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Compact cosymplectic manifolds with

transversally positive definite Ricci tensor

MANUEL DE LEÓN – JUAN C. MARRERO

Riassunto: Si dimostra che il gruppo fondamentale di una varietà cosimplettica
M , il cui tensore di Ricci sia trasversalmente definito positivo, è isomorfo a ZZ. Se
inoltre M ha curvatura ϕ-sezionale positiva e costante, allora M è isometrica quasi di
contatto al prodotto di uno spazio proiettivo complesso con S1.

Abstract: In this paper we study compact cosymplectic manifolds with transver-
sally positive definite Ricci tensor, that is, compact cosymplectic manifolds such that
its Ricci tensor is positive definite on vector fields orthogonal to the Reeb vector field
of the cosymplectic structure. We prove that the fundamental group of a cosymplectic
manifold M with transversally positive definite Ricci tensor is isomorphic to ZZ and, in
particular, if M is of positive constant ϕ-sectional curvature we show that there exists
a certain cosymplectic structure on the product of a complex projective space of posi-
tive constant holomorphic sectional curvature with the circle S1 such that M is almost
contact isometric to such a product.

1 – Introduction

The curvature properties of a compact orientable Riemannian mani-

fold affect its topological structure (see, for instance, [4], [9], [14] and [15]):
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1. A compact Riemannian manifold with positive definite Ricci tensor

has finite fundamental group.

2. A complete connected Riemannian even-dimensional manifold of pos-

itive constant sectional curvature is isometric to a sphere or to a real

projective space.

For compact Kähler manifolds we also have the two following re-

sults (see [7], [8] and [11]):

1. A compact Kähler manifold with positive definite Ricci tensor is sim-

ply connected.

2. A compact Kähler manifold with positive constant holomorphic sec-

tional curvature is holomorphically isometric to a complex projective

space of positive constant holomorphic sectional curvature.

The odd-dimensional counterpart of Kähler manifolds are cosym-

plectic manifolds. Let us recall that an almost contact metric structure

(ϕ, ξ, η, g) on a manifold M is cosymplectic if it is integrable and the 1-

form η and the fundamental 2-form of the structure are closed (see [1] and

subsection 2.2). The canonical example of cosymplectic manifold is given

by the product of a Kähler manifold with IR or with the circle S1 (see [2],

[5] and subsection 2.2). In fact, a complete simply connected cosymplectic

manifold is the product of a complete simply connected Kähler manifold

with IR and, a compact cosymplectic manifold has similar topological

properties to that of the product of a compact Kähler manifold with S1

(see [2] and [6]). However, we remark the following facts:

a. A compact simply connected manifold cannot admit a cosymplectic

structure and, moreover, the Ricci tensor of a cosymplectic manifold

cannot be positive definite (see subsection 2.2). In particular, the

Ricci tensor S of a cosymplectic manifold (M, ϕ, ξ, η, g) of positive

constant ϕ-sectional curvature is transversally positive definite, that

is, for all x ∈ M , Sx is positive definite on the orthogonal subspace

to ξx (see remark 2.1).

b. There exist examples of compact cosymplectic manifolds which are

not topologically equivalent to a global product of a compact Kähler

manifold with S1 (see [6]).

In this paper, we study compact cosymplectic manifolds with trans-

versally positive definite Ricci tensor and prove the following results (see

theorems 3.2 and 3.3):
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1′. The fundamental group of a compact cosymplectic manifold with

transversally positive definite Ricci tensor is isomorphic to ZZ.

2′. If (M, ϕ, ξ, η, g) is a (2m+1)-dimensional compact cosymplectic mani-

fold with positive constant ϕ-sectional curvature k, then M is almost

contact isometric to the product manifold Pm(Cm+1)(k) × S1 en-

dowed with a certain cosymplectic structure (ϕ, ξ, η, g), Pm(Cm+1)(k)

being the m-dimensional complex projective space of positive con-

stant holomorphic sectional curvature k. The cosymplectic struc-

ture (ϕ, ξ, η, g) is obtained by deformating the natural cosymplectic

structure of Pm(Cm+1)(k) × S1. This deformation depends on a real

constant c, c '= 0, and on a matrix A of su(m + 1) (the Lie alge-

bra of the special unitary group SU(m + 1)). In particular, if c = 1

and A = 0 then (ϕ, ξ, η, g) is the natural cosymplectic structure of

Pm(Cm+1)(k) × S1.

