.2 – The infinitesimal definition of an invariant

Each vector field X∈X(M) induces a vector field X̄r∈X(Jr(F (M)/G))

as follows (cf. [29]). The flow ft : M → M of X gives rise to a flow of

automorphisms f̃t : F (M) → F (M). Let f̄t : F (M)/G → F (M)/G be

the flow induced from f̃t and let f̄ r
t : Jr(F (M)/G) → Jr(F (M)/G) be

the flow f̄ r
t (jr

xσ) = jr
ft(x)(f̄t◦σ◦f−t). By definition, X̄r is the infinitesimal

generator of f̄ r
t . The vector field X̄r is called the natural lifting of X to

the r-jet bundle of G-structures by infinitesimal contact transformations.

The following properties hold true:

(i): X̄r is π̄r-projectable onto X.

(ii): X 4→ X̄r is an injection of Lie algebras, X(M) ↪→ X(Jr(F (M)/G));

i.e.,

(ii.a): X 4→ X̄r is IR- linear,

(ii.b): [X, Y ]
r

= [X̄r, Ȳ r], ∀X, Y ∈ X(M).

Definition 3.2. A differentiable function F : Jr(F (M)/G) → IR is

said to be an infinitesimal differential invariant if

X̄r(F ) = 0, ∀X ∈ X(M) .

It is obvious that if F is a differential invariant, then F also is an in-

finitesimal differential invariant, as X̄r(F ) = 0 if and only if F ◦ f̄ r
t = F .

The converse is “almost” true (see examples below), so we shall mainly

work with the infinitesimal definition of an invariant.
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3.3 – The basic distribution

The lifting of vector fields gives rise to a differential system on Jr(F

(M)/G),

Djr
xσ

r =
{
X̄r

jr
xσ | ∀X ∈ X (M)

}
,

which satisfies the following properties:

1. D r is involutive.

2. D r is a generalized distribution (cf. [11]) of locally constant rank

on an open dense subset Or ⊆ Jr(F (M)/G). (Unfortunately, the

singularities of D r are unavoidable except for G = {1}).

3. rth-order differential invariants are the first integrals of the distribu-

tion D r.

4. Hence on the regularity open subset Or we have that the maximal

number of functionally independent rth-order differential invariants

is equal to dimJr(F (M)/G) − rk.D r.

3.4 – Desingularizing D r

Remark 3.2. From now on we assume that G-structures admit a

functorial connection.

Definition 3.3. The desingularizing bundle is the G-principal

bundle

pr : Er (M) = Jr (F (M) /G) ×F (M)/G F (M) → Jr (F (M) /G) .

The elements of Er(M) are the pairs (jr
xσ, ux), such that:

1. σ is a G-structure around x,

2. ux ∈ F (M) is a linear frame,

3. g ∈ G,

4. σ(x) = (Pσ)x = ux · G.

The action of G is (jr
xσ, ux) · g = (jr

xσ, ux · g).

We have an injection of Lie algebras:

X (M) → X (Er (M)) , X 4→ Xr =
(
X̄r, X̃

)
.

Similarly, we can define a distribution on Er(M):

Dr
(jr

xσ,ux) =
{
Xr

(jr
xσ,ux) | ∀X ∈ X (M)

}
.
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Proposition 3.1. Dr is an involutive differential system every-

where of constant rank (i.e., Dr is non-singular).

Proposition 3.2. rth-order differential invariants can be seen as

the first integrals of Dr which are also invariant under the action of G on

Er(M). Hence invariants are the functions F : Er(M) → IR such that:

1. Xr(F ) = 0, ∀X ∈ X(M),

2. F (jr
xσ, ux · g) = F (jr

xσ, ux).

3.5 – Fibering Er (M) over F r+1(M)

Definition 3.4 (The bundle of rth-order frames). For every r ≥ 1,

we set

F r (M) = {jr
0ϕ | ϕ : IRn → M, ϕ∗(0) is an isomorphism} .

Lemma 3.3. Let expσ : Ux ⊆ Tx(M) → M be the exponential of the

functorial connection attached to the G-structure σ. Then, jr+1
0x

(expσ)

only depends on jr
xσ.

Definition 3.5. We can thus define a projection ξr
M : Er(M) →

F r+1(M) by ξr
M(jr

xσ, ux) = jr+1
0 (expσ ◦ux).

