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Sapienza”, Roma, 11-14 Giugno 1996.



626 H. HOLMANN – B. KAUP – H.-J. REIFFEN [2]

Abstract: The article starts with a survey on coherent singular holomorphic fo-
liations on connected complex manifolds. These foliations are studied using techniques
of dynamical systems, notions like limit sets, basins of attraction, attractors being de-
fined geometrically. Under the assumptions that there are leaves everywhere, that there
exist only ”few” compact leaves and that the space of non-compact leaves is hausdorff
respectively weakly hausdorff, it is shown: The domain of attractivity of a compact leaf
L is an analytic subvariety of dimension bigger than the dimension of the leaves; it
consists of the union of L with the whole space of non-compact leaves, if L is almost
attractive; in case the foliation defines an open equivalence relation, L is always attrac-
tive. For every non-compact leaf L the number of almost global attractors is bounded
from above by the number of connected components of the limit set of L, which again
is bounded from above by the number of ends of L. These results are interpreted for
holomorphic C-actions. The associated holomorphic foliations are mostly singular, on
IPn for example they are always singular. The general theory is illustrated by diagonal
C-actions on IPn of general type.

– Introduction

A holomorphic C-action on a complex manifold X without fixed

points defines a regular holomorphic foliation on X, the leaves being the

orbits of the action. In order to study the dynamics of such an action it is

useful (compare [8] and [10]) to develop a theory of limit sets, attractors

etc. for holomorphic foliations and then apply it to the special case of

group actions.

“Compact complex manifolds very rarely foliate without singulari-

ties. Foliations with singularities, however, exist in great abundance”

(see [2], remark (c) on page 287). Especially on IPn there are no non-

trivial regular holomorphic foliations. Therefore in this article we shall

study the dynamics of singular holomorphic foliations. A theory of such

foliations is already developped in [2], [4], [18] and [19].

In section 1 we recall the basic definitions of the theory of singular

holomorphic foliations following [19]. Via the notion of integrals we get

a connection to the type of foliations with singularities given in [6].

In section 2 we define integral varieties and leaves for singular holo-

morphic foliations, following [19]. The notion of a leaf in this article is a

generalization of that in [6]. In general there exist points where no leaf

passes through (for a simple example see 2.8). We shall consider only

foliations with leaves everywhere. For these we get a leaf space X/F and

a corresponding equivalence relation RF , the leaf L(x) passing through x

being the equivalence class of x ∈ X.
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In the sections 3, 4 and 5, we follow [19] and [10]. But here we admit

foliations with singularities.

In section 3 we start with the basic definitions of the theory of ends.

Then we define the limit set lim L of a leaf L and study the connection be-

tween the number l(L) of connected components of limL and the number

e(L) of ends of L. Under suitable conditions we get l(L)≤e(L) (compare

the propositions 3.12 and 3.13).

In section 4 we define the basin of attraction A(M) of an arbitrary

non-void, closed and F-saturated subset M of X as follows:

A(M) := M ∪ {
x ∈ X; limL(x)'=∅ and a connected component of

lim L(x) is contained in M
}
.

We always make the following assumptions:

(a) Every leaf L of F is a locally analytic subset of X of the same pure

dimension p < dimX.

(b) The compact leaves form a non-void locally finite family (Γj)j∈J .

(c) On X ′ := X\ ⋃
j∈J Γj, the restriction R′ ⊂ X ′ × X ′ of RF is an open

analytic equivalence relation.

In the following main results of our article the numbers c(F) and

c′(F) of compact resp. compact almost attractive leaves of F and different

notions of attractivity (compare section 4) play an important role.

Theorem.

(1) For every compact leaf Γ of F the basin of attraction A(Γ) is an

analytic subset of X ′ ∪ Γ of dimension > p everywhere.

(2) If a compact leaf Γ of F is almost attractive then it is attractive and

almost globally attractive, even A(Γ) = X ′ ∪ Γ.

(3) For every non compact leaf L of F we have c′(F)≤l(L)≤e(L).

(4) If codimF = 1, then A(Γ) = X ′ ∪ Γ for all compact leaves of F , i.e.

c′(F) = c(F).

(5) If X is compact, then there exists at least one almost attractive com-

pact leaf, i.e. c′(F)≥1 (compare (2)).

Theorem. If RF is an open equivalence relation, then

(1) For every non-compact leaf L of F we get lim L =
⋃

j∈J Γj.

(2) For every compact leaf Γ of F we have A(Γ) = X ′ ∪ Γ.

(3) c′(F) = c(F) = l(L)≤e(L) for all noncompact leaves L of F .
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We obtain these results by studying equivalence relations under anal-

ogous assumptions in the first part of section 4. The main tool for

the proofs is the extension theorem of Thullen-Remmert-Stein (com-

pare [22]).

In section 5 we study holomorphic C-actions Φ : C × X → X on com-

plex manifolds X together with the corresponding singular holomorphic

foliation FΦ.

We work under assumptions (compare 5.7) which are partially weaker

then those in section 4. However, they imply the stronger ones. Since the

non-compact leaves of FΦ have 1 or 2 ends, we can strengthen the results

of section 4 (compare proposition 5.9); in particular, if X is compact

and Φ operates effectively, then all non-compact leaves have only one end

and there exists exactly one compact leaf and this is a global attractor.

In this case one can even weaken the hausdorff condition (compare the

assumption 5.12 and proposition 5.14).

In section 6 we study holomorphic C-actions on IPn which are diag-

onal of general type (compare definition 6.1). We show that they define

singular foliations with leaves everywhere and give an explicit description

of their leaves, limit sets and attractors. We get examples satisfying the

assumptions of section 5.

1 – Holomorphic foliations with singularities

In this section we give a survey of the theory of holomorphic foliations

with singularities. For details and more general aspects we refer to [19].

Let X be an n-dimensional paracompact connected complex mani-

fold. We denote the sheaf of holomorphic vector fields by Θ = ΘX and

the sheaf of holomorphic 1-forms by Ω = ΩX . A regular foliation F on

X is a holomorphic foliation in the usual sense, all leaves being complex

manifolds of a fixed dimension called dim F . Such a regular foliation

defines holomorphic subsheaves ΘF of Θ and ΩF of Ω in a canonical way.

Proposition 1.1. For a regular foliation F , the sheaf ΩF has the

following properties:

(1) Ω/ΩF is locally free.

(2) ΩF is involutive, i.e. dΩF ∧ ΛqΩF = 0 for q := rank ΩF .
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The Frobenius theorem ([16, p. 117 f]) tells us:

Theorem 1.2. If Ω′ is a holomorphic subsheaf of Ω with proper-

ties (1) and (2), then there is a regular holomorphic foliation F on X

such that Ω′ = ΩF .

An analogous result holds for ΘF .

We are going to explain now what we understand by a holomorphic

foliation with singularities.

For this purpose we consider analytic subsets A of X with dimA <

dimX and regular holomorphic foliations FA on X\A. Two such regular

foliations FA and FB are called equivalent iff the restrictions of FA and

FB to X\(A∪B) coincide. For each such regular foliation FA there exists

a unique equivalent one, called FS, where the analytic set S is minimal.

Definition 1.3. The equivalence class of a regular holomorphic

foliation FA (as described above) is called a (singular) holomorphic

foliation on X, which we denote by F . The uniquely associated analytic

set S is called the singular locus of F , which we denote by S(F). By

the regular locus of F we understand Xr := X\S(F) while Fr := FS

is called the maximal regular foliation in F . The numbers dimF and

codim F are defined canonically.

Definition 1.4. Via the sheaf ΩFr on Xr one defines on X a holo-

morphic subsheaf ΩF of Ω by setting for open subsets U of X

ΩF(U) :=
{
ω ∈ Ω(U); ω|U∩Xr ∈ ΩFr(U ∩ Xr)

}
.

