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On the Poisson kernel for the Kohn Laplacian

F. UGUZZONI - E. LANCONELLI

RIASSUNTO: In questa nota otteniamo alcune stime della funzione di Green e del
nucleo di Poisson per il Laplaciano di Kohn Ampn su domini limitati del gruppo di
Heisenberg IH". Grazie ad esse otteniamo poi stime LP delle funzioni Amn-armoniche
in termini delle norme LP dei loro valori al bordo.

ABSTRACT: In this note we obtain some estimates of the Green function and the
Poisson kernel for the Kohn Laplacian Amn on bounded domains of the Heisenberg
group H". As a consequence we are able to give LP estimates for Amn-harmonic
functions in terms of the LP norms of their boundary values.

1 — Introduction

We are concerned with the Kohn Laplacian Ay» on the Heisenberg
group IH" and with the study of Agr-harmonic functions on a bounded
domain Q of IH". The aim of this paper is to establish some estimates of
the Green function GG and the Poisson kernel P for Agn on 2, in terms
of the natural distance d on H".

Indeed, under suitable boundary regularity assumptions on §2, we
prove the following inequalities:

(11)  G(&n) <cd(n,00)d(&n)' "%, [VerG(&E, )| < cd(€,)' 77,

(1.2) |P(&,n)| < ed(€,m)' 9,
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where Q = 2n + 2 denotes the homogeneous dimension of IH" and c¢ is
a positive constant only depending on €2 and (). As a consequence we
easily obtain L? estimates for Agn-harmonic functions in terms of the
L? norms of their boundary values. Our main results are theorem 3.6,
theorem 4.3 and theorem 4.4.

For the classical Laplace operator in IR, N > 3, the estimates (1.1)
and (1.2) are well known: for instance, a proof in the case of domains
with Dini-Liapunov continuous boundary can be found in a paper by
WIDMAN [13]. As a matter of fact, our procedure is partially inspired to
the technique introduced in [13].

The paper is organized as follows. In section 2, after introducing some
notation, we obtain some estimates for the derivatives of Apn-harmonic
functions and we prove some Green-type representation formulas.

In section 3, theorem 3.6, we prove the inequalities in (1.1) for do-
mains satisfying the uniform exterior ball condition (property (P), see
definition 3.3). The proof is based on the maximum principle for Agn
and the estimates obtained in section 2.

In section 4 we show that, if {2 satisfies further regularity conditions,
then the harmonic measures related to €2 are absolutely continuous with
respect to the surface measure and have density functions given by the
Poisson kernel

P(£> ) = _<AV(G(£7 ))7N> :

Moreover (1.2) holds (theorem 4.3). From (1.2) LP-estimates immediately
follow: there exists a positive constant ¢, only depending on €2 and the
homogeneous dimension @, such that

[ ull7o@=< el wllfsoa): 1 <p<+o0,

for every Agn-harmonic function v in €2, continuous up to the boundary
(theorem 4.4).

Finally, in the Appendix, we prove that every convex open set satisfies
condition (P) (see remark 3.5). In particular, such a condition is verified
by the balls of the intrinsic distance d.

We would like to close this introduction by quoting two papers which
contain results partially related to ours. In [7] GAVEAU and VAUTHIER
showed an explicit representation formula for the Poisson kernelof a par-
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ticular halfspace of H'. Very recently, in an article treating a statistical
problem [10], KRYLOV has proved an L? estimate for the Green’s function

of the intrinsic ball for Hormander’s operators, sum of squares of vector
fields.

2 — Notation and preliminary results
We denote the points of the Heisenberg group H" with £ = (z,t) =
(x,y,t). The group law on IH" is given by
Eol' =+ t+t +2({x',y) — (x,y))).

The Kohn Laplacian on IH" is the operator

Apn =) (X;” +Y)7)

=1
where for every j € {1,... ,n}

Xj = 0p; +2y;0;, Y; =20, —2x;0,.
We set

Vi = (X1,..., X, Ya,...,Y,).