Theorem 3.4. The bundle ξr
M : Er(M) → F r+1(M) is triv-

ial: Er(M) ∼= F r+1(M) × Sr. The standard fibre Sr of ξr
M is Sr =

(ξr
IRn)−1(jr+1

0 (idIRn)).

3.6 – From Diff(M)-invariance to G-invariance

We first remark the following basic facts:

1: The group of diffeomorphisms of M act on Er(M) by

f · (jr
xσ, ux) =

(
f̄ r (jr

xσ) , f̃ (ux)
)

.

2: By transporting the action of Diff(M) to F r+1(M)×Sr via Er(M) ∼=
F r+1(M) × Sr, we have

2.a: Diff(M) acts trivially on Sr,

2.b: Diff(M) acts naturally on F r+1(M).
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3: By transporting the action of G on Er(M) to F r+1(M) × Sr, we

obtain (
jr+1
0 ϕ, jr

0τ
) · g =

(
jr+1
0 (ϕ ◦ g) , jr

0

(
ḡ−1 ◦ τ ◦ g

))
,

where g : IRn → IRn is the linear diffeomorphism induced by g ∈ G,

jr+1
0 ϕ ∈ F r+1(M) is a (r +1)th frame, and τ is a G-structure defined

on a neigbourhood of the origin in IRn.

As a consequence of these properties we can conclude

Theorem 3.5. The ring of rth order differential invariants on a man-

ifold of dimension n can be identified to the ring of G-invariant functions

on the standard fibre; that is, to the ring C∞(Sr)G.

3.7 – Frame depending invariants

Definition 3.6. An rth order frame-depending differential invariant

is a differentiable function F : Er(M) → IR, such that

Xr(F ) = 0, ∀X ∈ X (M) .

Remark 3.3. Differential invariants are frame-depending differential

invariants which are also G-invariant.

Example 3.1. Let ∇ be the linear connection functorially attached

to σ. We can define functions:

Ri
hklj1...jp

: Er(M) → IR, r ≥ 2, 0 ≤ p ≤ r − 2 ,

Ri
hklj1...jp

(jr
xσ, ux) = ωi ((∇pR)x (Xh, Xk, Xl, Xj1 , . . . , jp))

with R = curv∇, ux = (X1, . . . , Xn), ωi(Xj) = δij (dual coframe).

Proposition 3.6. Ri
hklj1...jp

is a frame-depending invariant.

Remark 3.4. A similar construction works for the torsion tensor,

giving rise to functions

T i
jkl1...lp

: Er(M) → IR, 0 ≤ p ≤ r − 1 .
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Theorem 3.7. We have

1. Two points (jr
xσ, ux), (jr

x′σ′, u′
x′) in Er(M) are Diff(M)-equivalent if

and only if all frame-depending invariants of order ≤ r coincide on

the given points.

2. Every frame-depending invariant of order ≤ r is a differentiable func-

tion of T i
jkl1...lp

, p ≤ r − 1, and Ri
hklj1...jp

, p ≤ r − 2.

3. The number of functionally independent functions T i
jkl1...lp

, p ≤ r−1,

and Ri
hklj1...jp

, p ≤ r − 2, is

n + m +

(
n + r

r

) (
n2r

r + 1
− n − m

)
,

with n = dimM , m = dimG.

4 – Some examples

4.1 – Linear parallelisms

Let M be a connected manifold. As we have remarked above, {1}-

structures are linear parallelisms: σ = (X1, . . . , Xn) : M → F (M). Let us

denote by Ar the ring of rth-order differential invariants on F (M) and by

A′
r the ring of rth-order infinitesimal differential invariants. Hence Ar ⊆

A′
r. Let ∇ be the flat connection associate with σ; i.e., ∇Xi

Xj = 0, 1 ≤
i ≤ n, 1 ≤ j ≤ n. We can define functions f i

j1...jrkl : Jr+1(F (M)) → IR

by setting

(∇rTor∇)
(
Xj1

x , . . . , Xjr
x , Xk

x , X l
x

)
=

∑

i

f i
j1...jrkl

(
jr+1
x σ

)
X i

x.