The results 1′ and 2′ are the version for cosymplectic manifolds of

the properties 1 and 2 of Kähler manifolds above mentioned. In order to

prove 1′ and 2′ we obtain the relation between the fundamental group of a

compact cosymplectic manifold (M, ϕ, ξ, η, g) and the fundamental group

of the leaves of the foliation F⊥, provided that the first Betti number of

M is equal to 1. As a consequence, we deduce that the foliation F⊥

is a smooth bundle over S1 (see theorem 3.1). We notice that there

exist examples of compact cosymplectic manifolds with first Betti number

equal to 1 which are not a global product of a Kähler manifold with S1

(see remark 3.1).

We wish to thank M. Saralegui for some very useful comments.

2 – Curvature in Kähler and cosymplectic manifolds

2.1 – Kähler manifolds with positive constant holomorphic sectional curva-

ture

All the manifolds considered in this paper are assumed to be con-

nected and of class C∞.

Let V be an almost hermitian manifold with metric h and almost

complex structure J . Denote by X(V ) the Lie algebra of vector fields

on V and by TxV the tangent space to V at a point x of V . The Kähler

2-form Ω is defined by Ω(X, Y ) = h(X, JY ) for X, Y ∈ X(V ). An almost
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hermitian manifold (V, J, h) is said to be Kähler if [J, J ] = 0 and dΩ = 0

or equivalently if J is paralell.

If π is a plane in TxV , x ∈ V , which is invariant by the almost complex

structure J and u is a unit vector in π, then {u, Jx(u)} is an orthonormal

basis for π and, hence, the sectional curvature Hx(π) = Hx(u) is defined

by Hx(u) = Rx(u, Jx(u), u, Jx(u)), where R is the Riemannian curvature

tensor of V . The sectional curvature Hx(u) is called the holomorphic

sectional curvature by u. If Hx(u) is a constant for all unit vector u

in TxV and for all point x ∈ V , then V is called a space of constant

holomorphic sectional curvature.

A map F between the almost hermitian manifolds (V, J, h) and (V ′,

J ′, h′) is said to be a holomorphic isometry if F is an isometry which

verifies F∗ ◦J =J ′ ◦F∗. If V =V ′ then F is called a holomorphic isometry

of V .

It is well known that for any positive number k, the complex projec-

tive space Pm(Cm+1) carries a complete Kähler metric of constant holo-

morphic sectional curvature k (see [12]). With respect to an inhomoge-

neous coordinate system z1, . . . , zm it is given by

(2.1) h =
4

k

(1 +
∑

zαzα)(
∑

dzαdzα) − (
∑

zαdzα)(
∑

zαdzα)

(1 +
∑

zαzα)2
.

We denote by Pm(Cm+1)(k) the Kähler manifold with this structure.

In fact, if (V, J, h) is a 2m-dimensional complete simply connected

Kähler manifold of positive constant holomorphic sectional curvature

k then (V, J, h) is holomorphically isometric to Pm(Cm+1)(k) (see [7]

and [8]).

Now, let SU(m + 1) be the special unitary group and C a matrix

of SU(m + 1). If k is a positive real number, then the matrix C in-

duces, in a natural form, a holomorphic isometry of Pm(Cm+1)(k) (see,

for instance, [12]).

The center of SU(m + 1) is the discrete normal subgroup Vm+1

given by,

Vm+1 = {αIm+1/α ∈ C, αm+1 = 1} ,

where Im+1 is the identity (m + 1) × (m + 1) matrix.

It is clear that if C ∈ SU(m + 1) and C ′ ∈ Vm+1, the matrices C and

CC ′ induce the same holomorphic isometry of Pm(Cm+1)(k). In fact,
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if I(Pm(Cm+1)(k)) is the isometry group of Pm(Cm+1) with the metric

defined by (2.1) then (see [15], p. 385),

(2.2) I(Pm(Cm+1)(k)) / SU(m + 1)

Vm+1

∪ α
SU(m + 1)

Vm+1

where α is the isometry of Pm(Cm+1)(k) induced by the complex conju-

gation in Cm+1, that is, if (z0, z1, . . . , zm) ∈ Cm+1 − {0} we have

α[(z0, z1, . . . , zm)] = [(z0, z1, . . . , zm)] .

Let J be the complex structure of Pm(Cm+1)(k). Then, the isometry α

verifies α∗ ◦ J = −J ◦ α∗. Therefore, from (2.2), we deduce that

(2.3) A(Pm(Cm+1)(k)) / SU(m + 1)

Vm+1

,

A(Pm(Cm+1)(k)) being the holomorphic isometry group of Pm(Cm+1)(k).

2.2 – Cosymplectic manifolds of constant ϕ-sectional curvature

Let (M, ϕ, ξ, η, g) be an almost contact metric manifold. Then,

we have

(2.4) ϕ2 = −I+η⊗ξ , η(ξ) = 1 , g(ϕX, ϕY ) = g(X, Y )−η(X)η(Y ) ,

for all X, Y ∈ X(M), I being the identity transformation. The vector field

ξ is called the Reeb vector field of the almost contact metric structure

(ϕ, ξ, η, g).