We denote by H() the set of the Agn-harmonic functions in . The
operator Apn has nonnegative characteristic form but it is not elliptic
at any point of IH": however, for the Agn-harmonic functions the strong
maximum principle holds (see [1]). It is also important to note that Agn
is a variational operator. Indeed

I, 0 2y
A= ( 0 I, —23:) .
2y —2x 4]z

A natural group of dilations on H" is given by ,(§) = (\z, A\*t), for

where
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A > 0. The jacobian determinant of J, is A9 where Q = 2n + 2 is called
the homogeneous dimension of IH". The operators Vir and Agn are
invariant w.r.t. the left translations 7¢ of IH" and homogeneous w.r.t.
the dilations &y of degree one and of degree two, respectively. A re-
markable analogy between the Kohn Laplacian and the classical Laplace
operator is that a fundamental solution of —Ap» with pole at zero is
given by

r<£>=ﬁ,

where cq is a suitable positive constant and
d(g) = (J[* + 1)

(see [3]). Moreover, if we define d(¢,&') = d(€'~" 0 &), then d is a distance
on IH" (see [2] for a complete proof of this statement). More details on
the Heisenberg group and the Kohn Laplacian can be found, for example,
in [4] and [6].

In our paper a basic role is played by the following mean value
formulas, due to GAVEAU [5] and to GAROFALO and LANCONELLI
([6], theorem 2.1). Let u be a Agn-harmonic function in an open sub-
set Q of H" and let B, = By(£,7) be a metric ball such that B, C Q.
Then

o YEE) n
2 ") = Gagr= s, e " E)

_ 1
- BQTQ-‘r?

(2.2) u(e) | 1o = Pu()de

where we have set ¥(§) = (J(Zg‘; and ¥(£,€) = (€7 0 €). We remark

that the solid mean value formula (2.2) is different from the one in [6],
but it can be easily obtained from (2.1) by integration. Indeed, by using
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coarea formula and keeping in mind the definition of 1,

QA2 [ e L [T WEE)
u(©) =% [ o u(€)de= BQW 2], it ey (€)do(€ o=
v(&.¢) ,
= g, Ly, e e =

1
= o /B 2 — 2 Pu(€)de.

We will use (2.2) in order to obtain a priori estimates of the derivatives
of u along the left-invariant fields X, and Y;.

PROPOSITION 2.1. Let 2 be an open subset of H", u € H(Q)) and
By(&,1m) € Q. Then for every Zy,... , Zy € {X1,..., X, Y1,...,Y,} we
have

c
(2.3) |Zy ... Zyu(§)] < — sup |y
T By(¢.r)

where ¢ = ¢(k, Q).

PRrROOF. Let ¢ € C§°(]0,1[, [0, +00[) be such that [ ¢ = 1. For every
e >0, we set . = 2(+) and define @ : H" — R,

) [ ()
B(¢) = | /d@ et

We also set &, = e 9P o .-1. It is easy to see that for every ¢ € H"

5.6 = s [ " .

de) Bot?™?

Moreover, for every & € Q. := {&| By(§,¢) C 2}, we have

(2.4) w(€) = (D, *u) /@ o Ou(e)de



664 F. UGUZZONI - E. LANCONELLI [6]

Indeed, by (2.2), we get

+oo €
w9 = [ oo = [ L [ e Puleigdo -

0 /BQ 0@+?

0
_ N2, (¢ o w.(o) ’_
=] 1z=~ “(g)chfq B gz et = (®. xu)(€).

