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Harmonic coordinates, harmonic radius and

convergence of Riemannian manifolds
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Presentazione: Questo articolo di rassegna presenta lo stato attuale delle ricer-
che sulla compattezza degli spazi di varietà riemanniane. Si tratta di un importante
settore di ricerca, che ha avuto uno sviluppo notevole negli ultimi quindici anni e che
ha applicazioni in un ambito assai ampio.

Nel 1981 M. Gromov stabil̀ı un risultato fondamentale: lo spazio delle varietà
riemanniane compatte, con curvatura sezionale limitata, con volume limitato inferior-
mente e con diametro limitato superiormente, è precompatto nella topologia di Lipschitz.
Da allora molti sono stati i lavori che hanno riguardato questioni di convergenza di
metriche riemanniane, sotto varie ipotesi di limitatezza di alcuni invarianti metrici
fondamentali ed anche rispetto a diverse topologie.

L’articolo, rivolgendosi a un vasto pubblico matematico, è autosufficiente: le prime
due sezioni del lavoro sono dedicate alla presentazione del materiale di base e delle
nozioni fondamentali; in particolare viene introdotta la nozione cruciale di raggio ar-
monico, legata all’esistenza di sfere geodetiche dove sono definite coordinate armoniche
con controllo del tensore metrico.

I risultati più importanti sono riassunti in un teorema (Main theorem) che ge-
neralizza alcuni risultati di M. Anderson e di J. Cheeger. Sono anche riportati alcuni
teoremi analoghi, validi per domini limitati e per varietà riemanniane puntate complete.
L’ultima parte del lavoro è dedicata alla esposizione di alcune significative applicazioni.

Abstract: From the appearance of the original works of Cheeger and Gromov on
convergence of Riemannian manifolds, the field has considerably evolved. We sum up
the question.
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1 – Introduction and statement of the main theorem

In 1981, M. Gromov stated a striking result about compactness of sets

of Riemannian manifolds: given n ∈ IN, λ ≥ 0, v > 0, d ≥ 0, the space of

compact Riemannian n-manifolds satisfying |K| ≤ λ, diam ≤ d, vol ≥ v

(where K stands for the sectional curvature of the manifold, diam and

vol for its diameter and volume) is precompact in the Lipschitz topology.

Since 1981, many articles were published in the subject —let us mention

the works of M. Anderson [3], [5], M. Anderson and J. Cheeger [4],

L. Z. Gao [19], [20], [21], R. Greene and H. Wu [23], J. Jost and

H. Karcher [29], A. Kasue [30], A. Katsuda [31], S. Peters [33],

[34] and D. Yang [35], [36], [37]— and the result aforementioned has

been substantially improved in two different ways: on one hand, one only

needs bounds on the Ricci curvature rather than the whole Riemann

curvature tensor; on the other hand, we now have precompactness in the

Ck,α-topology, providing much more information than in the rather weak

Lipschitz topology, especially useful to those interested in global analysis

on manifolds. These results provide us with powerful and precise tools

to control the local as well as global geometry of manifolds and they

had (and still have) significant applications in Riemannian Geometry or

Topology (we refer to section 6 for some of these applications). But we

think they could prove very useful in a larger setting, including Nonlinear

Analysis and Partial Differential Equations.
The purpose of this paper is then to provide an account of the present

state of the field as well as a detailed presentation of the proofs. In order

to make the techniques available for a broad mathematical audience, we

have tried to make the article as much self-contained as possible: we hope

it should be understandable for anyone having only a slight acquaintance

with Riemannian metrics and Riemannian Geometry (many good books

exist on the subject; let us mention the well-known and excellent [18]

and the recent [28]). From its appearance, the field has considerably

evolved: whereas the seek for optimal control (or: optimal regularity) on

the convergence seems to have come to a climax, the weak (i.e. Lipschitz

or Hausdorff) properties of sets of Riemannian metrics are still under

intense scrutiny (for a better look at these points, the reader is referred

to the recent works of J. Cheeger and T. Colding [12], [13] which will

convince him of the wealth of the approach) and are probably far from

being completely exhausted. Describing all these developments (and also
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the structures that occur when some sequences of metrics degenerate)

would have taken us too far from our original goal; it’s the reason why

we have chosen here to report only on the regular side of the theory.

For the sake of simplicity, we decided to focus on a single theorem

on compact manifolds (a straightforward generalization of the results of

M. Anderson and J. Cheeger [3], [4]) and to stress on some important

points (underlying in Anderson and Cheeger’s work) which we thought

deserved some more attention and further developments.

The paper is organized as follows:

Section 1 is devoted to the presentation of the ground material of

this article: definition of the Ck,α-toplogies and statement of the Main

theorem.

Section 2 recalls the basic properties of harmonic coordinates and

introduces the crucial notion of Ck,α- and Hp
k -harmonic radius.

In section 3 comes the heart of the paper. Detailing and extending

slightly the work of M. Anderson and J. Cheeger, we derive estimates on

the Hp
k -harmonic radius from bounds on the Ricci curvature and injec-

tivity radius. We are then able to state the estimates in a very general

form. Though this can be obtained by quite standard bootstrap argu-

ments from Anderson and Anderson-Cheeger’s works, they seem to have

never appeared in the literature so far.

Section 4 shows how estimates on the harmonic radius implies com-

pactness theorems (following a path known since the pioneer work of

J. Cheeger [10]). This provides the Main theorem.

Section 5 lists some analogues of the Main theorem for bounded do-

mains or complete non-compact pointed manifolds, including a local ver-

sion which is of special interest for nonlinear analysts.

Section 6 eventually presents various applications of compactness or

convergence results.

Let us now start with some basic definitions.

Definition 1. Let n ∈ IN, k ∈ IN, α ∈ (0,1), (Mj, gj) be a sequence

of smooth compact Riemannian n-manifolds, M a smooth compact dif-

ferentiable n-manifold, and g a Ck,α Riemannian metric on M . We say

that (Mj, gj) converges to (M, g) in the Ck,α-topology if there exists jo

such that the following holds: for any j ≥ jo there exist Ck+1,α diffeo-

morphisms Φj : M → Mj such that in any chart of the C∞ complete
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atlas of M , the components of the metrics Φ∗
jgj converge Ck,α

loc to the

components of g.

Although it is elementary, note that the Ck,α
loc convergence in any

chart of the C∞ complete atlas of M is equivalent to the existence of a

C∞ sub-atlas of the C∞ complete atlas of M , such that in any chart of

this sub-atlas, the components of the metrics Φ∗
jgj converge Ck,α to the

components of g. Here, we can look at the components of Φ∗
jgj and g

as functions defined in some open subset Ω of IRn, and we say that a

sequence fj of Ck,α functions defined in Ω converges Ck,α to some Ck,α

function f defined in Ω if limj→∞ ||fj − f ||k,α = 0 where

||f ||k,α =
∑

0≤|β|≤k

sup
x∈Ω

|∂βf(x)| +
∑

|β|=k

sup
x&=y

|∂βf(x) − ∂βf(y)|
|y − x|α .

Definition 2. Let n ∈ IN, k ∈ IN, α ∈ (0, 1), and S be some set of

smooth compact Riemannian n-manifolds. We say that S is precompact

in the Ck,α-topology if any sequence in S possesses a subsequence which

converges in the Ck,α-topology.

Let us now state the Main theorem of this report. If (M, g) is a

Riemannian manifold, Ric(M,g) denotes its Ricci curvature, inj(M,g) its

injectivity radius, and vol(M,g) its volume. Dj Ric(M,g) denotes the j-th

covariant derivative of Ric(M,g). The C0,α-part of the theorem has been

obtained by Anderson-Cheeger [4], the C1,α-part by Anderson [3].

Main theorem. Let n ∈ IN, λ ∈ IR, i > 0, and v > 0. The space of

smooth compact Riemannian n-manifolds (M, g) satisfying

Ric(M,g) ≥ λ, inj(M,g) ≥ i, vol(M,g) ≤ v ,

is precompact in the C0,α-topology for any α ∈ (0, 1). In addition, if

instead of the bound Ric(M,g) ≥ λ we assume that for some k ∈ IN and

some positive constants C(j),

|Dj Ric(M,g) | ≤ C(j), ∀ j = 0, ..., k ,

then, it is precompact in the Ck+1,α-topology for any α ∈ (0, 1).
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Remarks. 1) We stated definition 1 in the class of smooth manifolds,

but the real framework for Ck,α convergence is the class of Ck+1,α man-

ifolds. Namely, let (Mj) be a sequence of Ck+1,α compact n-manifolds,

M a Ck+1,α compact n-manifold, (gj) a sequence of Ck,α Riemannian

metrics on Mj, and g a Ck,α Riemannian metric on M . We say that

(Mj, gj) converges to (M, g) in the Ck,α-topology if for large values of j,

there exist Ck+1,α diffeomorphisms Φj : M → Mj such that in any chart

of the Ck+1,α complete atlas of M , the components of the metrics Φ∗
jgj

converge Ck,α
loc to the components of g. Here again, this is equivalent to

the existence of a Ck+1,α sub-atlas of the Ck+1,α complete atlas of M ,

such that in any chart of this sub-atlas, the components of the metrics

Φ∗
jgj converge Ck,α to the components of g.