From (2.4), we deduce that

(2.5) ϕξ = 0, η(X) = g(X, ξ) ,

for all X ∈ X(M).

On an almost contact metric manifold (M, ϕ, ξ, η, g) we shall denote

by F the foliation defined by the Reeb vector field ξ and by F⊥ the dis-

tribution determined by the normal bundle of F. Using (2.5), it is clear

that F⊥ is the distribution given by η = 0.
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The fundamental 2-form Φ of M is defined by Φ(X, Y )=g(X, ϕY ),

for X, Y ∈ X(M).

A mapping F between the almost contact metric manifolds (M , ϕ, ξ,

η, g) and (M ′, ϕ′, ξ′, η′, g′) is said to be an almost contact isometry

if F is an isometry which verifies F∗ ◦ ϕ = ϕ′ ◦ F∗ and F ∗η′ = η. The

above conditions imply that F∗ξ = ξ′.

Let (M, ϕ, ξ, η, g) be an almost contact metric manifold and x a

point of M . A plane section π in the tangent space TxM is called a

ϕ-section if there exists a unit vector u in TxM orthogonal to ξx such

that {u, ϕxu} is an orthonormal basis of π. The sectional curvature

Kxu = Rx(u, ϕxu, u, ϕxu) is called a ϕ-sectional curvature. If Kxu

is a constant for all unit vector u in TxM orthogonal to ξx and for all

point x ∈ M , then M is called a space of constant ϕ-sectional cur-

vature.

Denote by TF⊥ the vector subbundle of the tangent bundle of M ,

TM , which consists of the tangent vectors to the distribution F⊥ and, by

TxF⊥ the fiber of TF⊥ over x, for a point x of M , i.e., if τM : TM −→ M

is the canonical projection then

TF⊥ = {v ∈ TM/ητM (v)(v) = 0} , TxF⊥ = {v ∈ TxM/ηx(v) = 0} .

Let S be the Ricci curvature tensor of M ; S is said to be transversally

positive definite if Sx is positive definite on the subspace TxF⊥ for all

x ∈ M .

An almost contact metric manifold (M, ϕ, ξ, η, g) is said to be in-

tegrable if [ϕ, ϕ] = 0 and cosymplectic if it is integrable and dη =

0, dΦ = 0 (see [1]). On a cosymplectic manifold (M, ϕ, ξ, η, g) the Reeb

vector field ξ and the 1-form η are parallel (see, for instance, [1]). Thus,

if S is the Ricci curvature tensor of M then S(ξ, ξ) = 0, which implies

that S cannot be positive definite.

We also have that the leaves of the foliation F⊥ with the induced

almost hermitian structure are Kähler manifolds (see [3]). Moreover,

since F⊥ is a totally geodesic foliation, we deduce that M is of constant

ϕ-sectional curvature k if and only if the leaves of F⊥ are of constant

holomorphic sectional curvature k.

Now, let (V, J, h) be a Kähler manifold and M the product manifold

V × IR. Consider on M the almost contact metric structure (ϕ, ξ, η, g)
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defined by

(2.6)
ϕ = J ◦ (pr1)∗ , ξ =

∂

∂t
, η = (pr2)

∗(dt) ,

g = (pr1)
∗(h) + (pr2)

∗(dt ⊗ dt) ,

where pr1 : M −→ V and pr2 : M −→ IR are the canonical projections

of V × IR onto the first and second factor respectively and t is the usual

coordinate on IR. Then (M, ϕ, ξ, η, g) is a cosymplectic manifold (see, for

instance, [2] and [5]).

From (2.6), we also obtain that if V is of constant holomorphic sec-

tional curvature k then (M, ϕ, ξ, η, g) is a cosymplectic manifold of con-

stant ϕ-sectional curvature k. In particular, for all positive real number k,

the product manifold Pm( Cm+1)(k)× IR, with the almost contact metric

structure (ϕ, ξ, η, g) given by (2.6), is a (2m + 1)-dimensional complete

simply connected cosymplectic manifold of constant ϕ-sectional curva-

ture k.

In fact, if M is a complete simply connected cosymplectic manifold

then M is almost contact isometric to the product of a complete simply

connected Kähler manifold V with IR (see [2]). Moreover, if M is of con-

stant ϕ-sectional curvature k, using (2.6), we have that V is of constant

holomorphic sectional curvature k.