Theorem 4.1 (cf. [19]). With the above notations we have

1. The functions f i
j1...jrkl are differential invariants.

2. The family Fr of functions f i
j1...jmkl such that 0 ≤ m ≤ r − 1, k < l,

j1 ≥ . . . ≥ jm ≥ k, is functionally independent.

3. Every rth-order differential invariant can be locally written as a dif-

ferentiable function of the functions in Fr.

4. The number of functions in Fr is

Nn,r = #Fr = n2

(
n + r

r

)
+ n − n

(
n + r + 1

r + 1

)
.
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Furthermore, let πr : Jr (F (M)) → IRNn,r be the mapping whose

components are the functions of Fr. Then,

(i) If M is non-orientable, Ar = A′
r = (πr)∗C∞(IRNn,r).

(ii) If M is orientable and non-reversible, Ar = A′
r = (πr)∗C∞(IRNn,r)⊕

(πr)∗C∞(IRNn,r).

(iii) If M is reversible, Ar = (πr)∗C∞(IRNn,r), A′
r = Ar ⊕ Ar and the

injection Ar ↪→ A′
r is the diagonal map.

remark 4.1. We recall that the manifold M is said to be reversible

if M orientable and M admits an orientation reversing diffeomorphism.

For example, CP 2k is non-reversible for every positive k ∈ IN (cf .[33]).

In fact, every connected, oriented manifold M of dimension dimM = 2l,

satisfying

1. dimH l(M ; IR) = 1,

2. there exists a closed l-form ωl such that [ωl] is a basis forH l(M ; IR),

and ωl ∧ ωl &= 0 everywhere,

is non-reversible.

4.2 – Projective parallelisms

As we have seen in the example (f) of §2.1, projective paral-

lelisms correspond in a natural way with IR∗-structures (cf. [12], [24])

so that the clasifying bundle in this case is π̄ : F (M)/IR∗ −→M .

This is a principal bundle with structure group the full projective group

PGl(n, IR) = Gl(n, IR)/IR+. We have

Theorem 4.2 (cf. [38], [39]). Set n = dimM . Then,

1. If n ≥ 3 the number of functionally independent invariants on a dense

open subset of Jr(F (M)/IR∗) is

n +

(
n + r

r

)
rn2 − (r + 1) (n + 1)

r + 1
.

2. If n = 2, then each differential invariant of first or second order is a

constant and for every r ≥ 3 the number of functionally independent

invariants on a dense open subset of Jr(F (M)/IR∗) is (r+1)(r−2)/2.
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4.3 – The metric case

Without doubt O(n)-structures and U(n)-structures have been the

geometries most extensively studied not only in determining scalar differ-

ential invariants but also in determining differential forms which depend

in a natural way on a Riemannian metric. The literature on this topic is

enormous. Among other works and authors, see [2], [3], [13], [16], [20],

[21], [23], [25, VI], [26], [27], [28], [34], [38], [42].

Let O(n+, n−), dimM = n = n++n−, be the orthogonal group of the

standard quadratic form of signature (n+, n−). The classifying bundle of

the O (n+, n−)-structures is π̄ : M = F (M)/O(n+, n−) → M , which can

be canonically identified to the bundle of pseudo-Riemannian metrics on

M of signature (n+, n−). Functions on Jr(M) which are invariant under

diffeomorphisms of M are called metric invariants of order r. They are

specially important in General Relativity. The most famous of them is

the scalar curvature, which is a second order invariant giving rise to the

Hilbert-Einstein Lagrangian density. We have

Theorem 4.3 (cf. [31]). Let in,r be the number of functionally

independent metric invariants defined on an open dense subset of the r-

jet bundle of metrics of a given signature on an n-dimensional manifold.

Then,

1. For every n ≥ 1, in,0 = in,1 = 0.

2. For every r ≥ 0, i1,r = 0.

3. i2,2 = 1 and for every r ≥ 3, i2,r = 1
2
(r+1)(r−2) (cf. Theorem 4.2–2).

4. For every n ≥ 3, r ≥ 2,

in,r = n +
(r − 1) n2 − (r + 1)n

2 (r + 1)

(
n + r

r

)
.