The subsheaf ΘF of Θ is defined in an analogous way.

The subsheaf OF of the holomorphic structure sheaf O of X is defined

by setting for open subsets U of X:

OF(U) :=
{
f ∈ O(U); df ∈ ΩF(U)

}
.

Proposition and Definition 1.5. The holomorphic foliation

F is called coherent iff it satisfies the following equivalent properties

(compare [19]) :

(1) ΩF is coherent.
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(2) There exists a coherent subsheaf of Ω on X extending ΩFr .

(3) ΘF is coherent.

(4) There exists a coherent subsheaf of Θ on X extending ΘFr .

(5) codim S(F)≥2.

Remark 1.6. Coherent holomorphic foliations are exactly those in

the sense of Baum-Bott (compare [2]). The singular locus S(F) of a

coherent holomorphic foliation F on X can be described as

S(F) =
{
x ∈ X; Ωx/(ΩF)x is not free

}
.

If ΩF = O · ω is generated by a single 1−form ω, then S(F) = {x ∈
X; ω(x) = 0}.

In the following all foliations are assumed to be coherent.

Usually one defines regular foliations locally by holomorphic submer-

sions. We generalize this concept:

Definition 1.7. Let U ⊂ X be an open subset and f : U → Z an

open holomorphic mapping into a reduced complex space. f is called an

integral of the holomorphic foliation F on X iff there exists a nowhere

dense analytic subset A of U such that

(1) A ⊃ U ∩ S(F), f(U\A) ⊂ Z\SingZ.

(2) f̃ := f |U\A : U\A → Z\SingZ is a holomorphic submersion defining

Fr on U\A, i.e. the connected components of the fibres of f̃ are the

leaves of Fr|U\A.

F is called integrable in a point x ∈ X iff there exists an open

neighborhood U of x and an integral f : U → Z of F . F is called

integrable iff F is integrable in every point x ∈ X.

It is no restriction to demand in definition 1.7 that f is surjective

and Z a normal complex space.

In general, F is not integrable in points x ∈ S(F) (see example 2.8).

In [19] the definition of an integral is more general. An integral in

the sense of our definition 1.7 is called an open integral there.

In [6] special singular holomorphic foliations are defined, called H-

foliations in the following, using so called locally simple integrals (see

examples 1.9).

The following proposition uses proposition 1.5.(2) to produce exam-

ples of coherent foliations:
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Proposition 1.8. If f : X → Z is an open holomorphic mapping

from X onto the normal complex space Z, then

(1) there exists a nowhere dense analytic subset A ⊂ X such that f(X\A)

⊂ Z\SingZ and such that f̃ := f |X\A : X\A → Z\SingZ is a sub-

mersion, i.e. f̃ defines a regular foliation on X\A,

(2) f defines a (coherent) foliation F on X,

(3) f is a (global) integral of F .

Examples 1.9. fk : C2 → C, fk(z1, z2) := zk
1z2, k = 1,2, are

open surjective mappings, submersions on C2\Ak, where A1 = {(0, 0)},

A2 := {0} × C, defining regular holomorphic foliations FAk
on X\Ak,

representing coherent foliations Fk on C2. The coherent sheaves ΩFk
and

ΘFk
are generated by

ωk = k z2 dz1 + z1 dz2, resp. θk = z1

∂

∂z1

− k z2

∂

∂z2

.

By remark 1.6, we get S(Fk) = {(0,0)} for k = 1,2.

One can describe Fk also through the holomorphic C∗-action

Φk : C∗ × C2 → C2, Φk(t, z1, z2) := (tz1, t
−kz2) .

The decompositions of C2 into Φk-orbits define regular holomorphic fo-

liations on C2\{(0, 0)} for k = 1, 2 which coincide with FAk
on C2\Ak.

Consequently again we obtain S(Fk) = {(0, 0)} for k = 1, 2, fk : C2 → C

are global integrals where f1 is locally simple but f2 not, F1 is an H-

foliation but F2 not.

In general foliations are not integrable (compare 2.8; many examples

can be found in [4, §8]).

The theorem of Malgrange-Frobenius([14], [15]) gives a sufficient

condition for the existence of integrals; these are integrals in the sense of

our definition 1.7 if codimF = 1, and in the more general sense of [19] if

codimF≥2.
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2 – Leaves and leaf spaces

Let F be a (coherent) foliation on a complex manifold X as in sec-

tion 1. We give a survey of the theory of leaves of F following [19]. All

complex spaces are assumed to be reduced.

Definition 2.1. A holomorphic mapping ι : Y → X (Y a complex

space) is called an injective holomorphic immersion, if ι is injective

and ι∗
y : OX,ι(y) → OY,y surjective for all y ∈ Y .

Definition 2.2. Let Y be a connected complex space and φ : Y →
X an injective holomorphic immersion. φ is called an integral variety

of F iff for every y ∈ Y and for every f ∈ (OF
)
φ(y)

the germ f ◦ φ is

constant. An integral variety φ : Y → X is called big iff dimy Y ≥ dimF
for all y ∈ Y .

Definition 2.3. Let Y ⊂ U be a connected analytic subset of an

open subset U of X. We call Y a local leaf (plaque) of F iff the following

holds:

(1) The inclusion Y ↪→X is a big integral variety of F .

(2) For every y ∈ Y and for every germ (Z, y)↪→(X, y)
(
where Z is

a big integral variety, locally analytic in U with y ∈ Z
)

we have

(Z, y)↪→(Y, y).

Proposition and Definition 2.4. Let Σ = Σ(F) be the set of

all x ∈ X such that there exists no local leaf passing through x. The

local leaves form a base of a topology T = TF on X\Σ, the so-called

leaf topology of F . (X\Σ, T ) is a complex space in a natural way,

the canonical inclusion (X\Σ, T ) → X is an injective immersion. The

connected components of (X\Σ, T ) are called the leaves of F .

In the following remark we collect some properties of leaves:

Remark 2.5. Let L be a leaf of F .

– L has two topologies which do not coincide in general: first the rel-

ative topology induced by X, second the T -topology (sometimes we

write (L, T ) in this case).

– (L, T ) is a connected complex space, the inclusion L ⊂ X defines an

injective holomorphic immersion ι : (L, T ) → X.

– (L, T ) is paracompact due to the Poincaré-Volterra theorem ([5])

since X is paracompact.
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– In general, L is not an analytic subset of X.

– If L is an analytic subset of X, then the inclusion L ⊂ X is a

biholomorphic mapping between the complex spaces (L, T ) and L

(equipped with the complex structure induced by X) (compare 2.12

and 2.13). Hence, in this case, we may identify the complex spaces

(L, T ) and the analytic subspace L ⊂ X.

When we say that a subset of X is “open” or “closed” or “compact”,

then we mean open with respect to the usual topology etc. If we want to

express that a subset of X is open or closed or compact with respect to

the topology T , then we say that the subset is T -open resp. T -closed

resp. T -compact.

The following proposition (compare [19]) is a sufficient condition for

the existence of leaves:

Proposition 2.6. Let f : U → Z be an integral of F , U connected.

Then U ⊂ X\Σ and the leaves of F|U are the connected components of

the fibres of f .

By 2.6 we obtain the following

(Addendum to proposition 1.8) 2.7.

(4) The leaves of F are the connected components of the fibres of f .