The natural example of compact cosymplectic manifold is given by

the product of a compact Kähler manifold (V, J, h) with the circle S1. The

cosymplectic structure (ϕ, ξ, η, g) on the product manifold M = V × S1

is defined by

(2.7)
ϕ = J ◦ (pr1)∗ , ξ = E , η = (pr2)

∗(θ) ,

g = (pr1)
∗(h) + (pr2)

∗(θ ⊗ θ) ,

where pr1 : M −→ V and pr2 : M −→ S1 are the canonical projections

of V × S1 onto the first and second factor respectively, θ is the length

element of S1 and E is its dual vector field (see [2]).

If the Kähler manifold (V, J, h) is of constant holomorphic sectional

curvature k then, from (2.7), we deduce that (M, ϕ, ξ, η, g) is a cosym-

plectic manifold of constant ϕ-sectional curvature k. In particular, for all

positive real number k, the product manifold Pm(Cm+1)(k)×S1 with the
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almost contact metric structure (ϕ, ξ, η, g) given by (2.7) is a compact

cosymplectic manifold of constant ϕ-sectional curvature k.

Next, we shall obtain another examples of cosymplectic structures on

the product of a compact Kähler manifold with the circle S1.

Let (V, J, h) be a compact Kähler manifold and A∗ a Killing vector

field on V, that is, A∗ satisfies

LA∗h = 0 ,

L being the Lie derivate operator on V.

Define the almost contact metric structure (ϕ, ξ, η, g) on the product

manifold M = V × S1 by

(2.8)

ϕ=J ◦ (pr1)∗+c(pr2)
∗(θ) ⊗ JA∗, ξ = −A∗+

E

c
, η=c(pr2)

∗θ,

g=(pr1)
∗(h) + c[(pr1)

∗(α∗) ⊗ (pr2)
∗θ + (pr2)

∗θ ⊗ (pr1)
∗(α∗)]+

+ c2(1 + h(A∗, A∗))[(pr2)
∗(θ) ⊗ (pr2)

∗(θ)] ,

where pr1 : M → V and pr2 : M → S1 are the canonical projections of

M = V × S1 onto the first and second factor respectively, θ is the lenght

element of S1, E is its dual vector field, c is a real number, c '= 0, and α∗

is the 1-form on V defined by

α∗(X) = h(X, A∗)

for all X ∈ X(V ).

We remark that if c = 1 and A∗ = 0 then the almost contact metric

structure (ϕ, ξ, η, g) is given as in (2.7). Moreover, we have

Proposition 2.1. Let (V, J, h) be a compact Kähler manifold,

A∗ a Killing vector field on V and (ϕ, ξ, η, g) the almost contact metric

structure on the product manifold M = V × S1 given by (2.8). Then:

1. (M, ϕ, ξ, η, g) is a compact cosymplectic manifold.

2. The cosymplectic manifold (M, ϕ, ξ, η, g) is of constant ϕ-sectional

curvature k if and only if the Kähler manifold (V, J, h) is of constant

holomorphic sectional curvature k.
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Proof. Since V is a compact Kähler manifold and A∗ a Killing

vector field on V then we deduce that A∗ is an infinitesimal holomorphic

transformation of V (see [9]), that is,

(2.9) LA∗J = 0 .

A direct computation, using (2.8) and (2.9) shows that

[ϕ, ϕ]((X, 0), (Y, 0)) = ([J, J ](X, Y ), 0) = 0,

[ϕ, ϕ]((X, 0), (0, E)) = −[ϕ, ϕ]((0, E), (X, 0)) =

= (c ([J, J ](X, A∗) + (LA∗J)JX), 0) = 0,

for all X, Y ∈ X(V ).

Thus, the almost contact metric manifold (M, ϕ, ξ, η, g) is integrable.

Now, if Φ is the fundamental 2-form of the structure (ϕ, ξ, η, g) and

Ω is the Kähler 2-form of (V, J, h), from (2.8), we obtain that

(2.10) Φ = (pr1)
∗(Ω) + 2c(pr2)

∗(θ) ∧ (pr1)
∗(α∗ ◦ J) .

Moreover, since J is parallel we have that

(2.11) 2d(α∗ ◦ J)(X, Y ) = (LA∗h)(X, JY ) + h(X, (LA∗J)(Y )) = 0

for all X, Y ∈ X(V ).

Therefore, using ( 2.10) and (2.11), we conclude that the 2-form Φ is

closed. This proves 1.

Let x0 be a point of V and t0 ∈ IR.

From (2.8), we deduce that the leaf of the foliation F⊥ over (x0, [t0]) ∈
M = V × S1 is V × {[t0]}. Furthermore, the induced Kähler structure on

V ×{[t0]} by the cosymplectic structure (ϕ, ξ, η, g) is just (J, h) (see (2.8)).

This proves 2.