2) Under the bounds Ric(M,g) ≥ λ and inj(M,g) ≥ i of the Main

theorem, an elementary packing argument (Croke [16]) shows that the

bound vol(M,g) ≤ v is equivalent to a diameter bound diam(M,g) ≤ d.

Independently, under the bound |K(M,g)| ≤ Λ, the bounds inj(M,g) ≥ i and

vol(M,g) ≤ v of the Main theorem are equivalent to the bounds vol(M,g) ≥
v′ and diam(M,g) ≤ d of the first version of the Gromov convergence

theorem mentioned above (Cheeger-Gromov-Taylor [15]).

3) Let M be a smooth compact Riemannian n-manifold and (gj) a se-

quence of smooth Riemannian metrics on M . Suppose that the gj satisfy

the bounds of the Main theorem, for instance Ric(M,gj) ≥ λ, inj(M,gj) ≥
i, vol(M,gj) ≤ v. Since Mj = M for all j, it is tempting to assert that

there exist a C0,α Riemannian metric g on M and a subsequence of (gj)

such that in any chart of the C∞ complete atlas of M, the components

of gj converge C0,α to the components of g. In other words, with the no-

tations of definition 1, it is tempting to assert that for some subsequence

of (gj) we can take Φj = Id in the definition of C0,α-precompactness.

Actually, it is simple to see that this is false in general. Think for in-

stance of (Sn, can), the standard unit sphere of IRn+1 with its canonical

metric, and set gj = f∗
j can where the fj, belonging to the conformal

group of (Sn, can), are defined in some given stereographical model by

fj(y) = jy. Since the gj’s are isometric to the canonical metric of Sn,

they trivially satisfy the bounds of the Main theorem. Independently, if x

is the pole of the stereographical projection we consider, we have that for

any y '= −x, lim
j→∞

fj(y) = x, while we have that for any j, fj(−x) = −x.
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It is then easy to see that no subsequence of (gj) converges C0,α. On the

other hand, the sequence (gj) converges to can in the C0,α-topology since,

by construction, for the smooth diffeomorphisms Φj = f−1
j : Sn → Sn,

we have that Φ∗
jgj = can for all j.

4) The Ck,α result on the limit metric is sharp. For instance, Pe-

ters [34] has presented a simple example of a limit metric which is C1,α

for any α < 1 but not C1,1. We refer to [34] for more details. On the

other hand, improvements of the convergence are possible in terms of

Sobolev spaces. See for instance Anderson-Cheeger [4], Peters [34],

and what is done below.

2 – Harmonic coordinates and harmonic radius

Harmonic coordinates were first used by Einstein, then by Lanczos

who observed that they simplify the formula for the Ricci tensor. Namely,

in a harmonic coordinate system,

(Ric(M,g))ij = − gmk∂k∂mgij+

+ “terms involving at most one derivative of the metric”.

From the works of DeTurck-Kazdan [17], it is now well known that we

obtain optimal regularity by using harmonic coordinates, while the ba-

sic intuition that one obtains optimal regularity by using geodesic normal

coordinates is false in general. In this very short section, we recall the def-

inition of harmonic coordinates, we give the main properties they satisfy,

and we briefly introduce the crucial notion of harmonic radius. For more

details on what is done here, one should look at DeTurck-Kazdan [17]

and Jost-Karcher [29].

First, we recall the definition of harmonic coordinates.

Definition 3. A coordinate chart (x1, ..., xn) on a Riemannian man-

ifold (M, g) is called harmonic if ∆xk = 0 for all k = 1, ..., n. Since

∆xk = gijΓk
ij, where the Γ’s are the Christoffel symbols of the connection

associated to g, we get that a coordinate chart (x1, ..., xn) is harmonic if

and only if for any k = 1, ..., n,

gij Γk
ij = 0 .
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Then, we have the following result of DeTurck-Kazdan [17,

lemma 1.2, theorem 2.1], which, roughly speaking, states that we get

optimal regularity in harmonic coordinates. As already mentioned, this

is not true for geodesic normal coordinates.

Theorem 4. Let the metric on a Riemannian manifold (M, g)

be of class Ck,α(k ≥ 1) in a local coordinate chart about some point x.

Then, there is a neighborhood of x in which harmonic coordinates exist,

these new coordinates being Ck+1,α functions of the original coordinates.

Moreover:

1) we can choose this coordinate system such that gij(x) = δij for any

i, j in 1, ..., n, where the gij(x) are the components of g at x,

2) all harmonic coordinate charts defined near x have this Ck+1,α

regularity,

3) the metric g is of class Ck,α in any harmonic coordinate chart

near x.

Proof. It is based on the formula

∆u = −gij∂i∂ju − 1√
|g|∂i

(√
|g| gij

)
∂ju

(|g| stands for the determinant of the matrix gij in the coordinate chart

considered) and on the fact that since g belongs to Ck,α, there is always

a solution u in Ck+1,α of ∆u = 0 with u(x) and ∂iu(x) prescribed. If

the yj, j = 1, ..., n, are the solutions of ∆yj = 0 with yj(x) = 0 and

∂iy
j(x) = δj

i , the functions yj are the desired harmonic coordinates. Part

2) of the theorem is then a consequence of standard elliptic regularity

theorems, while to prove part 3) one just has to note that the expression

of any tensor in these coordinates involves at most the first derivatives

of these coordinates. Finally, to prove that we can choose harmonic

coordinates such that gij(x) = δij, just note that composing with linear

transformations do not affect the fact that coordinates are harmonic.

One of the main differences between geodesic normal coordinates and

harmonic coordinates is that under the assumption that g is of class Ck,α

in a local chart around some point x, the only thing one can say is that

g is of class Ck−2,α in geodesic normal coordinates at x. In general, one
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can do no better and changing to geodesic normal coordinates involves

a loss of two derivatives. The example 2.3 of DeTurck-Kazdan [17]

illustrates this fact. Independently, many other results are available with

the use of harmonic coordinates. For instance, it is possible to prove that

if in harmonic coordinates Ric(M,g) ∈ Ck,α, then in these coordinates g is

Ck+2,α. We refer to DeTurck-Kazdan [17] for more details.

Let us now define the concept of harmonic radius.

Definition 5. Let (M, g) be a smooth Riemannian n-manifold with-

out boundary and let x in M . Given Q > 1, k ∈ IN, and α ∈ (0, 1),

we define the Ck,α-harmonic radius at x as the largest number rH =

rH(Q, k, α)(x) such that on the geodesic ball Bx(rH) of center x and ra-

dius rH , there is a harmonic coordinate chart such that the metric tensor

is Ck,α controlled in these coordinates. Namely, if gij, i, j = 1, ..., n, are

the components of g in these coordinates, then

1) Q−1 δij ≤ gij ≤ Q δij as bilinear forms,

2)
∑

1≤|β|≤k

r
|β|
H supx |∂βgij(x)|+ ∑

|β|=k

rk+α
H supy &=z

|∂βgij(y)−∂βgij(z)|
dg(y,z)α

≤Q−1

where dg is the distance associated to g. The harmonic radius rH(Q, k, α)

(M) of (M, g) is now defined by rH(Q, k, α)(M) = infx∈M rH(Q, k, α)(x).

According to theorem 4, the harmonic radius is positive for any fixed

smooth compact Riemannian manifold. Note that if (M, g) and (N,h) are

isometric, then, for any Q > 1, k ∈ IN, and α ∈ (0, 1), rH(Q, k, α)(M) =

rH(Q, k, α)(N).

3 – Estimates on the harmonic radius

The purpose of this section is to obtain estimates on the harmonic

radius in terms of bounds on the Ricci curvature and the injectivity ra-

dius. Roughly speaking, we prove that bounds on the Ricci curvature

and the injectivity radius give lower bounds on the harmonic radius. As

one can see, the result is essentially local. In particular, this provides

us with a very local form of the Main theorem. One just has to use the

Arzela-Ascoli theorem. We will insist on that in section 5. Note that the

C0,α-part of the theorem has been obtained by Anderson-Cheeger [4],

the C1,α-part by Anderson [3].
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Theorem 6. Let α ∈ (0, 1), Q > 1, δ > 0. Let (M, g) be an arbitrary

smooth Riemannian n-manifold without boundary, and Ω an open subset

of M . Set

Ω(δ) = {x ∈ M s.t. dg(x,Ω) < δ}
where dg is the distance associated to g. Suppose that for some λ ∈ IR

and i > 0, we have that for all x ∈ Ω(δ),

Ric(M,g)(x) ≥ λ and inj(M,g)(x) ≥ i ,

where inj(M,g)(x) is the injectivity radius at x. Then, there exists a positive

constant C = C(n, Q, α, δ, i, λ), depending only on n, Q, α, δ, i, and λ,

such that for any x ∈ Ω,

rH(Q, 0, α)(x) ≥ C .