Example 2.8. For the foliations Fk, k = 1, 2 of C2 in example 1.9

the leaf passing through the origin is both times L(0) = {(z1, z2) ∈ C2 :

z1z2 = 0}, i.e. the union of the three orbits {(0, 0)}, C∗×{0} and {0}×C∗

of the C∗-actions Φk, therefore Σ(Fk) is empty for k = 1, 2. — The

vectorfield θ := z1
∂

∂z1
+ z2

∂
∂z2

and the differential form ω = z2 dz1 − z1 dz2

define the same foliation F on C2 with singular locus S(F) = Σ(F) =

{(0, 0)}. There are too many big integral varieties of F passing through

(0, 0), e.g. any finite union of complex lines through (0, 0). Condition (2)

of definition 2.3 is not satisfied, i.e. there is no local leaf passing through

(0, 0). Especially F is not integrable in (0, 0).

Definition 2.9. We call F a foliation with leaves everywhere iff

Σ(F) = ∅.

By the proposition 2.6 we get
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Proposition 2.10. If F is integrable then F is a foliation with

leaves everywhere.

From now on we consider foliations with leaves everywhere only.

For injective holomorphic immersions, one has the following result:

Remark 2.11. Let φ : Y → X be an injective holomorphic immer-

sion between complex spaces. Then the following statements are equiva-

lent:

(1) φ is proper.

(2) φ(Y ) is an analytic subset of X and φ : Y → φ(Y ) is biholomorphic.

For leaves one can sharpen this result considerably:

Proposition and Definition 2.12. Let L ⊂ X be a leaf of F .

Then the following statements are equivalent:

(1) The inclusion ι : (L, T ) → X is proper.

(2) L is an analytic subset of X.

Under these conditions (remark that the first condition is purely topo-

logical), ι : (L, T ) → L is an isomorphism of complex spaces by 2.11 and

L shall be called a proper leaf.

For the proof one uses that leaves are paracompact (see remark 2.5).

As a consequence of 2.12 we obtain

Corollary 2.13. A leaf L is T -compact iff L is a compact analytic

subset of X.

For H-foliations one can sharpen 2.12 (compare [6, Satz 3.1]):

Proposition 2.14. For a leaf L of an H-foliation, the natural

embedding ι : (L, T ) → X is proper iff L is a closed subset of X.

The following lemma follows easily from the definition of a local leaf;

it is similar to the Thullen-Remmert-Stein singularity theorem:

Lemma 2.15. Suppose L ⊂ X is a proper leaf of F and F ⊂ X\L

is a proper leaf of F|X\L. Then the closure F of F in X is not analytic

in any point x ∈ F ∩ L (of course, F ∩ L may be empty).
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Definition and Remarks 2.16. We denote by X/F the set of all

leaves of F and by π : X → X/F the natural projection. For x ∈ X

we denote by L(x) the leaf of F passing through x. We equip X/F
with the quotient topology and the canonical ringed structure. Then

π : X → X/F is a surjective morphism of ringed spaces.

F defines an equivalence relation R = RF on X satisfying X/F =

X/R in a natural way:

(x, y) ∈ R ⊂ X × X ⇐⇒ L(x) = L(y).

Definition 2.17. Let M ⊂ X. We call R(M) =
⋃

x∈M L(x) the

F-saturation of M . M is called F-saturated iff M = R(M).

In our investigations the cases, where R is an open resp. analytic

equivalence relation (i.e. R is an analytic subset of X × X), play an

important role. Basic results about the theory of analytic equivalence

relations one finds in [12].

Definition 2.18. Let (Lν)ν∈IN be a sequence of leaves. Then y ∈ X

is called a weak limit point of (Lν)ν∈IN iff there exists a sequence (xν)ν∈IN

in X such that xν ∈ Lν for all ν and y = limν→∞ xν . By Lim Lν we denote

the set of all weak limit points of the sequence (Lν)ν∈IN.

One sees easily that Lim Lν is a closed subset of X. If Lν = L for all

ν, we get

(1) Lim Lν = Lim L = L .

Remark 2.19. The following statements are equivalent:

(1) R is an open equivalence relation.

(2) For every sequence (Lν)ν∈IN of leaves the set Lim Lν is F-saturated.

(3) For every sequence (Lν)ν∈IN of leaves the set Lim Lν is T -open.

Proposition 2.20. If F is integrable by integrals with connected

fibres, then R is open.
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Proof. Let L and Lν , ν ∈ IN, be leaves of F . We have to show that

L∩Lim Lν is T -open in L. Suppose y ∈ L∩Lim Lν . We choose a sequence

(xν)ν∈IN as in definition 2.18 and an integral f : U → Z with connected

fibres on an open connected neighborhood U of y. We can assume that

xν ∈ U for all ν. Because of 2.7 the leaves of F|U are the fibres of f ,

i.e. f−1
(
f(xν)

) ⊂ Lν and f−1
(
f(y)

) ⊂ L is a T -open neighborhood of

y. Since f is open we have f−1
(
f(y)

) ⊂ Lim f−1
(
f(xν)

) ⊂ Lim Lν , i.e.

L ∩ Lim Lν is T -open.

For H-foliations the equivalence relation R is open. Using the ad-

dendum in [17] we get

Proposition 2.21. If F is of codimension 1 and integrable, then

R is open.

In [3] Bohnhorst has shown: The mapping f : C3 → C2, f(z) :=(
z1z2, (z1 + z2)z3

)
defines a foliation F of codimension 2 with f as an

integral; f is open but R is not open.

Proposition 2.22. The following statements are equivalent:

(1) R is an open and analytic equivalence relation.

(2) X/F is a complex space and π is open.

(3) There exists a global integral f : X → Z with connected fibres.

Proof. For (1) ⇐⇒ (2) compare [11]. For (2) ⇐⇒ (3) com-

pare [19].

If F is an H-foliation we have a stronger result (compare [6, Satz

3.4]):

Proposition 2.23. For H-foliations F the following statements are

equivalent:

(1) R is an analytic equivalence relation.

(2) X/F is a Hausdorff space.

(3) X/F is a complex space.

Remark 2.24. In 2.22.(2) and 2.23.(3) the quotient X/F is a nor-

mal complex space automatically. In 2.22.(3) we may assume that f is

surjective and Z normal. Then Z and X/F are biholomorphic
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3 – Ends and limit sets

For locally compact topological spaces Y one can define its end com-

pactification Y + and its number of ends e(Y ) := number of elements of

Y +\Y , compare [1, §2].

In the following let Y be a connected, paracompact, reduced complex

space. Then one can define the number e(Y ) of ends of Y in the following

equivalent way:

Definition 3.1. For a compact subset K ⊂ Y , let h(K) be the

(finite) number of connected components of Y \K which are not relatively

compact in Y . Then

e(Y ) := sup{h(K); K ⊂ Y compact}.

Remark 3.2.

(1) Let K ⊂ Y be compact and let U be the union of those connected

components of Y \K which are relatively compact in Y . Then the

completion K̃ := K∪U of K is compact too and h(K) = h(K̃) < ∞;

K is called complete iff K = K̃.

(2) Let K ⊂ L ⊂ Y be complete compact subsets. Then each connected

component of Y \L is contained in a connected component of Y \K,

hence h(K)≤h(L).

(3) If (Kν)ν∈IN is a sequence of complete compact subsets of Y such that

Kν ↑ Y
(
i.e. Kν−1 is contained in the interior

◦
Kν of Kν for all ν and

⋃
Kν = Y

)
, then e(Y ) = limh(Kν).

Now let F be a foliation (with leaves everywhere) on X as in sections 1

and 2. We shall use the notations of these sections.

Definition 3.3. A point y ∈ X is called a limit point of a leaf L

of F iff there exists a sequence (xν)ν∈IN in L such that y = limxν and

(xν)ν∈IN has no T -accumulation point. The limit set of L is defined by

lim L :=
{
x ∈ X; x is limit point of L

}
.

Remark 3.4. For leaves L of F the following holds:

(1) limL ⊂ L.