Next, we shall suppose that the compact Kähler manifold V is

Pm(Cm+1)(k), with k ∈ IR, k > 0.

The Lie algebra su(m + 1) of the special unitary group SU(m + 1)

consists of all complex skew-hermitian matrices with null trace:

su(m + 1) = {A ∈ gl(m + 1, C) / T Ā = −A, traceA = 0} .
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Thus, if A is a matrix of su(m + 1) and A∗ is the infinitesimal

generator of the action of SU(m + 1) on Pm(Cm+1)(k) corresponding

to A then, from (2.3), we obtain that A∗ is a Killing vector field on

Pm(Cm+1)(k). In fact, A∗ is also an infinitesimal holomorphic transfor-

mation of Pm(Cm+1)(k).

Suppose that (ϕ, ξ, η, g) is the almost contact metric structure given

by (2.8) on the product manifold M = Pm(Cm+1)(k) × S1, taking as

Killing vector field on V = Pm(Cm+1)(k) the vector field A∗.

Then, using proposition 2.1, we have that (Pm(Cm+1)(k)×S1, ϕ, ξ, η,

g) is a compact cosymplectic manifold with positive constant ϕ-sectional

curvature k. We shall denote by (Pm(Cm+1)(k)×S1)(c, A) (A ∈ su(m+1)

and c ∈ IR, c '= 0) the cosymplectic manifold with this structure.

Now, let M be a compact cosymplectic manifold.

We remark that if H1(M, ZZ) is the first integral homology group of M

and b1(M) is the first Betti number then, since b1(M) ≥ 1 (see [2] and [6]),

we have that the rank of H1(M, ZZ) is greater or equal than 1. Because of

H1(M, ZZ) is isomorphic to the quotient group π1(M)

[π1(M),π1(M)]
, π1(M) being

the fundamental group of M and [π1(M), π1(M)] the commutator sub-

group of π1(M), we deduce that the fundamental group π1(M) is infinite.

Therefore, we conclude that a compact simply connected manifold cannot

admit a cosymplectic structure.

Finally, using a result of Ludden [13] (see also theorem 3.5 of [10]),

we shall obtain an explicit expression for the Ricci curvature tensor on a

cosymplectic manifold of constant ϕ-sectional curvature.

Proposition 2.2. If (M, ϕ, ξ, η, g) is a (2m + 1)-dimensional

cosymplectic manifold of constant ϕ-sectional curvature k and S is the

Ricci curvature tensor of M then,

S(X, Y ) =
k(m + 1)

2
(g(X, Y ) − η(X)η(Y )) ,

for all X, Y ∈ X(M).

Remark 2.1. Let (M, ϕ, ξ, η, g) be a cosymplectic manifold of posi-

tive constant ϕ-sectional curvature and S the Ricci curvature tensor of M .

From proposition 2.2, we deduce that S is transversally positive definite.



[11] Compact cosymplectic manifolds with etc. 617

3 – Compact cosymplectic manifolds with transversally positive

definite Ricci tensor

In this section, we shall study the fundamental group of a compact

cosymplectic manifold with transversally positive definite Ricci tensor.

As a consequence, we shall obtain that if M is a compact cosymplectic

manifold of positive constant ϕ-sectional curvature k then there exists a

constant c, c '= 0, and a matrix A of su(m + 1) such that M is almost

contact isometric to the cosymplectic manifold (Pm(Cm+1)(k)×S1)(c, A).

First, we prove a result which will be useful in the sequel.

Theorem 3.1. Let (M, ϕ, ξ, η, g) be a compact cosymplectic mani-

fold such that b1(M) = 1, b1(M) being the first Betti number of M .

1. If L is a leaf of the foliation F⊥ given by η = 0 and π1(M) (respectively

π1(L)) is the fundamental group of M (respectively L) then the in-

clusion of the leaf L induces a monomorphism i : π1(L) −→ π1(M)

onto a normal subgroup and the quotient group π1(M)

π1(L)
is isomorphic

to ZZ.

2. There exists a fibration τ : M −→ S1 of M onto the circle S1 such

that the leaves of F⊥ are the fibres of τ .

3. The leaves of F⊥ are compact.

Proof. Denote by M̃ the universal covering space of M with cov-

ering map π : M̃ −→ M and let (ϕ̃, ξ̃, η̃, g̃) be the induced cosymplectic

structure on M̃ , i.e.,

(3.1) π∗ ◦ ϕ̃ = ϕ ◦ π∗ , π∗(ξ̃) = ξ , η̃ = π∗η , g̃ = π∗g .