In addition, if instead of the bound Ric(M,g)(x) ≥ λ we assume that for

some k ∈ IN and some positive constants C(j),

|Dj Ric(M,g)(x)| ≤ C(j) for all j = 0, .., k and all x ∈ Ω(δ) ,

then, there exists a positive constant C = C(n, Q, k, α, δ, i, C(j), 0 ≤ j ≤
k), depending only on n, Q, k, α, δ, i, C(j), 0 ≤ j ≤ k, such that for any

x ∈ Ω,

rH(Q, k + 1, α)(x) ≥ C .

Corollary. Let α ∈ (0, 1), Q > 1. Let (M, g) be a smooth complete

Riemannian n-manifold. Suppose that for some λ ∈ IR and i > 0,

Ric(M,g) ≥ λ and inj(M,g) ≥ i .

Then, there exists a positive constant C = C(n, Q, α, i, λ), depending only

on n, Q, α, i, and λ, such that

rH(Q, 0, α)(M) ≥ C .

In addition, if instead of the bound Ric(M,g) ≥ λ we assume that for some

k ∈ IN and some positive constants C(j),

|Dj Ric(M,g) | ≤ C(j) for all j = 0, ..., k ,



578 E. HEBEY – M. HERZLICH [10]

then, there exists a positive constant C = C(n, Q, k, α, i, C(j), 0 ≤ j ≤ k),

depending only on n, Q, k, α, i, and the C(j), such that

rH(Q, k + 1, α)(M) ≥ C .

Remarks. 1) Let (M, g) be an arbitrary smooth Riemannian n-man-

ifold without boundary and let Ω be an open subset of M . Let us say

that Ω′ ⊂ M is a δ-neighborhood of Ω if for any x ∈ M \Ω′, dg(x,Ω) ≥ δ.

Roughly speaking, theorem 6 says that if the Ricci curvature and the

injectivity radius are controlled in a δ-neighborhood of some open subset

Ω of M , then there exists a uniform lower bound C for the harmonic

radius at any point of Ω, C depending only on δ and the constants which

control the Ricci curvature and the injectivity radius.

2) It is now classical that analogous estimates are available if one

works with geodesic normal coordinates instead of harmonic coordinates.

In general, these estimates are much rougher. We do not enter into

too many details but, for instance, it is possible to prove the following

“C0,α-analogue” of theorem 6. For more details, we refer to Hebey-

Vaugon [27]. Let Q > 1 and let (M, g) be a smooth Riemannian n-

manifold without boundary. Suppose that for some x ∈ M there exist

positive constants C1 and C2 such that

|Rm(M,g) | ≤ C1 and |D Rm(M,g) | ≤ C2 on Bx(inj(M,g)(x)) ,

where Rm(M,g) is the Riemann curvature of g. Then, there exist posi-

tive constants K = K(n, C1, C2) and δ = δ(n, Q, C1, C2) such that the

components (gij) of g in geodesic normal coordinates at x satisfy for any

i, j, k = 1, ..., n, and any y ∈ IRn such that |y| < inf(δ, inj(M,g)(x)),

(1) (1/Q) δij ≤ gij ≤ Q δij (as bilinear forms) ,

(2) |gij(y) − δij| ≤ K|y|2 and |∂kgij(y)| ≤ K|y| ,
where |y| is the euclidean distance from 0 to y and where gij(y) =

gij(expx(y)). As one can see, when changing from harmonic coordi-

nates to geodesic normal coordinates, the bound |Ric(M,g) | ≤ C “has

to” be replaced by the much demanding bounds | Rm(M,g) | ≤ C1 and

|D Rm(M,g) | ≤ C2. On the other hand, such results are sometimes use-

ful, for instance in Nonlinear Analysis...
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Let us now start with the proof of theorem 6. We closely follow the

lines of Anderson [3] and Anderson-Cheeger [4]. In particular, we

work with the Sobolev spaces Hp
k+1, p > n, in place of Ck,α. Note that

since Hp
k+1 ⊂ Ck,α, with α = 1−n/p, this will give stronger results. First,

we define the notion of Hp
k -harmonic radius.

Definition 7. Let (M, g) be a smooth Riemannian n-manifold with-

out boundary and let x ∈ M . Given Q > 1, k ∈ IN∗, and p > n, we define

the Hp
k -harmonic radius at x as the largest number rH = rH(Q, k, p)(x)

such that, on the geodesic ball Bx(rH) of center x and radius rH , there is

a harmonic coordinate chart such that the metric tensor is Hp
k -controlled

in these coordinates. Namely, if gij (i, j in 1, ..., n) are the components

of g in these coordinates, then

1) Q−1 δij ≤ gij ≤ Q δij as bilinear forms,

2)
∑

1≤|β|≤k

r
|β|−n/p
H ||∂βgij||Lp ≤ Q − 1 .

The harmonic radius rH(Q, k, p)(M) of (M, g) is now defined as

rH(Q, k, p)(M) = inf
x∈M

rH(Q, k, p)(x) .

Since conditions 1) and 2) are invariant under rescalings of the met-

ric, the Hp
k -harmonic radius scales as the distance function (indeed, if

g satisfies 1) and 2) in some harmonic coordinates (x1, ..., xn), then, it

is easy to see that λ2g, for λ > 0, satisfies 1) and 2) in the harmonic

coordinates (y1, ..., yn) defined by yi = λxi, i = 1, ..., n, with λrH in place

of rH). Note that this is also true for the Ck,α-harmonic radius.

Another basic property of the Hp
k -harmonic radius is that it is in-

creasing and upper semicontinuous with respect to Q. Namely, we have

the following:

Lemma 8. Let (M, g) be a smooth Riemannian n-manifold without

boundary, x ∈ M,k ∈ IN∗, and p > n. Then, for any 1 < Q ≤ Q′ < ∞,

rH(Q, k, p)(x) ≤ rH(Q′, k, p)(x) ,
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and for any Q > 1,

lim
ε→0+

rH(Q + ε, k, p)(x) = rH(Q, k, p)(x) .

Proof. By definition, rH(Q, k, p)(x) is clearly increasing with re-

spect to Q. Hence, to prove the lemma, we just have to prove that for

any Q > 1,

lim
ε→0+

rH(Q + ε, k, p)(x) ≤ rH(Q, k, p)(x) .

Fix r < lim rH(Q+ε, k, p)(x). For a decreasing sequence of ε > 0 converg-

ing to 0, we have a harmonic coordinate chart Φε on Bx(r) which satisfies

the bounds 1) and 2) of definition 7 with Q + ε in place of Q (and r in

place of rH). Now, by standard elliptic theory, we get that a subsequence

of (Φε) converges Hp
k+1 to a limiting chart Φ : Bx(r) → IRn (for more

details, we refer to the first part of the proof of lemma 10, where such a

result is proved in a more general setting where the background metric

is also changing with ε). Since the bounds 1) and 2) of definition 7 are

clearly preserved under Hp
k+1-convergence, we get that rH(Q, k, p)(x) ≥ r.

Since r < lim rH(Q+ε, k, p)(x) was chosen arbitrarily, this ends the proof

of the lemma.

Lemma 9. Let (M, g) be a smooth Riemannian n-manifold without

boundary, Q > 1, k ∈ IN∗, and p > n. Then, x *−→ rH(Q, k, p)(x) is

1-lipschitzian on M .

Proof. By definition, it is obvious that for any x, y ∈ M ,

rH(Q, k, p)(y) ≥ rH(Q, k, p)(x) − dg(x, y) ,

where dg is the distance associated to g.

Then, by symmetry, we get that x *−→ rH(Q, k, p)(x) is 1-lipschitzian

on M .
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For convenience, given (M, g), x ∈ M,Q > 1, k ∈ IN∗, and p > n, we

set rH(g, Q) = rH(Q, k, p)(x) and we now prove the following:

Lemma 10. Let M be a smooth differentiable n-manifold without

boundary, x ∈ M , (gm) a sequence of smooth Riemannian metrics on M ,

Q > 1, k ∈ IN∗, and p > n. Suppose that (gm) converges Hp
k to some Hp

k

Riemannian metric g on M . Then,

rH(g, Q) ≥ lim
m→∞

rH(gm, Q)

and for any 0 < ε < Q − 1,

rH(g, Q − ε) ≤ lim
m→∞

rH(gm, Q) .

Remark. Although we defined the Hp
k -harmonic radius for smooth

metrics, the definition easily extends to Hp
k metrics (note that k ≥ 1).

Indeed, one may speak of harmonic functions on M , which are at least

in Hp
k+1. Of course, lemma 8 and lemma 9 still hold for Hp

k metrics.

Independently, we say that (gm) converges Hp
k to g if in any chart of the

C∞ complete atlas of M, the components of gm converge Hp
k,loc to the

components of g, or, equivalently, if there exists a C∞ sub-atlas of the

C∞ complete atlas of M such that in any chart of this sub-atlas, the

components of gm converge Hp
k to the components of g.

Proof. First, we prove that

rH(g, Q) ≥ lim rH(gm, Q) .

Let Φm : Bx(rm) → IRn, where Bx(rm) is the geodesic ball for gm of center

x and radius rm = rH(gm, Q), be harmonic coordinate charts satisfying

the bounds 1) and 2) of definition 7. We may suppose that lim rm > 0.