(2) If L is a proper leaf (for example if L is T -compact), then lim L = ∅.

(3) If L is not T -compact but relatively compact in X, then limL '= ∅.
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Lemma 3.5. Let L be a leaf of F and (Kν)ν∈IN a sequence of T -

complete T -compact subsets of L such that Kν ↑ L (see remark 3.2). If

we denote by L\Kν the closure of L\Kν in X, then

lim L =
⋂

ν∈IN

L\Kν .

As a consequence we obtain

Corollary 3.6. The limit set lim L of a leaf L of F is closed in X.

Definition 3.7. A subset A ⊂ X is called a limit cycle of a leaf

L of F , if A is a non-void union of connected components of limL such

that A ∩ L = ∅.

Proposition 3.8. (lim L)\L = L\L for leaves L of F .

Proposition 3.9. If the equivalence relation R corresponding to F
is open then every limit cycle of a leaf L of F is F-saturated.

Proof. Let A be a connected limit cycle of L. Then A is a connected

component of L\L. Now apply remark 2.19.

By modifying the proof of 2.20 one gets

Proposition 3.10. If F is integrable by integrals with connected

fibres, then lim L is F-saturated for every leaf L of F .

Definition 3.11. For a leaf L of F we set

l(L) := number of connected components of limL .

Proposition 3.12. If the leaf L of F is relatively compact in X,

then l(L)≤e(L).
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Proof. We may assume that r := e(L) < ∞. There exists a sequence

(Kν)ν∈IN of non-void T -complete T -compact subsets of L with Kν ↑ L and

h(Kν) = e(L) (see remark 3.2). Let Cν
j , j = 1, . . . , r be the connected

components of L\Kν . We can assume that Cν
j ⊃ Cν+1

j for j = 1, . . . , r

and all ν ∈ IN. Now let Cν
j denote the closure of Cν

j in X. Then Rj :=⋂
ν∈IN Cν

j is a non-void connected and compact subset of X (see [21, §2.B,

Aufgabe 25]) and because of lemma 3.5 we obtain limL = R1∪. . .∪Rr.

Proposition 3.13. If a leaf L of F satisfies the following condi-

tions:

(1) limL is a limit cycle of L,

(2) The connected components of lim L are compact and form a locally

finite family,

(3) L is a proper leaf of F|X\ lim L,

then l(L)≤e(L).

Proof. We denote the connected components of lim L by Λ1,Λ2, . . . .

There exists a system U1, U2, . . . of relatively compact open neighbor-

hoods of Λ1,Λ2, . . . in X such that Uj ∩ Uk = ∅ for j '= k. We choose an

r ∈ IN with 1≤r≤l(L) and set Q :=
⋃r

j=1 ∂Uj. Then Q is a compact subset

of X\ lim L and Q∩L is a compact subset of X by (3), i.e. T -compact in

L. We consider the completion K of Q ∩ L in L. Let C1, . . . , Cs denote

the connected components of L\K. By definition of limL one can find

points zj ∈ Uj ∩ (L\K), j = 1, . . . , r. Since each zj lies in exactly one Ck

we can conclude: r≤s≤h(L) = e(L).

4 – Attractive leaves

In this section we study first equivalence relations on complex spaces

with only one compact equivalence class und apply the results later to

the equivalence relation RF associated to a holomorphic foliation F on a

complex manifold X.

We begin with a paracompact n-dimensional irreducible reduced com-

plex space X with an equivalence relation R ⊂ X × X. For any A ⊂ X

(resp. X × X) by A we always understand the closure of A in X (resp.

X × X).
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We obtain interesting results under the following

Assumptions 4.1.

(a) Every equivalence class R(x) is a connected locally analytic subset of

X of the same pure dimension p < n.

(b) R admits exactly one compact equivalence class which we denote by Γ.

(c) On X ′ := X\Γ the restriction R′ := R ∩ (X ′ × X ′) of R is an

open analytic equivalence relation; especially, all equivalence classes

R(x) ⊂ X ′ are analytic subsets of X ′.

(d) For every class R(x) ⊂ X ′, the closure R(x) of R(x) in X is not

analytic in any point y ∈ Γ ∩ R(x), i.e. every point of Γ, which is an

accumulation point of R(x), is a singularity for R(x).

Some simple consequences of our assumptions are

Remark 4.2.

(1) X ′ is an open R-saturated subset of X and again irreducible.

(2) Γ is a connected, compact analytic subset of X with a finite number

of irreducible components which we denote by γ1, . . . , γr.

(3) R′ is an analytic subset of X ′ × X ′ of pure dimension n + p.

(4) For every x ∈ X ′ there exist only two alternatives: either R(x)∩Γ = ∅
or R(x) is the union of R(x) with some (at least one) irreducible

components of Γ.

By the Thullen-Remmert-Stein theorem (compare [20] and [22]),

remark 4.2.(4) is a consequence of our assumptions (c) and (d).

Lemma 4.3. R = R′ ∪ (Γ × Γ) is not closed in X × X.

Proof. It is sufficient to find a sequence (xk, yk)k∈IN in R′ converging

to a point (x, y) ∈ Γ × X ′. If R(y) ∩ Γ = ∅ for all y ∈ X ′, we choose

a compact connected neighborhood U of Γ in X, a point x ∈ Γ and a

sequence X ′ ∩ U < xk → x. Since all R(xk) are not compact, there exists

a point yk ∈ R(xk) ∩ ∂U . We may assume that yk → y ∈ ∂U . Then the

sequence (xk, yk)k∈IN has the desired properties. The case R(y)∩Γ'=∅ for

a point y ∈ X ′ is trivial.
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Definition 4.4. For subsets U, C of X, where U is open and C is

compact, we define

BU(C) :=
{
x ∈ U : R(x) ∩ C '=∅}

.

Instead of BX(C) resp. BX′(C) we shall write simply B(C) resp. B′(C).

With these notations we get for C := Γ:

(2) B(Γ) = B′(Γ) ∪ Γ, with B′(Γ) ∩ Γ = ∅ .

When we study B(Γ) and B′(Γ), we have to work with the closure R′

of R′ in X ×X. We observe that R′ is a symmetric subset of X ×X, but

in general not an equivalence relation.

Definition 4.5. Let π1, π2 : R′ → X be the canonical projections

πk(x1, x2) := xk. Then, for subsets A of X, we define

R′(A) :=π2

(
π−1

1 (A)
)
=π2

(
(A×X)∩R′)=π1

(
π−1

2 (A)
)
=π1

(
(X ×A)∩R′) .

Especially we have

(3) R′(Γ) = π2

(
(Γ × X) ∩ R′) = π1

(
(X × Γ) ∩ R′) .

Lemma 4.6. B′(Γ) = R′(Γ)\Γ.

Proof. “⊃” For x ∈ R′(Γ)\Γ we have to show that R(x) ∩ Γ '= ∅.

It is sufficient to prove that R(x) ∩ U '= ∅ for every compact connected

neighborhood U of Γ in X. We may assume that x '∈ U . By (3), there

exists y ∈ Γ such that (y, x) ∈ (Γ × X) ∩ R′. We choose a sequence

R′ < (yν , xν) → (y, x) such that xν '∈ U and yν ∈ U for all ν. Then

R(xν)∩∂U '= ∅ for all ν; hence we may assume that there exists a sequence

R(xν)∩∂U < zν → z ∈ ∂U ⊂ X ′. Then R′ < (xν , zν) → (x, z) ∈ X ′ ×X ′;

since R′ is closed in X ′ × X ′ by assumption 4.1.(c), we have (x, z) ∈ R′,

i.e. z ∈ R(x) ∩ ∂U . ”⊂” is trivial.

Corollary 4.7. B′(Γ) '= ∅.