We have that (M̃, ϕ̃, ξ̃, η̃, g̃) is almost contact isometric to the product

of a simply connected complete Kähler manifold (V, J, h) with IR and

thus, from (2.6), we obtain that the leaves of the foliation F̃⊥ are of the

form V × {t0}, with t0 ∈ IR, F̃⊥ being the lift of the foliation F⊥ to

M̃ / V × IR. Moreover, if (ỹ, t0) is a point of V × IR, and L is the leaf of

the foliation F⊥ over y = π(ỹ, t0) then V × {t0} is the universal covering

space of L and π|V ×{t0} : V × {t0} −→ L is the covering map. In fact,

the mapping π|V ×{t0} : V × {t0} −→ L is a local holomorphic isometry

between the Kähler manifolds V × {t0} and L.
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Now, realize π1(M) as the group of covering transformations on

M̃ = V × IR. Let C̃ : V × IR −→ V × IR be a covering transforma-

tion. If we consider on V × IR the cosymplectic structure (ϕ̃, ξ̃, η̃, g̃) then,

using (3.1), we deduce that the mapping C̃ is an almost contact isometry.

Consequently, from (2.6), we obtain

C̃∗ ◦ ϕ̃ = ϕ̃ ◦ C̃∗ , C̃∗(
∂

∂t
) =

∂

∂t
, C̃∗(dt) = dt, C̃∗(h) = h .

This implies that there exists a real number t1 and a holomorphic isometry

C : (V, J, h) −→ (V, J, h) such that

(3.2) C̃(ỹ, t) = (C(ỹ), t + t1) ,

for all (ỹ, t) ∈ V × IR.

Denote by L the leaf of the foliation F⊥ over x, where x is a point

of M such that x = π(x̃, t0), with (x̃, t0) ∈ V × IR. Realize π1(L) as the

group of covering transformations on V × {t0}.

Let C : V ×{t0} −→ V ×{t0} be a covering transformation. Suppose

that C(ỹ, t0) = (C(ỹ), t0), for all (ỹ, t0) ∈ V × {t0}. It is clear that

(iC)(x̃, t0) = (C(x̃), t0), where i : π1(L) −→ π1(M) is the canonical

homomorphism. Thus, from (3.2), we obtain that

(3.3) (iC)(ỹ, t) = (C(ỹ), t) ,

for all (ỹ, t) ∈ V × IR. Therefore i is a monomorphism. The subgroup

i(π1(L)) will also be denoted by π1(L).

Using (3.2), we can define a homomorphism ρ : π1(M) −→ Diff(IR) of

π1(M) onto the group of diffeomorphisms of IR. The fundamental group

π1(L) is the normal subgroup Kerρ and the image of ρ, Im ρ, is a group

of translations and, hence, is abelian.

Since M is compact, π1(M) is finitely generated. Therefore, Im ρ /
π1(M)

π1(L)
is also finitely generated and abelian, so it is isomorphic to ZZr,

with r ≥ 0.

If r = 0, then π1(L) = π1(M). Consequently, using (3.3) and the fact

that M / V ×IR
π1(M)

and L / V ×{t0}
π1(L)

, we deduce that M / L × IR which, in

view of the compactness of M , is a contradiction.
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If r ≥ 2, then the group π1(M)

π1(L)
/ ZZr is abelian, which implies that

[π1(M), π1(M)] ⊆ π1(L), [π1(M), π1(M)] being the commutator subgroup

of π1(M). Thus, an epimorphism β : π1(M)

[π1(M),π1(M)]
−→ π1(M)

π1(L)
/ ZZr is natu-

rally induced. But, it is not possible, since the quotient group π1(M)

[π1(M),π1(M)]

is isomorphic to the first integral homology group H1(M, ZZ) and the rank

of H1(M, ZZ) is equal to the first Betti number of M .

From the above considerations, we conclude that the group Im ρ /
π1(M)

π1(L)
is isomorphic to ZZ.

Let γ : ZZ −→ Im ρ / π1(M)

π1(L)
be an isomorphism. Suppose that γ(1) is

the translation defined by

γ(1) : IR −→ IR t −→ γ(1)(t) = t + c ,

with c ∈ IR, c '= 0. Denote the diffeomorphism γ(1) by Tc. Then,

Im ρ = {Tcn/n ∈ ZZ}.

Thus, we obtain a fibration τ : M / V ×IR
π1(M)

−→ S1 / IR
ZZ

such that the

following diagram is commutative:

V × IR
π−−−→ M

2pr2

2τ

IR
p−−−→ S1

where p is the mapping of IR onto S1 given by p(t) = [ t
c
], for all t ∈ IR.

We notice that τ ∗(cθ) = η and τ∗(ξ) = E
c
, θ being the length element

of S1 and E its dual vector field. Moreover, it is clear that the leaves of

the foliation F⊥ are just the fibres of the fibration τ : M −→ S1. This

implies that the leaves of F⊥ are closed submanifolds of M and, since M

is compact, they are also compact.