Since the metrics gm converge Hp
k to a limit metric g, by standard elliptic

theory, we get that for any r < lim rm a subsequence of (Φm) converges

Hp
k+1 to a limiting chart Φ : Bx(r) → IRn, where Bx(r) is the geodesic

ball for g of center x and radius r. For instance, given a local coordinate

chart (x1, ..., xn) on Bx(r), we have for any θ = 1, ..., n,

gij
m

∂2Φθ
m

∂xi∂xj
= gij

m(Γm)s
ij

∂Φθ
m

∂xs
,
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where the gm
ij are the components of gm in the chart (x1, ..., xn), (gij

m) is

the inverse matrix of (gm
ij ), and (Γm)s

ij are the Christoffel symbols of gm.

Now, since (gm) converges Hp
k to a limit metric g, and since Φm

satisfies 1) of definition 7, we get that for any θ, (Φθ
m) is C1 bounded.

Then, by standard elliptic theory, we get that for any θ, (Φθ
m) is a bounded

sequence in Hp
k+1. Hence, for any θ and after passing to a subsequence,

(Φθ
m) converges in Ck,α′

, α′ < 1−n/p. Now, if we write that, for any pair

(m, q),

gij
∂2(Φθ

m − Φθ
q)

∂xi∂xj
= (gij − gij

m)
∂2Φθ

m

∂xi∂xj
− (gij − gij

q )
∂2Φθ

q

∂xi∂xj
+

+ (gij
m(Γm)s

ij −gij
q (Γq)

s
ij)

∂Φθ
m

∂xs
+gij

q (Γq)
s
ij

(
∂Φθ

m

∂xs
− ∂Φθ

q

∂xs

)
,

we get, again by standard elliptic theory, that for any θ, (Φθ
m) is a Cauchy

sequence in Hp
k+1. Hence, (Φm) converges Hp

k+1 to a limiting map Φ :

Bx(r) → IRn. In addition, since Φm satisfies 1) of definition 7, Φ is also a

chart. Now, since the bounds 1) and 2) of definition 7 are clearly preserved

under Hp
k -convergence, we get that rH(g, Q) ≥ r for any r < lim rm.

Therefore,

rH(g, Q) ≥ lim rH(gm, Q) .

Let us now prove the more significant inequality

rH(g, Q − ε) ≤ lim rH(gm, Q), ∀ε ∈ (0, Q − 1) .

Fix r < rH(g, Q) and let (x1, ..., xn) be harmonic coordinates for g on

B = Bx(r), the geodesic ball for g of center x and radius r. Let ∆m be

the Laplace operator of gm. In the chart (x1, ..., xn) we have with the

notations defined above

∆m = −gij
m

∂2

∂xi∂xj
+ gij

m(Γm)s
ij

∂

∂xs
= − 1√

|gm|
∂

∂xi

(
gij

m

√
|gm| ∂

∂xj

)

where |gm| is the determinant of (gm
ij ) in these coordinates. Let y1

m, ..., yn
m

be the solutions of

∆myθ
m = 0 in B, yθ

m = xθ on ∂B, ∀θ = 1, ..., n ,
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and set ωθ
m = xθ − yθ

m. We have

∆mωθ
m = ∆mxθ in B, ωθ

m = 0 on ∂B .

Now, by standard elliptic theory, we get the following.

Sublemma. For any compact subset B′ ⊂ B, lim
m→∞

||ωθ
m||Hp

k+1
(B′) = 0.

Proof of the sublemma Since (gm) converges Hp
k ⊂ C0,α to g,

by [22, theorem 8.16] we obtain the existence of a positive constant C,

independent of m, such that

||ωθ
m||C0(B) ≤ C ||∆mxθ||Lp(B) .

On the other hand, it is easy to see that lim
m→∞

||∆mxθ||Lp(B) = 0. Hence,

lim
m→∞

||ωθ
m||C0(B) = 0 .

Now, by [22, theorem 8.33] (see also the remark page 212 of [22]), we get

that

lim
m→∞

||ωθ
m||C1,α(B) = 0 , where α = 1 − n/p.

Then, writing the equation ∆mωθ
m = ∆mxθ under the form

gij
m

∂2ωθ
m

∂xi∂xj
= gij

m(Γm)s
ij

∂ωθ
m

∂xs
− ∆mxθ ,

we obtain by [22 theorem 9.13] that

lim
m→∞

||ωθ
m||Hp

2
(B) = 0 .

Finally, by induction and noting that for any multi-index γ,

gij
m

∂2

∂xi∂xj
∂γω

θ
m = ∂γ

(
gij

m

∂2ωθ
m

∂xi∂xj

)

+ terms involving derivatives of ωθ
m of order ≤ |γ|+1
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and

∂γ

(
gij

m

∂2ωθ
m

∂xi∂xj

)
= ∂γ

(
gij

m(Γm)s
ij

∂ωθ
m

∂xs

)
− ∂γ∆mxθ ,

we get by [22, theorem 9.11] what we announced, namely that for any

compact subset B′ ⊂ B,

lim
m→∞

||ωθ
m||Hp

k+1
(B′) = 0 .

This ends the proof of the sub-lemma.

Proof of lemma 10 (continued). From the sublemma, it is easy

to see that for any compact subset B′ ⊂ B there exists m0 such that for

m ≥ m0, (y
1
m, ..., yn

m) is a harmonic coordinate chart on B′ for gm, and

since the bounds 1) and 2) of definition 7 are continuous in the (strong)

Hp
k -topology, we get that the charts (y1

m, ..., yn
m) and gm satisfy 1) and 2)

of definition 7 on B′, with constants Qm satisfying lim
m→∞

Qm = Q. As an

immediate consequence, we have that for any ε > 0,

r ≤ lim rH(gm, Qm) ≤ lim rH(gm, Q + ε) .

Since r ≤ rH(g, Q) was arbitrary, this ends the proof of the lemma.

Remarks. 1) If k ≥ 2, we do not need to use [22, theorem 8.33].

Actually, since if k ≥ 2, gij
m(Γm)s

ij belongs to C0, we directly obtain by [22,

theorem 9.13] the existence of a positive constant C, independent of m,

such that

||ωθ
m||Hp

2
(B) ≤ C

(||ωθ
m||Lp(B) + ||∆mxθ||Lp(B)

)
.

2) According to the first part of the proof of lemma 10, we have

that if a sequence (gm) of metrics converges Hp
k , k ≥ 1, and if Φm are

harmonic charts for gm satisfying 1) of definition 7, then, after passing

to a subsequence, (Φm) converges Hp
k+1 to a limiting chart. Actually,

with the same ideas, it is easy to see that the result still holds with Ck,α

convergence instead of Hp
k -convergence. Namely, if a sequence (gm) of

metrics converges Ck,α, k ≥ 0, and if Φm are harmonic charts for gm

satisfying 1) of definition 7, then, after passing to a subsequence, (Φm)

converges Ck+1,α to a limiting chart.
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Let us now state a modified version of theorem 6, based on the Hp
k -

harmonic radius instead of the Ck,α harmonic radius.

Theorem 11. Let (M, g) be a smooth Riemannian n-manifold

without boundary, Q > 1, p > n, δ > 0, and Ω an open subset of M . Set

Ω(δ) = {x ∈ M s.t. dg(x,Ω) < δ}

where dg is the distance associated to g. Suppose that for some λ ∈ IR

and i > 0, we have that for all x ∈ Ω(δ),

Ric(M,g)(x) ≥ λ and inj(M,g)(x) ≥ i ,

where inj(M,g)(x) is the injectivity radius at x. Then, there exists a positive

constant C = C(n, Q, p, δ, i, λ), depending only on n, Q, p, δ, i, and λ, such

that for any x ∈ Ω, the Hp
1 -harmonic radius rH(Q, 1, p)(x) satisfies

rH(Q, 1, p)(x) ≥ C .

In addition, if instead of the bound Ric(M,g)(x) ≥ λ we assume that for

some k ∈ IN and some positive constants C(j),

|Dj Ric(M,g)(x)| ≤ C(j), ∀j = 0, .., k, ∀x ∈ Ω(δ) ,

then, there exists a positive constant C = C(n, Q, k, p, δ, i, C(j), 0 ≤ j ≤
k), depending only on n, Q, k, p, δ, i, and the C(j), such that for any

x ∈ Ω, the Hp
k+2-harmonic radius rH(Q, k + 2, p)(x) satisfies

rH(Q, k + 2, p)(x) ≥ C .

The proof of theorem 11 is by contradiction. The general idea is

to construct a sequence (Mm, xm, gm) of Riemannian manifolds, xm ∈
Mm, rH(xm) = 1, which converges in the Hp

k -topology to a limiting man-

ifold (M, x, g), x = limxm, then, to prove that (M, g) is necessarily iso-

metric to (IRn, δ), where δ is the euclidean metric, finally, to get the con-

tradiction from lemma 9 and lemma 10, since one should have rH(x) = 1,
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while, obviously, IRn has infinite harmonic radius. We present the proof

of the theorem for the Hp
k -harmonic radius when k ≥ 2. We refer to

Anderson-Cheeger [4] for the Hp
1 -part of the theorem.