Let us denote the k-th order operator Z;...Z, by Z. By differentiat-
ing (2.4) and keeping in mind that every Z; is invariant w.r.t. the left
translations on IH", for every £ € Q. we obtain

1Zu(©)] = 1((28) < w)(©) < ( sup [ul) [ 128,

Bq(&.e

_ c
:( sup \u\)a k/\Z@] < — sup |[u]. 0
Ba(&e) €% By(&e)

Recalling that Agn = divAV, by using the divergence theorem in a
standard way we obtain the following representation formula:

u(©) = [ (L(6)(AVu,N) = w(AV(T(E, ), N))dor+

(2.5)
—/F@JAWM VEeD

for every u € C>(D). Here D denotes a bounded open set with boundary
sufficiently smooth and IV is the outer unit normal to D. As usual, we
will say that a bounded open set 2 C IH" has a Green function, if for
every £ € Q there exists the classical solution h¢ of the Dirichlet problem

Agnhe =0 in Q
(2.6) { e .

hf = F({, ) in 89
In such a case the Green function is defined by
(27) G(§7 5/) = F(£7 5/) - hﬁ(é-/) véa fl €.

Let now D be a smooth domain with closure D contained in a bounded
open set Q having a Green function G. If u € H() we have, by the
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divergence theorem,

0= / (ulgnhe — heAgnu) = / ((AVhe, NY — he(AVu, N))do.
D

oD

Adding this identity to (2.5) and keeping in mind (2.7), we obtain

(28)  u©) = [ (GE)AVHN) —u(AV(G(E, ), N))do

3 — Estimates of the Green function

We start by proving this simple lemma.

LEMMA 3.1. Letr >0 and £, € H" \ By(0,r). Then

(3.1) IT(€) = T(&)] < er'™9d(&,€)
where ¢ = ¢(Q).

PROOF. We set t = d(£), t' = d(£') and we apply the mean value
theorem to the function ¢>~%. Since ¢,# > r, there exists ¢, > 7 such that

ID(E) —T(€)] = c[t* @ =t % = |2 - Q)to' 2t — t')| <
< ert=Q)d(€) — d(¢)] < er' (g, ¢") . 0

The following lemma shows a behavior of Agn-harmonic functions near
the boundary points where they locally vanish.

LEMMA 3.2. Let D be a bounded open subset of H", & € 0D and
u € H(D)NC(D). We set o = ulpp. If there exist r > 0 and ny € H"
such that
(i) Ba(no,r)ND =0, & € 0By(no, ),
(ii) ¢ =0 in 0D N Ba(no, 2r),
then

d(&aEO) \v/€ eD
r

(3.2) u(&)] < c(max|pl)

where ¢ = ¢(Q) only depends on Q.
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PROOF. We set M = max |¢| and define

I'(r) = T'(&,m0)

ORI

w(&) = M

Since w is Agn-harmonic in D and, due to (ii), w > |¢| in D, by the
maximum principle we obtain w > |u| in D. Then, using (3.1)

['(§0,m0) — T'(&;m0) r'=2d(€, &)
‘U(£)| S M ch_Q S CMTQT V§ eD
where all the constants ¢ only depend on Q. O

DEFINITION 3.3. We say that an open subset € of IH" verifies the
uniform exterior ball property (or, in short, that it verifies (P)) if there
exists 7o > 0 such that

VE € 0 Vr€]0,ry] In e H"

P
(P, such that By(n,7)NQ =0 and £ € B4(n, 7).

REMARK 3.4. If Q is a bounded open set satisfying (P) then, for
every ¢ € C(09) the Dirichlet problem

Apru=0 in
U= in 00

has a classical solution u € H(2) N C(Q) (see [2], see also [8] and [12]).
In particular €2 has the Green function.

REMARK 3.5. Every convex open set (in particular every d-ball)
verifies (P), ~for every ry > 0.

A

For the proof (not immediate) of the last statement we refer to the
appendix (corollary A.3).

THEOREM 3.6. Let Q) be a bounded and connected open subset of H"
verifying (P) and let G be its Green function. Then for every &, n € €,
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£ #n, we have

(33) 0 < G(&n) <cd(€,n)*°,

(3-4) G(&n) < cd(n,09Q)d(&,m)' "7,
(3.5) (Vi G (& )|(n) < cd(&n)'7,

where ¢ = ¢(, Q).