Remark 3.1. In [6], we have constructed an example of compact

cosymplectic manifold M which is not a global product of a Kähler

manifold with the circle S1. The manifold M is flat and its first Betti

number is 1.

Next, we shall show that the fundamental group of a compact cosym-

plectic manifold with transversally positive definite Ricci tensor is isomor-

phic to ZZ.
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Theorem 3.2. Let M be a compact cosymplectic manifold with

transversally positive definite Ricci tensor and π1(M) the fundamental

group of M . Then π1(M) is isomorphic to ZZ. In particular, the first

integral homology group of M is also isomorphic to ZZ.

Proof. Denote by S the Ricci curvature tensor of M and by (ϕ, ξ,

η, g) the cosymplectic structure of M .

Let β be a harmonic 1-form on M such that β(ξ) = 0, and B the

metrically equivalent vector field to the 1-form β, i.e., B is the vector

field on M which verifies g(X, B) = β(X), for all X ∈ X(M).

We remark that

(3.4) η(B) = g(ξ, B) = β(ξ) = 0 .

Using a well-known result (see [9], pag. 86) we obtain that
∫

M(S(B,B)

+‖∇β‖2) ∗ 1 = 0, where ∗ denotes the Hodge star isomorphism and ∇
the Riemannian connection of g. Thus, from (3.4), we deduce that B = 0

which implies β = 0.

Therefore, if Ω1
Hξ(M) is the subspace of harmonic 1-forms γ such that

γ(ξ) = 0, we have that Ω1
Hξ(M) = {0}.

On the other hand, in [6] it is proved that the dimension of the

subspace Ω1
Hξ(M) is b1(M) − 1, where b1(M) is the first Betti number of

M (see theorem 5 of [6]). Consequently, we obtain that b1(M) = 1.

Now, let L be a leaf of the foliation F⊥ on M given by η = 0. Since

the Reeb vector field ξ is parallel then, using theorem 3.1 and the fact that

F⊥ is a totally geodesic foliation, we deduce that L is a compact Kähler

manifold with positive definite Ricci tensor. Thus, from theorem A of [11],

we conclude that L is simply connected. In view of theorem 3.1, this fact

shows that π1(M) is isomorphic to ZZ.

Finally, since the first integral homology group of M , H1(M, ZZ), is

isomorphic to the quotient group π1(M)

[π1(M),π1(M)]
, we have that H1(M, ZZ) is

also isomorphic to ZZ.

Next, we shall prove, for a compact cosymplectic manifold with posi-

tive constant ϕ-sectional curvature, the announced result at the beginning

of this section.

Theorem 3.3. Let (M, ϕ, ξ, η, g) be a (2m + 1)-dimensional com-

pact cosymplectic manifold with positive constant ϕ-sectional curvature
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k. Then there exist a constant c, c '= 0, and a matrix A of su(m + 1)

such that M is almost contact isometric to the cosymplectic manifold

(Pm(Cm+1)(k) × S1)(c, A).

Proof. Let M̃ be the universal covering space of M and (ϕ̃, ξ̃, η̃, g̃)

the induced cosymplectic structure on M̃ . Then, we obtain that (M̃ , ϕ̃, ξ̃,

η̃, g̃) is almost contact isometric to the product manifold Pm(Cm+1)(k)×
IR.

Moreover, from theorem 3.2, we deduce that the first Betti number

of M is equal to 1. Thus, if L is a leaf of the foliation F⊥ given by η = 0

then, from theorem 3.1, we have that L is a compact Kähler manifold

with positive constant holomorphic sectional curvature k. In particular,

the Ricci curvature tensor of L is positive definite (see, for instance, [12]

pag. 168) which implies that L is simply connected (see theorem A of [11]).

Now, realize the fundamental group of M , π1(M), as the group of

covering transformations on M̃ = Pm(Cm+1)(k) × IR. Then, there exist

a real number c '= 0 and an isomorphism γ of ZZ onto π1(M)

ZZ −→ π1(M) , γ(n) = C̃n ,

such that the covering transformation C̃n : Pm(Cm+1)(k)×IR−→Pm(Cm+1)

(k) × IR is given by

C̃n(x̃, t) = (Cn(x̃), t + cn) ,

for all (x̃, t)∈Pm(Cm+1)(k)×IR, being Cn : Pm(Cm+1)(k)−→Pm(Cm+1)(k)

a holomorphic isometry of Pm(Cm+1)(k) (see the proof of theorem 3.1).

Therefore, M is almost contact isometric to Pm(Cm+1)(k)×IR

{C̃n}n∈ZZ
.