Proof. As already mentioned, the proof of theorem 11 is by contra-

diction. Hence, we assume that for some n ∈ IN,Q > 1,p > n, δ > 0, i >

0, k ∈ IN, and C(j) ∈ IR∗
+, j = 0, ..., k, there exists a sequence (Mm, gm) of

Riemannian n-manifolds without boundary, there exists a sequence (Ωm)

of open subsets of Mm, and there exists a sequence (xm) of points of Ωm,

such that

∀x ∈ Ωm(δ), inj(Mm,gm)(x) ≥ i,

∀x ∈ Ωm(δ), ∀j = 0, . . . , k, |Dj Ric(Mm,gm)(x)| ≤ C(j),

and lim
m→∞

rH(gm, xm) = 0

where rH(gm, xm) is the Hp
k+2-harmonic radius rH(Q, k + 2, p)(xm) of

(Mm, gm) at xm. Now, for a fixed m, we would like to choose xm so

that rH(gm, xm) is minimal at xm. But, a priori, no such point needs to

exist. To remedy this, we consider instead the sequence (Bm, gm) where

Bm = Bxm(inf(δ, i)) is the geodesic ball for gm with center xm and ra-

dius inf(δ, i). For x ∈ Bm, let inj(Bm,gm)(x) be the injectivity radius of

(Bm, gm) at x. We have

inj(Bm,gm)(x) = dgm(x, ∂Bm) ,

where dgm is the distance associated to gm. Hence,

lim
x→∂Bm

inj(Bm,gm)(x) = 0, while inj(Bm,gm)(xm) = inf(δ, i) .

As a consequence, if we continue to define rH with respect to Mm, we get

that, for any m, there exists ym ∈ Bm such that

x *−→ rH(gm, x)

inj(Bm,gm)(x)

attains its minimal value at ym, i.e.:

∀x ∈ Bm,
rH(gm, ym)

inj(Bm,gm)(ym)
≤ rH(gm, x)

inj(Bm,gm)(x)
.
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In particular, since inj(Bm,gm)(ym)≤ inf(δ, i) and inj(Bm,gm)(xm)=inf (δ, i),

1

inf(δ, i)
rH(gm, ym) ≤ rH(gm, ym)

inj(Bm,gm)(ym)
≤ 1

inf(δ, i)
rH(gm, xm) ,

and we get that

lim
m→∞

rH(gm, ym) = lim
m→∞

rH(gm, ym)

inj(Bm,gm)(ym)
= 0 .

From now on, set hm = rH(gm, ym)−2gm. Since the harmonic radius scales

as the distance function under rescalings of the metric (see above), we

get that

rH(hm, ym) = 1 ,

while

lim
m→∞

||Ric(Bm,hm) ||Ck = 0,

lim
m→∞

inj(Bm,hm)(ym) = +∞,

lim
m→∞

dhm(ym, ∂Bm) = +∞ ,

and

∀y ∈ Bm, , ∀m, rH(hm, y) =
rH(gm, y)

rH(gm, ym)
≥ dgm(y, ∂Bm)

dgm(ym, ∂Bm)

≥ dhm(y, ∂Bm)

dhm(ym, ∂Bm)
.

Set

δm =
rH(gm, ym)

inj(Bm,hm)(ym)
=

1

dhm(ym, ∂Bm)
.

Then,

lim
m→∞

δm = 0 ,

and for all y ∈ Bym( 1
2δm

), where Bym( 1
2δm

) is the geodesic ball for hm with

center ym and radius 1
2δm

, we have

rH(hm, y) ≥ 1

2
.
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In particular, given R < ∞, rH(hm, y) ≥ 1/2 on Bym(R) provided m is

sufficiently large. As a consequence, given R < ∞ and (zm) a sequence

of points in Bym(R), there exist harmonic coordinate charts Um : Ωm →
B0(

1

2
√

Q
), centered at zm, such that

Q−1δij ≤ ((U−1
m )∗hm)ij ≤ Qδij as bilinear forms

and

||((U−1
m )∗hm)ij||Hp

k+2
≤ C(Q)

where C(Q) depends only on Q, and B0(
1

2
√

Q
) is the euclidean ball of

IRn with center 0 and radius 1/2
√

Q. For convenience, we set h̃m =

(U−1
m )∗hm. Our first claim is that (Bm, ym, hm) converges Hp

k+2, uniformly

on compact subsets, to a limiting complete manifold (M,y, h). First, since

the h̃m are Hp
k+2-bounded, after passing to a subsequence we can assume

that they converge in Ck+1,α. Now, as already mentioned in section 2

(see also[17, lemma 4.1]), the equation for the Ricci curvature of h̃m is

h̃st
m

∂2h̃m
ij

∂xs∂xt
= −2

(
Ric

(B,̃hm)

)
ij

− A(h̃m)

where A(h̃m) is a quadratic term in the first derivatives of h̃m.

But, ||Ric(Bm,hm) ||Ck goes to 0. Hence, (Ric
(B,̃hm)

)ij converges Ck to

0, and, by standard elliptic theory, we easily get that (h̃m) converges in

Hp
k+2. Now, with the same kind of arguments than those used to prove

proposition 12 of section 4 (which are completely independent of the

present proof of theorem 11), we obtain the existence of a Hp
k+3 n-manifold

M , the existence of y in M , and the existence of a Hp
k+2 Riemannian

metric h on M , such that for any compact domain D ⊂ M , with y ∈ D,

and after passing to a subsequence, there exist compact domains Dm ⊂
Bm, ym ∈ Dm, and there exist Hp

k+3 diffeomorphisms Φm : D → Dm, such

that lim
m→∞

Φ−1
m (ym) = y, and such that (Φ∗

mhm) converges Hp
k+2 to h in

D. In addition, since lim
m→∞

dhm(ym, ∂Bm) = +∞, (M,h) is necessarily a

complete Riemannian manifold. This proves our first claim.
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At this point, given a compact domain D ⊂ M , with y in D, we

set ĥm = Φ∗
mhm. Now, let x ∈ D, and let Um : Bx(r) → IRn, r > 0,

be harmonic coordinate charts for ĥm satisfying 1) and 2) of definition 7.

According to what we have said above (see the remark following the proof

of lemma 10) and since (ĥm) converges Hp
k+2 to h, (Um) converges Hp

k+3 to

a limiting chart U : Bx(r) → IRn. Hence, coming back to the equation for

the Ricci curvature in harmonic coordinates, we get that H = (U−1)∗h

satisfies

Hst ∂2Hij

∂xs∂xt
+ A(H) = 0 .

Therefore, by standard elliptic theory, (U−1)∗h is smooth, and since the

left hand size of this equation is in fact the expression of the Ricci curva-

ture of (U−1)∗h, it has null Ricci curvature: (M,h) is a smooth Ricci-flat

complete Riemannian manifold.

Now, our second claim is that (M,h) is isometric to (IRn, δ), where

δ is the euclidean metric of IRn. First, let v ∈ TyM be a unit tangent

vector for h, and let γ be the geodesic of (M,h) with γ(0) = y, γ′(0) = v.

Given a compact domain D ⊂ M , with y ∈ D, set ĥm = Φ∗
mhm as

above. Since ĥm converges to h, there exists λm such that λm → 1 and

such that λmv is a unit-length vector for ĥm. Let γm be the geodesic

for ĥm with γm(0) = y and (γm)′(0) = λmv. Since ĥm converges to h,

and since lim
m→∞

inj(Bm,hm)(ym) = +∞, γm converges to γ and γ is length

minimizing. As a consequence, for any v ∈ TyM , we have a line in

the Ricci-flat manifold (M,h), in the direction v. Now, the Cheeger-

Gromoll theorem [14], see also [8, chapter 6], implies that (M,h) =

(IRn, δ).

Finally, we get the contradiction as follows. Since (hm) converges to

h in the Hp
k+2 topology, by lemma 9 and lemma 10 we should have that

rH(Q′, k + 2, p)(y) ≤ lim
m→∞

rH(Q, k + 2, p)(ym) ,

for some Q′ < Q. But, by construction rH(Q, k + 2, p)(ym) = 1, while,

obviously, IRn has infinite harmonic radius for any Q′ and this ends the

proof of the theorem.

Remark. As one can see, the previous proof (as presented above)

does not work when we deal with the Hp
1 -harmonic radius. For in-

stance, Ric(Mm,hm) does not converge anymore to 0, and we just have
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that Ric(Mm,hm) ≥ λ rH(hm, ym)2 → 0, where λ is as in the statement

of the theorem. To remedy this, the proof presented by Anderson-

Cheeger in [4] relies on the study of the distance function and does not

use anymore the equation for the Ricci curvature in harmonic coordi-

nates. Anyway, the structure of the proof is unchanged. First, one has

to prove that (Bm, ym, hm) converges in the Hp
1 -topology to a complete

manifold (M,y, h), then, to prove that (M,h) = (IRn, δ). Hence, here

again, the contradiction comes from lemma 9 and lemma 10.