642 H. HOLMANN – B. KAUP – H.-J. REIFFEN [18]

Proof. Suppose B′(Γ) = ∅. Then, by (3) and lemma 4.6, we obtain

R′(Γ) ⊂ Γ, R′ ⊂ R′ ∪ (Γ × Γ) = R. Hence R = R′ ∪ (Γ × Γ) is closed in

contradiction to lemma 4.3.

We define (compare remark 4.2.(4))

Ξρ := (X × γρ) ∪ (γρ × X) (1≤ρ≤r)

and

Ξ := (X × Γ) ∪ (Γ × X) =
r⋃

ρ=1

Ξρ = (X × X)\(X ′ × X ′) .

All Ξρ and Ξ are analytic subsets of X × X of pure dimension n + p =

dimR′. Therefore, by the Thullen-Remmert-Stein theorem, we have the

following two alternatives:

Proposition 4.8. Either: there exists an irreducible component γ

of Γ such that R′ ⊃ γ × X, in which case R′ is not analytic in X × X

(case I), or: R′ is analytic in X × X (case II).

Proof. If R′ is analytic, then R′ cannot contain an analytic set of

the form γ × X, since dim(γ × X) = n + p = dimR′.

Now we can prove

Theorem 4.9.

(I) If R′ is not analytic in X × X then B′(Γ) = X\Γ, i.e. R(x) ∩ Γ '= ∅
for all x ∈ X.

(II) If R′ is analytic in X×X then B′(Γ) is analytic in X ′ of dimension >

p everywhere and B′(Γ) and B(Γ) are analytic in X of dimension > p

everywhere.

Proof. Ad (I) If R′ is not analytic, then there is at least one ir-

reducible component γ of Γ such that γ × X ⊂ R′. Hence, by (3) and

lemma 4.6, we obtain

B′(Γ) ⊃ π2

(
γ × X)\Γ = X\Γ .
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Ad (II). The projection π2 : Γ × X → X is proper, therefore R′(Γ) =

π2

(
R′ ∩ (Γ × X)

)
is analytic in X. By lemma 4.6, B′(Γ) is analytic

in X ′ and B′(Γ) ⊂ R′(Γ) is analytic in X. Therefore B(Γ) = B′(Γ) ∪
Γ = B′(Γ) ∪ Γ is analytic in X too. We still have to show, that B′(Γ)

has dimension > p everywhere. Since B′(Γ) is R-saturated, we have

dimB′(Γ)≥p everywhere. If B′(Γ) has an irreducible component Z of

dimension p, then by remark 4.2.(4) for every point x ∈ Z we get γ ⊂
R(x) ⊂ Z for a certain component γ of Γ. But this is impossible since Z

is analytic in X and dimZ = dim γ = p.

Corollary 4.10. If p = n − 1 then B(Γ) = X.

Proof. B′(Γ) is analytic in X ′ of dimension bigger than p = n − 1,

hence B′(Γ) = X ′.

If R is an open equivalence relation, than we can sharpen theo-

rem 4.9:

Proposition 4.11. Let R be an open equivalence relation. Then

R(x) ⊃ Γ for every x ∈ X ′, i.e. B(Γ) = X.

Proof. It is sufficient to show that R′ is not analytic in X × X (see

theorem 4.9). By corollary 4.7, we can choose an x ∈ B′(Γ). Because

of the subsequent proposition 4.12 we have R(x) = R(x) ∪ Γ. Since

R′ ⊂ R′∪(X×Γ)∪(Γ×X), we have R′(x) = π2

(
R′∩({x}×X

)) ⊂ R(x)∪Γ.

Since R(x) ⊂ R′(x), we have

(4) R′(x) = R(x) ∪ Γ ∀ x ∈ B′(Γ) .

Suppose R′ is analytic in X ×X, then R′(x) = R(x)∪Γ is analytic in X,

but this is impossible because of assumption 4.1.(d).

Proposition 4.12. If R is an open equivalence relation, then

R(x) ⊃ Γ for all x ∈ B′(Γ), hence B′(Γ) ⊃ Γ.
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Proof. Fix x ∈ B′(Γ) which is not empty by corollary 4.7. Because

of remark 4.2.(4), there exists an irreducible component γ of Γ such that

R(x) ⊃ γ. Fix y ∈ Γ and y′ ∈ γ. Then there exists a sequence (y′
ν)ν∈IN in

R(x) such that y′
ν → y′. Since R is an open equivalence relation, there

exists a sequence (yν) in R(x) such that yν → y. Therefore Γ ⊂ R(x) ⊂
B′(Γ).

Now we have a very simple description of R′ if R is open:

Proposition 4.13. If R is open, then R′ = R′ ∪ Ξ = R′ ∪ (X ×
Γ) ∪ (Γ × X).

The conclusion of proposition 4.11 is very strong. This is shown by

the following

Proposition 4.14. The following statements are equivalent:

(1) R(x) ⊃ Γ for every x ∈ X ′.

(2) R is an open equivalence relation.

(3) For every y ∈ Γ and for every neighborhood U of y in X the R-

saturated hull R(U) of U is equal to X.

As mentioned in the beginning of this section, we now shall apply

our results to equivalence relations R = RF induced by a holomorphic

foliation F on an n-dimensional complex manifold X. We shall use the

notions and the conditions for F of the previous sections.

Definition 4.15. Let M be a non-void closed F-saturated subset of

X. The set A(M) := M ∪ {
x ∈ X : limL(x)'=∅ and a connected com-

ponent of limL(x) is contained in M
}

is called the basin of attraction

of M .

Obviously A(M) is F-saturated.

Definition 4.16. Let M be as in definition 4.15.

M is called attractive iff A(M) is a neighborhood of M .

M is called globally attractive iff A(M) = X.

M is called almost attractive resp. almost globally attractive iff

there exists a meager subset N of X such that A(M)∪N is a neighborhood

of M resp. A(M) ∪ N = X.

In the rest of this section we shall always work under the following
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Assumptions 4.17.

(a) Every leaf L of F is a locally analytic subset of X of the same pure

dimension p < n.

(b) The compact leaves form a non-void locally finite family (Γj)j∈J . (In

our case, compact leaves are compact analytic subsets of X, proper

leaves and also T -compact, compare corollary 2.13.)

(c) On X ′ := X\IΓ with IΓ :=
⋃

j∈J Γj, the restriction R′ := R ∩ (X ′ ×
X ′) of R is an open analytic equivalence relation on X ′ (R′ is the

equivalence relation corresponding to F ′ := F|X′).

For Xj := X ′ ∪ Γj and Rj := RF ∩ (
Xj × Xj

)
, j ∈ J , the assump-

tions 4.1 are satisfied. Only 4.1.(d) needs some special attention, since

it has no analogue in the assumptions 4.17. It follows, however, directly

from lemma 2.15.

Remark 4.18. If the singular locus S of F is contained in IΓ then

(compare proposition 2.23) the assumption (4.17).(c) is equivalent to :

X ′/F ′ is a Hausdorff space.

As a consequence of remark 4.2.(4) we obtain

Proposition 4.19. For every x ∈ X ′ with lim L(x)'=∅ we get

(1) limL(x) is a limit cycle of L(x).

(2) The connected components of lim L(x) are unions of certain irre-

ducible components of IΓ and therefore they are compact and form a

locally finite family.

(3) L(x) is a proper leaf of F|X\ lim L(x).

Hence the conditions of proposition 3.13 hold.