It is clear that Cn = (C1)
n, for all n ∈ ZZ, and, if C1 is the identity

transformation of Pm(Cm+1)(k), then M is almost contact isometric to

the product manifold (Pm(Cm+1)(k) × S1)(c, 0). If that is not the case,

we proceed as follows.

Using (2.3), we deduce that there exists a matrix C of the special

unitary group SU(m + 1) which induces the holomorphic isometry C1 of

Pm(Cm+1)(k). Since the group SU(m+1) is compact it admits a complete

bi-invariant metric (in fact, if B is the Killing form of SU(m + 1) then,

using that SU(m + 1) is semisimple, we obtain that −B is a bi-invariant
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metric on SU(m + 1)). Thus, the geodesics of SU(m + 1) starting at the

identity (m + 1) × (m + 1) matrix are just the one-parameter subgroups

of SU(m + 1). Consequently, there exists a one-parameter subgroup

α : IR −→ SU(m + 1) of SU(m + 1) such that α(c) = C.

Let A be the left invariant vector field on SU(m + 1) associated to

the one-parameter subgroup α. A can be viewed as a matrix of su(m+1)

(the Lie algebra of SU(m+1), see subsection 2.2). We shall denote by A∗

the infinitesimal generator of the action of SU(m + 1) on Pm(Cm+1)(k)

corresponding to A and by α∗ the 1-form on Pm(Cm+1)(k) given by

α∗(X) = h(X, A∗)

for all X ∈ X(Pm(Cm+1)(k)), where (J, h) is the Kähler structure of

Pm(Cm+1)(k). We consider on the product manifold Pm(Cm+1)(k) × IR

the almost contact metric structure (ϕ̃′, ξ̃′, η̃′, g̃′) defined by

(3.5)

ϕ̃′ =J ◦ (pr1)∗+(pr2)
∗(dt) ⊗ JA∗, ξ̃′ =−A∗+

∂

∂t
, η̃′ =(pr2)

∗(dt) ,

g̃′ =(pr1)
∗(h)+(pr2)

∗(dt) ⊗ (pr1)
∗α∗+(pr1)

∗α∗ ⊗ (pr2)
∗(dt)+

+(1+h(A∗, A∗))[(pr2)
∗(dt) ⊗ (pr2)

∗(dt)] ,

where pr1 : Pm(Cm+1)(k) × IR → Pm(Cm+1)(k) and pr2 : Pm(Cm+1)(k) ×
IR → IR are the canonical projections of Pm(Cm+1)(k) × IR onto the first

and second factor respectively and t is the coordinate on IR.

Proceeding as in the proof of proposition 2.1, we have that (Pm(Cm+1)

(k) × IR, ϕ̃′, ξ̃′, η̃′, g̃′) is a cosymplectic manifold of positive constant ϕ̃′-

sectional curvature k.

Now, we define the diffeomorphism F̃ of Pm(Cm+1)(k) × IR onto

Pm(Cm+1)(k) × IR by

(3.6) F̃ (x̃, t) = (α(t)x̃, t)

for all (x̃, t) ∈ Pm(Cm+1)(k)× IR. Then, from (2.3), (2.6), (3.5) and (3.6),

we deduce that F̃ is an almost contact isometry of the cosymplectic mani-

fold (Pm(Cm+1)(k)× IR, ϕ̃′, ξ̃′, η̃′, g̃′) onto the manifold Pm(Cm+1)(k)× IR

with the usual cosymplectic structure. Moreover, the diffeomorphism

F̃ induces a diffeomorphism F between the cosymplectic manifolds
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(Pm(Cm+1)(k) × S1)(c, A) and M in such a way that the following di-

agram

Pm(Cm+1)(k) × IR
F̃−−−−−−−−−−−→ Pm(Cm+1)(k) × IR

π′

2

2
π

(Pm(Cm+1)(k)×S1)(c, A) /

/ Pm(Cm+1)(k)×IR

{1Pm(Cm+1)(k)×Tcn}n∈ZZ

−−−−→
F

M / Pm(Cm+1)(k)×IR

{C̃n}n∈ZZ

is commutative, being π and π′ the canonical projections and Tcn the

translation of IR defined by Tcn(t) = t + cn for all t ∈ IR. It is clear

that F is also an almost contact isometry. This ends the proof of the

theorem.
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Math. J., 21 (1969), 354-362.

[4] S. Bochner: Curvature and Betti numbers, Ann. Math., 49 (1948), 379-390.
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M. de León – Instituto de Matemáticas y F́ısica Fundamental – Consejo Superior de Investi-
gaciones Cient́ıficas – Serrano 123 – 28006 Madrid, Spain
E-mail: mdeleon@pinar1.csic.es
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