Let us now prove how theorem 11 implies theorem 6. The basic idea

is just that Hp
k+1 is continuously embedded in Ck,α, α = 1−n/p, so that if

the metric tensor is Hp
k+1-controlled in a harmonic coordinate chart, then

it is also Ck,α controlled. Roughly speaking, one just has to show that the

constant of the embedding of Hp
k+1 in Ck,α can be chosen independently

of the domain where the embedding is considered.

Proof of Theorem 6. Let δ > 0, (M, g) an arbitrary smooth

Riemannian n-manifold without boundary, and Ω an open subset of M .

Set

Ω(δ) = {x ∈ M s.t. dg(x,Ω) < δ} ,

and suppose that for some i > 0, k ∈ IN, λ ∈ IR, and C(j) > 0, j = 0, ..., k,

we have for all x ∈ Ω(δ),

(i) inj(M,g) ≥ i,

and

(iia) Ric(M,g) ≥ λ,

respectively

(iib) |Dj Ric(M,g) | ≤ C(j), ∀j = 0, ..., k.

Set K = 0 in case condition (iia) is satisfied, K = k + 1 in case condition

(iib) is satisfied, and let Q > 1, p > n. According to theorem 11, there

exists a positive constant c, depending only on n, Q, K, p, δ, i, and either

λ or C(j), j = 0, ..., k, such that for any x ∈ Ω there exists a harmonic

coordinate chart Φ : Bx(c) → IRn such that if gij, i, j = 1, ..., n, are the

components of g in these coordinates, then

Q−1 δij ≤ gij ≤ Q δij as bilinear forms ,(1)
∑

1≤|β|≤K+1

c|β|−n/p||∂βgij||Lp ≤ Q − 1 .(2)



[23] Harmonic coordinates, harmonic radius and etc. 591

Now, by condition (1), if Bη = B0(c/
√

Q) denotes the euclidean ball of

IRn with center 0 and radius η = c/
√

Q, we have that Bη ⊂ Φ(Bx(c)).

Hence, if we look at the gij’s as functions on Bη, and if the Lp norm is

now taken with respect to the euclidean metric, we get that

(3)
∑

1≤|β|≤K+1

η|β|−n/p||∂βgij||Lp ≤ Qn/2(K+1)(Q − 1) .

Let S, given by the Sobolev embedding theorem (see for instance

Adams [2]), be such that

(4)

∑

1≤|β|≤K

η|β| sup
x

|∂βgij(x)| + ηK+α
∑

|β|=K

sup
y &=z

|∂βgij(y) − ∂βgij(z)|
|z − y|α

≤ S
∑

1≤|β|≤K+1

η|β|−n/p||∂βgij||Lp ,

where α = 1 − n/p. A priori, since S comes from the embedding of

Hp
K+1(Bη) in Ck,α(Bη), it depends on η and K. We claim that S can be

chosen such that it does not depend on η (the point here is that η depends

on Q, and that we do not want S to depend on Q). Actually, our claim

just comes from the fact that if h(x) = f(η
r
x), r > 0 and |x| ≤ r, then

r|β||∂βh(x)| = η|β||∂βf
(η

r
x
)
|

and

r|β|−n/p||∂βh||Lp(Br) = η|β|−n/p||∂βf ||Lp(Bη) .

Hence, S can be chosen as the constant coming from the embedding of

Hp
K+1(B1) in CK,α(B1), where B1 is the unit ball of IRn. In particular, S

can be chosen such that it depends only on K, and this proves our claim.

Now, since by (1), Bx(c/Q) ⊂ Φ−1(Bη), we get by (3) and (4) that

(5)

∑

1≤|β|≤K

r|β| sup
x

|∂βgij(x)| +
∑

|β|=K

rK+α sup
z &=y

|∂βgij(z) − ∂βgij(y)|
dg(z, y)α

≤ S Q(α+n/(K+1))/2(Q − 1)
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on Bx(r) where r = c/Q. Independently, given Q′ > 1 and α′ ∈ (0, 1),

and since S depends only on K, it is easy to see that we can find Q > 1,

Q close to 1, and that we can find p > n, such that

α′ = 1 − n/p, Q < Q′, and SQ(α′+n/(K+1))/2(Q − 1) ≤ Q′ − 1 .

Hence, according to what we have said above and (5), we get that for any

x ∈ Ω, the CK,α′
-harmonic radius rH(Q′, K, α′)(x) at x is greater than

c/Q, namely than a constant which depends only on n, Q′, K, α′, δ, i, and

either λ or C(j), j = 0, ..., k. This ends the proof of theorem 6.

4 – Proof of the Main theorem

Before we proceed to prove the Main theorem stated in section 1, let

us establish the following result. The Main theorem can then be seen as

an easy corollary of it. The proof we present closely follows the lines of

Kasue [30] and is completely independent of theorem 11.

Proposition 12. Let (Mm, gm) be a sequence of smooth complete

Riemannian n-manifolds, (xm) a sequence of points in Mm, λ ∈ IR, Q >

1, k ∈ IN, p > n, and α ∈ (0, 1). Suppose

1) for any m, Ric(Mm,gm) ≥ λ,

2) there exists r > 0 such that for any sequence (ym) of points in Mm

there is a harmonic chart Hm : Ωm → B0(r), where Ωm is some open

neighbourhood of ym in Mm and B0(r) is the euclidean ball of IRn

with center 0 and radius r, such that

3) for any m, Q−1 δij ≤ ((H−1
m )∗gm)ij ≤ Q δij as bilinear forms

and

4a) a subsequence of ((H−1
m )∗gm) converges in Ck,α(B0(r))

respectively

4b) a subsequence of ((H−1
m )∗gm) converges in Hp

k+1(B0(r)).

Then, there exists a complete Riemannian n-manifold (M, g), M of class

Ck+1,α (respectively Hp
k+2) and g of class Ck,α (respectively Hp

k+1), and

there exists x ∈ M , such that the following holds: for any compact domain

D ⊂ M , with x ∈ D, there exist, up to passing to a subsequence, compact
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domains Dm ⊂ Mm, with points xm ∈ Dm, and Ck+1,α (respectively Hp
k+2)

diffeomorphisms Φm : D → Dm, satisfying:

5) lim
m→∞

Φ−1
m (xm) = x,

6) (Φ∗
mgm) converges Ck,α (respectively Hp

k+1) to g in any chart of the

induced Ck+1,α (respectively Hp
k+2) complete atlas of D.

Proof. First, let (M, x, g) be one of the pointed Riemannian mani-

folds of the sequence (Mm, xm, gm). In other words, fix m and let

(M, x, g) = (Mm, xm, gm).

We now take δ ∈ (0, r/
√

Q) and let N be a (δ/4)-net in M (recall that

an ε-net is a maximal set of points xi of M such that all the balls Bxi
(ε)

are pairwise disjoint). The existence of N is given by Zorn’s lemma, and,

as an easy consequence of the maximality of N , M is necessarily covered

by the balls Bxi
(δ/2). Suppose also x1 = x.

Now, let D be a bounded domain in M , containing the base point x

and of diameter less than d, and let

Dδ = {y ∈ M s.t. dg(y, D) < δ}

as usual, where dg is the distance associated to g. By the Bishop-Gromov

comparison theorem (see for instance [18, theorem 4.19]) we get that

volBx(
d

2
+ 2δ) ≥

∑

xi∈N∩Dδ

volBxi
(δ/4)

≥ #(N ∩ Dδ) volBx(
d

2
+ 2δ)

V λ(δ/4)

V λ(d/2 + 2δ)

where V λ(r) stands for the volume of any ball of radius r in the sim-

ply connected space of (possibly negative) constant curvature λ/(n − 1).

Thus, the number of points in N ∩ Dδ is finite and uniformly bounded

from above by a constant µ depending only on n, λ, d, and δ.

Now, we produce an embedding of D into an euclidean space, using

an analog of the Whitney construction. For any xi in N , let Hi denote

the harmonic coordinate chart onto B0(r) given by the hypotheses of

proposition 12, and let ϕ be a cut-off function defined on IRn by

ϕ = 1 in B0(r/2), ϕ = 0 outside B0(r).
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Set ϕi = ϕ◦Hi, and let ΨD : M → IRN , where N = nµ+µ, be defined by

ΨD(y) = (ϕ1H1(y), ..., ϕµHµ(y), ϕ1(y), ..., ϕµ(y)).

Clearly, ΨD is smooth, the image of ΨD is contained in a fixed ball of

IRN whose radius depends only on n, µ, and r, and, finally, ΨD, when

restricted to D, turns out to be a smooth embedding. Moreover, for any

i = 1, ..., µ, ΨD(H−1
i (B0(r/2)) is a graph over B0(r/2). Namely, for every

z in B0(r/2),

ΨD(H−1
i (z)) = (ϕ1H1(H

−1
i (z)), . . . , ϕi−1Hi−1(H

−1
i (z)), z ,

ϕi+1Hi+1(H
−1
i (z)), . . . , ϕµHµ(H−1

i (z)), ϕ1(H
−1
i (z)), . . . , ϕµ(H−1

i (z))).