From point (2) of the proposition above follows directly

Proposition 4.20. For all compact leaves Γ of F , we have

A(Γ) = Γ ∪ {x ∈ X : limL(x) ∩ Γ '= ∅} = B(Γ) = B′(Γ) ∪ Γ.
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Hence the results of the first part of this section concerning B(Γ) can

be applied to A(Γ). Using the following abbreviations

c (F) := number of compact leaves of F (where c(F) = ∞ is allowed)

c′(F) := number of compact almost attractive leaves of F
(where c′(F) = ∞ is allowed)

l (L) := number of connected components of limL

e (L) := number of ends of L

we get:

Theorem 4.21.

(1) For every compact leaf Γ of F the basin of attraction A(Γ) is an

analytic subset of X ′ ∪ Γ of dimension > p everywhere.

(2) If a compact leaf Γ of F is almost attractive then it is attractive and

almost globally attractive, even A(Γ) = X ′ ∪ Γ.

(3) For every non compact leaf L of F we have c′(F)≤l(L)≤e(L).

(4) If codimF = 1, then A(Γ) = X ′ ∪ Γ for all compact leaves of F , i.e.

c′(F) = c(F).

(5) If X is compact, then there exists at least one almost attractive com-

pact leaf, i.e. c′(F)≥1 (compare (2)).

Proof. For (1) compare proposition 4.20 and theorem 4.9. (2) fol-

lows from (1). For (3) compare the propositions 4.19 and 3.13.

For the proof of the following theorem compare proposition 4.11:

Theorem 4.22. If RF is an open equivalence relation, then

(1) For every non-compact leaf L of F we get lim L = IΓ.

(2) For every compact leaf Γ of F we have A(Γ) = X ′ ∪ Γ.

(3) c′(F) = c(F) = l(L)≤e(L) for all noncompact leaves L of F .
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5 – C-actions

In this section we shall study holomorphic C-actions on connected

paracompact complex manifolds X of dimension n≥2. By this we un-

derstand a holomorphic mapping Φ : C × X → X with Φ
(
t, (Φ(s, x)

)
=

Φ(t + s, x) and Φ(0, x) = x.

Φ defines biholomorphic mappings Φt : X → X and holomorphic

mappings Φx : C → X by Φt(x) := Φ(t, x) =: Φx(t) for t ∈ C and x ∈ X.

Φ is called effective if Φt = IdX implies t = 0. The set Φx(C) =: C · x

is called the Φ-orbit through x ∈ X. By the isotropy group Ix of

the point x ∈ X we understand the closed subgroup Ix := {t ∈ C :

Φt(x) = x} of C. We observe that two Φ-orbits coincide or are disjoint,

that Ix = Iy if x and y lie on the same Φ-orbit and that Φx induces an

injective holomorphic immersion φx : C/Ix → X.

One can define the rank of Ix and C · x as follows:

(0) rank Ix := 0 if Ix = {0}, i.e. C/Ix = C

(1) rank Ix := 1 if Ix = ZZ · ωx with ωx ∈ C∗, i.e. C/Ix
∼= C∗

(2) rank Ix := 2 if Ix = ZZ · ωx + ZZ · ηx with ωx, ηx ∈ C∗

linearly independent over IR, i.e. C/Ix is a torus.

(∞) rank Ix := ∞ if Ix = C, i.e. x is a fixed point.

rank (C · x) := rank Ix

Notation 5.1. For k=0, 1, 2,∞ we set Xk := {x ∈ X; rank Ix =k.}.

The C-action Φ induces the following holomorphic vector field on X:

θ :=
∂Φ

∂t

∣∣
t=0

.

Conversely, every holomorphic vectorfield on X defines a holomorphic

C-action if X is compact. The set

Fix(Φ) = X∞ = {x ∈ X; θ(x) = 0}

of fixed points of Φ is an analytic subset of X. In the following we assume

that Fix(Φ) '=X, i.e. θ '≡ 0.
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The holomorphic C-action defines an 1-dimensional regular holo-

morphic foliation on X\ Fix(Φ), i.e. a (singular) holomorphic foliation

F = FΦ on X which is coherent because of 1.5.(4), since ΘF and O · θ

coincide on X\ Fix(Φ). The singular locus S = S(F) is contained in

Fix(Φ). Without additional assumptions F may not have leaves every-

where, i.e. Σ(F)'=∅ is possible (compare example 2.8). A leaf L(x) of

F may contain the orbit C · x as a proper subset (compare examples 2.8

and 5.3).

By proposition 1.5.(5) and the second Riemann extension theorem

follows

Proposition 5.2. S = Fix(Φ) iff codim Fix(Φ)≥2.

Φ is called regular if Fix(Φ) = ∅. In this case F is regular too. In

general the opposite conclusion is wrong:

Example 5.3. Consider the holomorphic action Φ : C × C2 → C2,(
t, z

) *→ (etz1, z2). Since

C · z =

{
C∗ × {z2} if z1 '=0

{(0, z2)} if z1 = 0
but L(z) = C × {z2} for everyz ∈ C2,

the foliation F is regular but the operation Φ is not regular since Fix(Φ) =

{0} × C '=∅. The foliation F is generated by the vectorfield ∂/∂z1, but

the vectorfield corresponding to Φ is θ = z1 ∂/∂z1.

Remark 5.4. If Φ is regular, i.e. Fix(Φ) = ∅, then

(1) F has leaves everywhere and L(x) = C · x for all x ∈ X.

(2) A leaf is proper iff it is a closed subset of X (compare proposi-

tion 2.14).

(3) A leaf C · x is compact iff rank Ix = 2.

Lemma 5.5. Let Φ be regular and X/F a Hausdorff space. Then

for every y ∈ X\X0 there exists an open neighborhood U of y and a

holomorphic function ω : U → C such that ω(x) ∈ I∗
x := Ix\{0} ∀ x ∈ U .
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Proof. By [9, Satz 15] resp. proposition 2.23 the canonical pro-

jection f : X → X/F =: Z is a surjective integral and Z is a normal

complex space. We consider an open flow box neighborhood W = D ×V

of y where D = {s ∈ C : |s| < 1} and V ⊂ Cn−1 is an open neighborhood

of 0 ∈ Cn−1, such that y = (0, 0) ∈ C × Cn−1 and

Φ
(
s,Φ(t, 0, v)

)
= Φ(s, t, v) = (s + t, v)

for s, t, v sufficiently small; we observe, that F|W is given by the projection

W → V . Then, for every α ∈ I∗
y , there exist open neighborhoods Tα of α

in C, Dα of 0 in D and Vα of 0 in V such that

Φ
(
Tα × (Dα × Vα)

)
⊂ D × V .

Since the restriction of f to V ∼= {0}×V ⊂ X is holomorphic and discrete,

we can assume that it is a finite branched covering of its image. For each

α ∈ I∗
y we have Φ(α, 0, 0) = (0, 0), and for any v small, we can write

Φ(α, 0, v) =
(
µα(v), φα(v)

)

with a holomorphic function µα : Vα → D with µα(0) = 0 and a (holo-

morphic) deck transformation φα : Vα → Vα if Vα is properly chosen.

Hence

λα(v) := α − µα(v)

is holomorphic in a neighborhood of 0 ∈ V with values in a neighborhood

of α and λα(0) = α. It satisfies

(5)
Φ

(
λα(v), 0, v) = Φ

( − µα(v), Φ(α, 0, v)
)

=

= Φ
( − µα(v), µα(v), φα(v)

)
=

(
0, φα(v)

)
.

Since φα is of finite order, there exists a positive integer l such that φl
α =

idVα . Using 5 one verifies that φβ = idVβ
for β := l ·α ∈ I∗

y . Consequently

λβ(v) ∈ I(0,v) = I(s,v) for all (s, v) ∈ Dβ ×Vβ, especially λβ(0) = β. Hence

U := Dβ × Vβ and ω : U → Tβ, defined by ω(s, v) := λβ(v), have the

desired properties.
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Proposition 5.6. Let Φ be regular and X/F a Hausdorff space.