Another problem concerning metric invariants is the following. Let

g =
∑

gijdxi ⊗ dxj be a Riemannian metric on M , ∇ its Levi-Civita

connection and R the curvature tensor. Given non-negative integers

81, . . . , 8r, such that: 81 + . . . + 8r = 2k, and covariant indices 1 ≤ i1 <

. . . < ik+r ≤ 2k + 3r, we can apply the isomorphism g2 : T ∗M → TM , to

the tensor field (∇/1R ⊗ . . . ⊗ ∇/rR) of type (r, 2k + 3r), thus obtaining

a tensor field g'
(∇/1R ⊗ . . . ⊗ ∇/rR)i1,... ,ik+r of type (k + 2r, k + 2r). If
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j1, . . . , jk+2r is a permutation of 1, . . . , k + 2r, we can finally define an

scalar by

Wg = c1
j1

· · · ck+2r
jk+2r

(
g' (∇/1R ⊗ . . . ⊗ ∇/rR

)i1,... ,ik+r
)

,

where ci
j is the contraction of the i-th contravariant index with the

j-th covariant one. The functions constructed in this way are calledWeyl

invariants (cf. [3], [15], [17], [43] and it is not difficult to see that they are

invariant under diffeomorphisms (e.g., see [31]). In fact, taking into ac-

count that R only depends on the derivatives of order ≤ 2 of the gij’s and

that the local coefficients Γk
ij of ∇ only depend on the first derivatives

of the gij’s, it follows from the definition that Wg(x) only depends on

the derivatives of order ≤ 8+2 of the metric, where 8 = max{81, . . . , 8r};

i.e., only depends on j/+2
x (g). Therefore, we can define a function

W : J /+2(M) → IR by the formula: W (j/+2
x g) = Wg(x), and such a func-

tion is invariant under the natural action of diffeomorfisms of M on the

jet bundle. If we start with the classical notion of an invariant ([3], [6],

[13], [15]), according to which an invariant of order r is a polynomial

function P (gij, ∂
|α|gij/∂xα, [det(gij)]

−1), |α| = 1, . . . , r, then, working in

normal coordinates and using classical invariant theory for O(n) (e.g.,

see [3]), it can be proved that every scalar polynomial invariant is a lin-

ear combination of Weyl invariants, but evidently this is no longer true for

arbitrary diferential invariants in the sense of Kumpera [29] (cf. see def-

inition (3.1) above). In this case the reasonable hypothesis is to suppose

that the Weyl invariants span “differentiably” the ring of all differential

invariants; that is, if W1, . . . , WN are all distinct Weyl’s invariants of or-

der ≤ r, then for every r-th order metric differential invariant F there

exists G ∈ C∞(IRN) such that F = G ◦ (W1, . . . , WN). In the last few

years several works have been published concerning the number of liner-

aly independent Weyl’s invariants (e.g., see [17], [23], [43]). Such works

are interesting to determine the minimal basis of Weyl’s invariants, but

they are no link with the problem that we are dealing with here.

By using the fundamental distribution D r introduced above we have

been able to prove the following result:

Theorem 4.4. Let V r ⊆ ⊕r−2
i=0 Si+4((IRn)∗), r ≥ 2, the vector

subspace of the tensors (R(0), R(1), . . . , R(r−2)) of type (0, 4), (0, 5),. . . ,
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(0, r + 2), respectively that satisfy the symmetries (1.3) − (1.6) of [27,

Theorem 1.1] and let R be the Riemann-Christoffel tensor of g; i.e., R is

the tensor field of type (0, 4) obtained by lowering the contravariant index

of the curvature tensor R. As the covariant derivatives of the curvature

tensor satisfy the symmetries defining V r, we can define a mapping ϕr :

Sr → V r, Sr being the standard fibre of the fibre bundle ξr
M : Er(M) →

F r+1(M) introduced in Theorem 3.4, as follows (cf. [27]):

ϕr (jr
0g) =

(R0,
(∇1R)

0
, . . . ,

(∇r−2R)
0

)
.

Then, we have

1. The mapping ϕr is an equivariant diffeomorphism under the natural

actions of the orthogonal group.

2. If P1, . . . , PN is a basis of the subring of invariants with respect to

the action of O(n) on the ring of polynomials on V r; i.e.,

IR [P1, . . . , PN ] =
(
S• (V r)

∗)G
,

then, taking into account the identification of Theorem (3.5), every

metric differential invariant on M of order ≤ r can be written as a

differentiable function of P1 ◦ ϕr, . . . , PN ◦ ϕr.
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