We now return to the sequence (Mm, xm, gm) of pointed Riemannian

manifolds of proposition 12. According to what we have just said, for

any R > 0 and each m, we can build an embedding Ψm
R : Bxm(R) → IRN ,

N = N(R) (considering only a subsequence if necessary, we shall assume

that µ is independent of m). Furthermore, and this is important, for

m fixed, any two embeddings Ψm
R and Ψm

R′ , R < R′, are compatible on

Bxm(R) in the sense that one is obtained from the other by canonical

embeddings of IRN(R) in IRN(R′).

Now, in any “graphing chart” B0(r/2), a subsequence of ((Hm
i )−1)∗gm

converges Ck,α (respectively Hp
k+1, depending on which condition (4a)

or (4b) is satisfied). Hence, according to what we have said in section 3,

see for instance remark 2 following the proof of lemma 10, a subsequence

of Hm
j ◦ (Hm

i )−1 converges either Ck+1,α or Hp
k+2 to transition functions

Hji. Since we can repeat the argument for any i, and since there is only

a finite number of these for a fixed R, this implies a subsequence of the

images of the embeddings Ψm
R converges Ck+1,α or Hp

k+2, as submanifolds

of IRN(R), to a submanifold MR of class Ck+1,α or Hp
k+2 embedded in

IRN(R). Remember our manifolds are obtained by a collection of charts

over which they can be seen as graphs of functions, and convergence

should here be understood as convergence of these functions as well as

the transition functions between these charts. Locally, we define x as

x = lim
m→∞

Ψm
R ◦ (Hm

1 )−1(0) = lim
m→∞

Ψm
R (xm).

Obviously, x does not depend on R.
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Set Mm
R = Ψm

R (Bxm(R)) and g̃m = ((Ψm
R )−1)∗gm. If Πm : Mm

R → MR

denotes the projection along the normals onto MR, then, for m large

enough and after passing to a subsequence, Πm is well defined, Πm in-

duces a Ck+1,α (respectively Hp
k+2) diffeomorphism from Mm

R onto MR,

and (Π−1
m )∗g̃m converges Ck,α (respectively Hp

k+1) to a Ck,α (respectively

Hp
k+1) Riemannian metric g on MR. Now, let Rj be an increasing se-

quence of numbers going to infinity. From a diagonal sequence argument,

we get a Ck+1,α (respectively Hp
k+2) limiting manifold M which is the

increasing union of the MRj
’s. In the same way, M is endowed with a

limiting Ck,α (respectively Hp
k+1) Riemannian metric g, and since M has

an exhaustion by closed and bounded domains which are compact, (M, g)

is complete from Hopf-Rinow’s theorem. Clearly, this ends the proof of

the proposition.

Let us now prove the Main theorem.

Proof of the Main theorem. Let (Mm, gm) be a sequence of

smooth compact Riemannian n-manifolds such that

(i) for any m, inj(Mm,gm) ≥ i, vol(Mm,gm) ≤ v,

and

(iia) for any m, Ric(Mm,gm) ≥ λ,

respectively

(iib) for any m, |Dj Ric(Mm,gm) | ≤ C(j) for all j = 0, ..., k,

where i > 0, v > 0, λ ∈ IR, k ∈ IN, and C(j) > 0, j = 0, ..., k are given

constants independent of m. First note that in both cases (iia) and (iib),

condition (1) of proposition 12 is obviously satisfied. Now, conditions (2)

and (3) of proposition 12 come from theorem 6, namely from the existence

of harmonic coordinate charts (with control on the metric tensor) on

balls of radii uniformly bounded from below. Furthermore, depending

on which condition (iia) or (iib) is satisfied, we get by the Arzela-Ascoli

compactness criterion that for any α ∈ (0, 1), a subsequence of the metrics

converges either C0,α or Ck+1,α “in any of these charts”. In other words,

condition (4a) of proposition 12 is satisfied. Finally, using remark 2)

following the statement of the Main theorem, the diameter of any of

the (Mm, gm) is bounded from above by a constant d independent of

m. Hence, applying proposition 12 with D = Bx(R), R > d, we get the

desired result. Namely, Dm = Mm for m large enough, and, up to passing
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to a subsequence, there exist diffeomorphisms Φm : M → Mm such that

(Φ∗
mgm) converges either C0,α or Ck+1,α to g in M . In particular, M

possesses a smooth (sub)structure coming, for instance, from one of the

diffeomorphisms with Mm. This ends the proof of the Main theorem.

Remark. The first proofs of Gromov compactness theorem (includ-

ing Gromov’s original one) involved techniques from the Hausdorff and

Lipschitz topologies on sets of Riemannian (or, more generally, metric)

spaces. They relied on the following fact: in case of “bounded geome-

try” (e.g controlled curvature and injectivity radius), the class of quasi-

isometry of any such manifold is well described by the geometry of an

ε-net Nε in M , provided ε is small enough. Then, the proof of Gromov’s

theorem only requires an understanding of the behaviour of the nets Nε

when passing to the limit (for details, see for instance Cheeger [11],

Greene-Wu [23], Gromov-Lafontaine-Pansu [24], Katsuda [31],

Peters [34], and the forthcoming book of Bridson and Haefliger [9]).

Our proof (a mixture of those who appeared in the literature) uses an

analog of this fact for the Ck,α-topology.

5 – Other convergence results

As already mentioned, the Main theorem admits various versions,

e.g for bounded domains as well as for complete noncompact but pointed

Riemannian manifolds. First, as a basic application of theorem 11, we

have the following.

Theorem 13. Let (Mm, gm) a sequence of smooth Riemannian n-

manifolds without boundary, (xm) a sequence of points in Mm, and δ > 0.

Suppose that for some λ ∈ IR and i > 0,

Ric(Mm,gm)(x) ≥ λ and inj(Mm,gm)(x) ≥ i

for all x ∈ Bxm(δ), the geodesic ball for gm of center xm and radius

δ. Then, for any Q > 1 and any p > n, there exists a positive constant

r = r(n, Q, p, δ, i, λ), depending only on n, Q, p, δ, i, and λ, and there exist

smooth diffeomorphisms Φm : B0(r) → Mm such that Φm(0) = xm and

1) Q−1 δ ≤ Φ∗
mgm ≤ Q δ in B0(r) and as bilinear forms,
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2) (Φ∗
mgm) is Hp

1 -bounded in B0(r),

3) a subsequence of (Φ∗
mgm) converges C0,α in B0(r),

where B0(r) is the euclidean ball of IRn with center 0 and radius r, δ is

the euclidean metric of IRn, and α = 1 − n/p. In addition, if instead of

the bound Ric(Mm,gm)(x) ≥ λ we assume that for some k ∈ IN and some

positive constants C(j), j = 0, ..., k,

|Dj Ric(Mm,gm)(x)| ≤ C(j), ∀j = 0, ..., k, , ∀x ∈ Bxm(δ) ,

then, for any Q > 1 and any p > n there exists a positive constant r,

depending only on n, Q, k, p, δ, i and the C(j), j = 0, ..., k, and there exist

smooth diffeomorphisms Φm : B0(r) → Mm, such that Φm(0) = xm and

1′) Q−1 δ ≤ Φ∗
mgm ≤ Q δ in B0(r) and as bilinear forms,

2′) (Φ∗
mgm) is Hp

k+2-bounded in B0(r)

3′) a subsequence of (Φ∗
mgm) converges Ck+1,α in B0(r).

More generally, when we are concerned with bounded domains or

complete noncompact but pointed Riemannian manifolds, the Main the-

orem admits the following versions.

Theorem 14. Let (Mm, gm) be a sequence of smooth complete

Riemannian n-manifolds, (Ωm) a sequence of smooth domains in Mm,

and ε > 0. Suppose that for some λ ∈ IR, i > 0, and v1, v2 > 0,

Ric(Mm,gm)(x) ≥ λ, inj(Mm,gm)(x) ≥ i, v1 ≤ vol(Ωm,gm) ≤ v2 ,

for all x ∈ Ωm. Then, there exist smooth domains Nm ⊂ Ωm, satisfying

∀x ∈ ∂Nm,
ε

2
≤ dgm(x, ∂Ωm) ≤ ε ,

such that the sequence of open manifolds (Nm, gm) is precompact in the

C0,α-topology for any α ∈ (0, 1). In addition, the same conclusion holds

with precompactness in the Ck+1,α-topology if instead of the bound

Ric(Mm,gm)(x) ≥ λ we assume that for some k ∈ IN and some positive

constants C(j), j = 0, ..., k,

|Dj Ric(Mm,gm)(x)| ≤ C(j), ∀j = 0, ..., k, ∀x ∈ Ωm .
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Theorem 15. Let (Mm, gm) be a sequence of smooth complete non

compact Riemannian n-manifolds, (xm) a sequence of points in Mm and

α ∈ (0, 1). Suppose that for some λ ∈ IR, and i > 0,

Ric(Mm,gm) ≥ λ and inj(Mm,gm) ≥ i.