Then X\X0 = X1 ∪X2 is either empty or an open and dense subset of X.

Proof. Assume that X\X0 '= ∅. Then X\X0 is an open subset of

X by lemma 5.5. The set

I :=
{
(t, x) ∈ C × X; Φ(t, x) = x

}
=

⋃

x∈X

(Ix × {x})

is analytic in C × X and the projection I → X is discrete. For a point

y ∈ X\X0 we choose a holomorphic function ω : U → C, U connected,

satisfying lemma 5.5. The irreducible component B of I containing the

graph
{(

ω(x), x
)

: x ∈ U
}

of ω is a purely n-dimensional analytic subset

of I. Let A be the closure of A := B\
(
{0}×X

)
in C×X, where C = IP1 is

the Riemann sphere. Because of the Thullen-Remmert-Stein singularity

theorem there are only two possibilities:

(I) A is an analytic subset of C × X.

(II) A ⊃ {∞} × X or A ⊃ {0} × X .

Let p2 : C × X → X denote the canonical projection. In case (I) the

image p2(A) is an analytic subset of X because p2 is proper. Since U ⊂
p2(A), we get X = p2(A) ⊂ p2(A). In case (II) the same conclusion holds

trivially.

In the following we assume that Fix(Φ) consists of isolated

points, i.e. dim Fix(Φ) = 0. In this case, since n≥2, we get Fix(Φ) =

S (see proposition 5.2), and X\ Fix(Φ) is the regular locus Xr of the

foliation F .

Any big integral variety φ : Y → X of F is called an integral curve.

It is called proper if φ is proper. We may interpret Y as an analytic

subset of X in this case. As in the preceding sections we call the integral

curve compact iff Y is compact (compare 2.13).

Now we formulate assumptions for Φ which are similar to the as-

sumptions 4.17 in section 4:
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Assumptions 5.7.

(a) Fix(Φ) consists of isolated points only; there exists a non-void locally

finite family (Γj)j∈J of mutually disjoint compact integral curves of

F = FΦ such that Fix(Φ) ⊂ IΓ :=
⋃

j∈J Γj.

(b) X ′/F ′ is Hausdorff, where X ′ := X\IΓ and F ′ = F|X′.

(c) No leaf L of F ′ is compact.

(d) For every leaf L of F ′ the points y ∈ Fix(Φ)∩L are singularities for

L in the following sense: there is no open neighborhood U of y with

an analytic subset A ⊂ U of pure dimension 1 passing through y such

that A\{y} ⊂ L.

We formulate some simple consequences of the assumptions 5.7:

Remarks 5.8. Because of (a) the Γj are Φ-invariant since they are

compact. Hence, X ′ is Φ-invariant too and the leaves of F ′ are Φ-orbits.

Because of (b) the leaves of F ′ are analytic subsets of X ′ and the equiv-

alence relation R′ corresponding to F ′ is open and analytic.

The leaves L of F ′ in X ′ and the connected components of IΓ\ Fix(Φ) are

the leaves of Fr.

Because of (c) and (d), F has leaves everywhere, and (Γj)j∈J is the family

of all compact leaves of F .

For F = FΦ the assumptions 4.17 and all its conclusions hold (com-

pare the theorems 4.21 and 4.22). So we get

Proposition 5.9.

(1) For every Γj the basin of attraction A(Γj) is an analytic subset of

X ′ ∪ Γj of dimension > 1 everywhere.

(2) If Γj is almost attractive then A(Γj) = X ′ ∪ Γj.

(3) For all Φ-orbits L in X ′, we have c′(F)≤l(L)≤e(L)≤2, in particular

c′(F) is bounded by 2.

(4) If dimX = 2 or if the equivalence relation R = RF is open, then

A(Γj) = X ′ ∪ Γj for all Γj, i.e. c′(F) = c(F).

(5) If R is open, then lim L = IΓ for all Φ-orbits L in X ′ and 1≤c′(F) =

c(F) = l(L)≤e(L)≤2.
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Using proposition 5.6 and lemma 5.5, we get

Theorem 5.10. If X is compact and Φ operates effectively, then:

(1) X0 = X ′, i.e. rankIx = 0 for all x ∈ X ′.

(2) For all Φ-orbits L in X ′ we have 1 = c′(F) = c(F) = l(L) = e(L),

i.e. there exists exactly one compact leaf and this is a global attractor.

Proof. (2) follows from (1) and proposition 5.9.

Ad (1) Let us assume that there exists a point y ∈ X ′ with rankIy =

1. We follow the proof of proposition 5.6 and make use of a holomorphic

mapping ω : U → C on an open, connected neighborhood U of y with

0'=ω(x) ∈ Ix for all x ∈ U , given by lemma 5.5. Let B be the irreducible

component of I =
⋃

x∈X(Ix × {x}) containing
{(

ω(x), x
)
; x ∈ U

}
. We

shall prove that there exists an ε > 0 such that |t|≥ε for all (t, x) ∈ B.

Since X is compact, Fix(Φ) consists of finitely many points P1, . . . , PN

and IΓ of finitely many compact leaves Γ1, . . . ,ΓK . We choose neighbor-

hoods Uν of Pν such that Uν ∩ Uµ = ∅ for ν '=µ and Γκ '⊂ Uν for all κ

and ν. We set I∗
A :=

⋃
y∈A

(
I∗

y × {y}
)

for subsets A of X. For the com-

pact set Y := X\ ⋃N
ν=1 Uν there exists an ε > 0 such that |t|≥ε for all

(t, y) ∈ I∗
Y (otherwise one could find a point y ∈ Y with non discrete Iy).

This holds also for all (t, y) ∈ I∗
Xr since each Φ-orbit in Xr = X\ Fix(Φ)

intersects Y because of remark 5.8. Since B ∩ ({0} × Xr
)

= ∅, i.e.

Br := B ∩ (C × Xr) ⊂ I∗
Xr , we get |t|≥ε for all (t, y) ∈ Br, and also for

all (t, y) ∈ B since Br = B.

Now we consider the projection p1 : C × X → C. Since X is compact,

the image p1(B) is an analytic subset of C and p1(B) ⊂ {
t ∈ C; |t|≥ε

}
.

Therefore p1(B) is discrete. We conclude ω(x) = c ∀ x ∈ U for a constant

c ∈ C with |c|≥ε, hence B = {c} × X, i.e. c ∈ Ix for all x ∈ X. This

contradicts our assumption that Φ acts effectively.

Proposition 5.11. If Φ satisfies the assumptions 5.7.(a) and (c),

then

(1) If Γj ∩ Fix(Φ) = ∅ then Γj is a torus.

(2) If Γj ∩Fix(Φ) '= ∅ then the normalization Γ̂j of Γj is a disjoint union

of Riemann spheres.
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(3) If L = L(x), x ∈ X ′ = X\IΓ, is a proper leaf of X ′ with rankL = 0

and if the number of elements of lim L is at least 2, then all points

y ∈ Fix(Φ)∩L are singularities for L.

There are examples (compare section 6) for which the Hausdorff con-

dition 5.7.(b) is not satisfied, but where the following assumptions are

valid (the Hausdorff assumption is weakened but a certain rank condi-

tion added):

Assumptions 5.12.

(a′) Fix(Φ) consists of isolated points; there exists a non-void locally finite

family (Γj)j∈J of compact mutually disjoint integral curves of F such

that Fix(Φ) ⊂ IΓ :=
⋃

j∈J Γj.

(b′) There exists an open connected dense and F-saturated subset X̃ of

X ′ = X\IΓ such that X̃/F̃ is Hausdorff, where F̃ := F|X̃ .

(c′) Every leaf L in X ′ is proper and of rank 0.