Then, there exists a complete Riemannian n-manifold (M, g), M of class

C1,α and g of class C0,α, and there exists x ∈ M , such that the following

holds: for any compact domain D ⊂ M , x ∈ D, there exist, up to pass-

ing to a subsequence, compact domains Dm ⊂ Mm, xm ∈ Dm, and C1,α

diffeomorphisms Φm : D → Dm, such that

1) lim
m→∞

Φ−1
m (xm) = x,

2) (Φ∗
mgm) converges C0,α to g in the induced C1,α complete atlas of D.

In addition, if instead of the bound Ric(Mm,gm) ≥ λ we assume that for

some k ∈ IN and some positive constants C(j), j = 0, ..., k,

|Dj Ric(Mm,gm) | ≤ C(j), ∀j = 0, ..., k,

then, there exists a complete Riemannian n-manifold (M, g), M of class

Ck+2,α and g of class Ck+1,α, and there exists x ∈ M , such that the

following holds: for any compact domain D ⊂ M,x ∈ D, there exist, up

to passing to a subsequence, compact domains Dm ⊂ Mm, xm ∈ Dm, and

Ck+2,α diffeomorphisms Φm : D → Dm, such that

1) lim
m→∞

Φ−1
m (xm) = x,

2) (Φ∗
mgm) converges Ck+1,α to g in the induced Ck+2,α complete atlas

of D.

For sake of completeness, we mention that convergence of Rieman-

nian manifolds with integral bounds on the curvature is studied in An-

derson [3], [5], Gao [19], [20], [21], and Yang [37], [36], [35]. Anyway,

note that with only minor modifications of the proof of theorem 11, we

get the following.

Theorem 16. Let (M, g) be a smooth Riemannian n-manifold

without boundary, Q > 1, p > n, δ > 0, k ∈ IN, and Ω an open subset of

M . Set

Ω(δ) = {x ∈ Ms.t. dg(x, y) < δ} ,
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and suppose that for some λ ∈ IR, i > 0, and C(j), j = 0, ..., k, we have

that

1) Ric(M,g)(x) ≥ λ and inj(M,g)(x) ≥ i for all x ∈ Ω(δ)

2)
∫
Ω(δ) |Dj Ric(M,g) |p dvol(g) ≤ C(j) for all j = 0, . . . , k.

Then, there exists a positive constant C = C(n, Q, k, p, δ, i, λ, C(j), 0 ≤
j ≤ k), depending only on n, Q, k, p, δ, i, λ, and the C(j)’s, such that for

any x ∈ Ω, the Hp
k+2-harmonic radius rH(Q, k + 2, p)(x) satisfies

rH(Q, k + 2, p)(x) ≥ C .

In particular, the Ck+1,α harmonic radius at any point of Ω, α = 1−n/p,

is bounded below by a positive constant depending only on n, Q, k, p, δ, i, λ,

and the C(j)’s.

Then, according to the proof of proposition 12, we get the following.

Theorem 17. Let n ∈ IN, p > n, i > 0, v > 0, λ > 0, k ∈ IN,

and C(j) > 0, j = 0, ..., k. The space of smooth compact Riemannian

n-manifolds (M, g) such that

1) Ric(M,g) ≥ λ, inj(M,g) ≥ i, vol(M,g) ≤ v,

and

2)

∫

M

|Dj Ric(M,g) |p d vol(g) ≤ C(j), ∀j = 0, . . . , k,

is precompact in the Ck+1,α-topology for α = 1 − n/p.

Finally, to end this section, we mention that compactness of confor-

mal metrics with integral bounds on curvature is studied in Gursky [25].
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6 – Examples of applications

We present in this section some applications of the convergence the-

orems stated above. We have no pretention to exhaustivity, and we just

chose the few examples listed below with the intention to show that con-

vergence theorems can be helpful in many branches of Mathematics, from

pure Riemannian Geometry to Nonlinear Analysis. The choices also owe a

lot to the different interests of the authors. Note that the general scheme

of application of convergence theorems is the following: if one wants to

prove some result where geometric quantities are bounded, then, by con-

tradiction, build a sequence converging by the results stated above to a

limit manifold, and... try to get a contradiction!

6.1 – Finiteness theorems (Cheeger [11])

Theorem. Let n ∈ IN,Λ > 0,d > 0, and v > 0. Then, there are

only finitely many diffeomorphism types of n-manifolds satisfying

|K(M,g)| ≤ Λ, vol(M,g) ≥ v, and diam(M,g) ≤ d.

The proof is by contradiction. If there is an infinite number of dif-

feomorphism types, build a sequence by picking a manifold in each class.

By the Main theorem (see also remark 2 of section I), such a sequence

subconverges. Hence, we get diffeomorphisms between these manifolds,

and this is the contradiction we were looking for. Note that the same

result holds if one replaces the bounds

|K(M,g)| ≤ Λ, vol(M,g) ≥ v, diam(M,g) ≤ d

by the bounds (Anderson-Cheeger [4])

Ric(M,g) ≥ λ, inj(M,g) ≥ i, vol(M,g) ≤ v.

6.2 – Pinching just below 1/4 (Berger [7], Abresch-Meyer [1])

This has been the first historical example of application of Gromov

compactness theorem in Riemannian Geometry.
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Theorem. For any n ∈ IN, there exists ε(n) > 0 such that any

compact simply connected Riemannian n-manifold (M, g) with

1/4 − ε(n) ≤ K(M,g) ≤ 1

is either homeomorphic to the standard sphere, or diffeomorphic to a

compact rank one symmetric space.

Assume there is a sequence of manifolds whose pinching constants

converge to 1/4. By a well-known result of Klingenberg in even dimen-

sions or a recent result due to Abresch and Meyer in odd dimensions,

the injectivity radius of these manifolds is bounded below by π. Hence,

by Croke [16] the volume of these manifolds is uniformly bounded from

below, while, according to Myers theorem, the diameter of these mani-

folds is uniformly bounded from above. The Main theorem then yields a

limiting 1/4-pinched manifold, and a well-known rigidity result ends the

proof of the theorem.

6.3 – Differentiable sphere theorems (Pacelli Bessa [32])

Theorem. Given an integer n ≥ 2 and i > 0, there exists a positive

ε = ε(n, i), such that if a compact Riemannian n-manifold (M, g) satisfies

Ric(M,g) ≥ (n − 1), inj(M,g) ≥ i, diam(M,g) ≥ π − ε

then M is diffeomorphic to the standard unit sphere Sn in IRn+1 and the

metric g is ε′ = ε′(ε)-close in the C0,α-topology to the canonical metric

of curvature +1 on Sn.

Let (Mm, gm) be a sequence of compact Riemannian n-manifolds such

that

Ric(Mm,gm) ≥ n − 1, inj(Mm,gm) ≥ i, diam(Mm,gm) ≥ π − εm

where εm → 0 as m goes to ∞. By the Main theorem, (Mm, gm) subcon-

verges to a limiting manifold (M, g). The point is to prove that (M, g) is

isometric to the standard sphere Sn.
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6.4 – Existence and control of optimal Sobolev inequalities on complete man-

ifolds (Hebey [26])

Theorem. Let (M, g) be a smooth complete Riemannian n-manifold,

n ≥ 3, with Ricci curvature bounded below by some arbitrary λ ∈ IR

and positive injectivity radius bounded below by some arbitrary i > 0.

Then, for any ε > 0 and any q ∈ [1, n), there exists a positive constant

C = C(ε, n, q, λ, i), depending only on ε, n, q, λ, and i, such that for any

u ∈ Hq
1 (M),

(∫

M

|u|p d vol(g)

)q/p

≤ (K(n, q) + ε)

∫

M

|Du|q dvol(g) + C

∫

M

|u|q d vol(g)

where 1/p = 1/q − 1/n and K(n, q), an explicit constant depending only

on n and q, is the smallest constant having this property.

The point is that we just need to establish local versions of these

inequalities. Theorem 13 yields such inequalities.

6.5 – Estimates on the Yamabe quotient of a compact Einstein manifold

(Aviles-Escobar [6])

Let (M, g) be a smooth compact Riemannian n-manifold, n ≥ 3.

The Yamabe quotient Q(M, [g]) of the conformal class of (M, g) is then

defined by

Q(M, [g]) = inf
u∈C∞(M)

∫
M(|Du|2 + (n − 2)/4(n − 1)u2) d vol(g)

||u||22n/(n−2)

.

Theorem. Given an integer n ≥ 3, there exists a positive con-

stant ε(n), depending only on n, such that for any smooth compact Ein-

stein n-manifold (M, g), not conformally diffeomorphic to the standard

n-dimensional sphere Sn in IRn+1,

Q(M, [g]) ≤ Q(Sn, can) − ε(n) .
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Suppose that the result is false. Then, there exists a sequence of

Einstein manifolds (Mm, gm), which are not conformally diffeomorphic to

the standard sphere Sn, such that Q(Mm) → Q(Sn) as m goes to ∞.

The point is to prove that (Mm, gm) subconverges to a limiting manifold

(M, g), then, to prove that (M, g) is isometric to the standard sphere Sn.

The contradiction comes from the well-known fact that on the sphere, the

standard metric (up to diffeomorphism) is an isolated Einstein metric.
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– Site de Saint Martin – 95302 Cergy-Pontoise Cedex, France
Email: herzlich@math.polytechnique.fr