(d′) For every leaf L in X ′ the number of elements of lim L is at least 2.

Lemma 5.13. Under the assumptions 5.12 the points (a), (c) and

(d) of the assumptions 5.7 hold and FΦ has leaves everywhere.

Proof. (c) follows from (c′) and (d) is a consequence of (d′) and

proposition 5.11. Because of the remarks 5.8 the foliation has leaves

everywhere.

So we get under the assumptions 5.12:

Proposition 5.14. If J is finite,then there exists precisely one Γj

which is almost attractive. We have A(Γj) ⊃ X̃.

Proof. Every leaf L of F̃ satisfies the conditions of proposition 3.13,

hence there exists precisely one j ∈ J such that L∩Γj '=∅. Let λ : X̃ → J

be the mapping λ(x) := j iff L(x) ∩ Γj '=∅. Using arguments similar to

those in the proofs of 4.3 and 4.6 one shows that λ is locally constant.
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6 – Examples of C-actions on IPn

In this section we study examples of nontrivial holomorphic vector

fields θ on the n-dimensional complex projective space IPn = (Cn+1\{0})

/C∗, n≥2, and the associated holomorphic C-actions Φ : C × IPn →
IPn. These define holomorphic foliations F = FΦ which necessarily have

singularities. The vectorfields θ and the corresponding C-actions Φ can

be lifted to holomorphic vectorfields η on Cn+1\{0} of the form

η =
n∑

ν=0

αν

∂

∂zν

with linear coefficients αν resp. to holomorphic C-actions

Ψ : C × (Cn+1\{0}) → Cn+1\{0} ,

which commute with the canonical projection π : Cn+1\{0} → IPn, i.e.

θ = π∗η and π ◦ Ψ = Φ
(
IdC ×π

)
. For similar constructions in a more

general setting compare [13].

Definition 6.1 θ is called diagonal iff one can choose linear coor-

dinates t0, . . . , tn of Cn+1 such that

αν(t) = λνtν , λν ∈ C, for ν = 0, . . . , n .

If no three of the λν are IR-collinear in C, one says that θ is diagonal of

general type. Φ is called diagonal resp. diagonal of general type

iff θ has this property. In this case the lifted C-action Ψ is of the form

Ψ
(
τ, (t0, . . . , tn)

)
=

(
t0e

λ0τ , . . . , tneλnτ
)
.

In the following, C-actions Φ are always diagonal of general type.

Notations 6.2. If (e0, . . . , en) denotes the standard basis of Cn+1,

we set

0ν := π(eν), ν = 0, . . . , n,

Aνµ := π
{
tνeν + tµeµ; (tν , tµ) ∈ C2\{0}}

, 0≤ν < µ≤n,

Γ :=
⋃

0≤ν<µ≤n

Aνµ .
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Remark 6.3.

(1) Fix(Φ) = {00, . . . , 0n}.

(2) Aνµ\ Fix(Φ) is a Φ-orbit of rank 1 for 0≤ν < µ≤n.

(3) F = FΦ is a singular holomorphic foliation with Γ as (the only)

compact leaf; it contains the singular locus of F .

Proposition 6.4. All orbits in X ′ := IPn\Γ have rank 0 and are

proper leaves of F ′ := F|X′.

Proof. We have to show that for every point x0 ∈ X ′ the mapping

φ : C → X ′, φ(τ) := Φ(τ, x0)

is injective and proper, i.e. for each sequence (τν)ν∈IN in C with limν→∞
φ(τν) = y0 ∈ X ′ the limit lim τν exists in C. There are points t0 =

(t0, . . . , tn) and s0 = (s0, . . . , sn) in Cn+1 with at least three components

different from 0, such that π(t0) = x0 and π(s0) = y0. We can assume

that t0i '=0 and s0
i '=0 for i = 0, 1, 2 and that t00 = s0

0 = 1. We can write

φ(τ) as follows:

φ(τ) = Φ
(
τ, π(t0)

)
= π

(
eλ0τ , eλ1τ t01, . . . , eλnτ t0n

)

= π
(
1, e(λ1−λ0)τ t01, . . . , e(λn−λ0)τ t0n

)
.

We can assume λ1 − λ0 = 1
(
otherwise we replace τ(λ1 − λ0) by τ ∗) and

set λ := λ2 − λ0 = α + iβ with β '=0. Since

lim
ν→∞

φ(τν) = y0 = π(s0) = π(1, s0
1, . . . , s0

n) ,

we get

lim
ν→∞

eτν t01 = s0
1, lim

ν→∞
eλτν t02 = s0

2 .

Setting τν = αν + iβν we obtain

lim
ν→∞

eαν =

∣∣∣∣
s0
1

t01

∣∣∣∣ , lim
ν→∞

αν = log

∣∣∣∣
s0
1

t01

∣∣∣∣ =: ρ ,

lim
ν→∞

eααν−ββν =

∣∣∣∣
s0
2

t02

∣∣∣∣ , lim
ν→∞

βν =
αρ

β
− 1

β
log

∣∣∣∣
s0
2

t02

∣∣∣∣ =: σ ,

i.e.

lim τν = ρ + iσ .
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Notations 6.5. For 0≤κ < ν < µ≤n we set

Xκνµ := π
{
t ∈ Cn+1\{0}; tκ · tν · tµ '=0.

}
,

Aκνµ := IPn\Xκνµ (union of 3 hypersurfaces)

Fκνµ := F|Xκνµ .

By arguments similar to those applied in the proof of proposition 6.4

one obtains that the equivalence relation defined by the foliation Fκνµ on

Xκνµ is a closed subset of Xκνµ × Xκνµ. Consequently we get

Proposition 6.6. The quotients Xκνµ/Fκνµ, 0≤κ < ν < µ≤n, are

all hausdorff. Since ⋃

0≤κ<ν<µ≤n

Xκνµ = X ′ ,

each point x0 ∈ X ′ lies in such an open F-saturated subset Xκνµ =

IPn\Aκνµ of IPn.

Definition 6.7. An axis Aνµ, 0≤ν < µ≤n, is called extreme iff

the segment [λν , λµ] connecting λν and λµ in C is a side of the convex

hull of the points λ0, . . . , λn in C.

Again by arguments similar to those applied in the proof of proposi-

tion 6.4 one obtains

Proposition 6.8. For each leaf L in the open F-saturated subset

X̃ := π
(
(C∗)n+1

)
the limit set lim L is the union of all extreme axes.

There are at least three of them.

From results above follows

Theorem 6.9. For diagonal C-actions of general type the assump-

tions 5.12 are valid. Assumption 5.12.(b′) holds in the stronger version

given by proposition 6.6. Assumption 5.12.(d′) holds in the stronger ver-

sion (d′′): for each leaf L ⊂ X ′ the limit set lim L contains at least three

axes.
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Proof. (d′′) One can apply proposition 6.8, possibly only after

restriction to a lower dimensional projective subspace of IPn contain-

ing L.

In the special case n = 2, the stronger assumptions 5.7 are satis-

fied, and the conditions of theorem 5.10 and of proposition 5.9. (4) and

(5) hold.
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47 (1972), 185-204.

[7] H. Holmann: Attraktivität holomorpher Grenzzyklen, Ergebnisse der Tagung
komplexe Analysis und komplexe Differentialgeometrie vom 23. und 25. Septem-
ber 1986. Seminarbericht aus dem Fachbereich Mathematik und Informatik der
Fernuniversität Hagen Nr., 26 (1987), 17-34.

[8] H. Holmann: Attractive Holomorphic Limit Cycles, Seminarberichte aus dem
Fachbereich Mathematik und Informatik der Fernuniversität Hagen, Nr., 44 Teil
1 (1992), 133-149.
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