PROOF. From the maximum principle we immediately obtain 0 <
he <T'(§,-) in Q. Then (3.3) holds.

We now prove (3.4). There exists ro = r¢(£2) > 0 such that € verifies
(P),,- We fix §o,m0 € 2 (€ # mo) and we set

5 = d(n()?aQ)? 0= d(foﬂ?o) .
We define also
(3.6) r = min{g, ro}.

If either § > 2ry or p < 40, then (3.4) easily follows from (3.3), since 2 is
bounded. Suppose § < 2ry and ¢ > 46, i.e

(3.7) 0 < 2r.
There exists n; € 02 such that

d(no,m) =9.

Moreover, since {2 verifies (P)m and r < rg, there exists 7, € H" such
that

(38) Bd(T]Q,T) NQ = @, T S 8Bd(7]2, 7") .
We define

B, = Bd(nz,r), By = Bd<7727 27”)7 B, = Bd(772>4r)7
D:QQB4, 80 :(8Q)ﬂBg, 81 :(834)09
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We now choose ¢ € C(9D) such that

(3.9) =0 1indy, =1ind;, 0<ep<I1.

Since both  and By verify (P) (see remark 3.5) also D does. Then, by
remark 3.4, there exists u € H(D)NC(D) such that u = ¢ in 9D. More-

over, from the maximum principle and from (3.9), 0 < uw < 1. Thanks
to (3.8) and (3.9) we can now use lemma 3.2 and obtain

r

[u(@)] <c
where ¢ = ¢(Q). In particular, since 1y € D by (3.7), we get
)
(3.10) [u(mo)| < e

We now compare v := G(&,-) and u in D. By (3.6), (3.7) and (3.8) we
have

d(&0,m2) > d(&o,m0) — d(10,m2) > 0 — d(no,m) — d(n1,m2) =

3 5
=0—0—r>p0—3r>p——-—0=—
0 r>o r=2o 8@ 8@
so that
- - 5 0 o
(3.11) A(60, D) = d(&, B) = d(§o,m) —4r = 0~ 2 = 2.

Recalling (3.3), for every £ € D we finally obtain

v(€) < ed(€,6)"7? < coo® @

Thereby, if we set
v
w=—"
co0* @

we have w < 1 in D. As a consequence, using (3.9),

w<l=wu in 9.
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Since G(&p, &) = 0 for every £ € 952, we also have
w=0<wu in INNID =9D \ 9, .

Therefore w < u in dD. Moreover, since & ¢ D (see (3.11)), w € H(D).
By the maximum principle we then obtain w < u in D, i.e. v < ¢q0* “u
in D. This inequality, together with (3.10), yields

)
G(&0sm0) = v(mo) < co0” () < 6;92762 =
= cé(g)gl_("? = c(g)d(no, o) d(&y,m0) 9.
This proves (3.4) since 2 < ¢(Q) (see (3.6)).

Let us prove (3.5). While we will keep the previous notation
(0 = d(no,0), 0 = d(&,no) and v = G(&,-)) we define

1
e=3 min{g,d},
B= Bd(77076)7 By = Bd(7707 25) .
It results BC By CQand v € H(By). Moreover, for every n € B,

{ d(€o,m) = d(&o,m0) — d(n,m0) =2 0—€ 2> £

(3.12)
d(n,09) < d(1o, 992) +d(1,m0) <0+ < 30

We now use the estimate (2.3) for |Vynv| in B:
c
|Vinv(no)| < = sup|v].
€ B
Then if § < g, i.e. ¢ = £, using (3.4) and (3.12) we get
c N C. g -
[Vimv(no)| < = sup (d(n, 02)d(&,n)'~?) < =00 ™% = co'™“.
€ neB 3
On the other hand, if § > g, i.e. € = £, using (3.3) and (3.12) we obtain
c _ c 5 _
[Vimv(no)| < —supd(&o,m)*™? < —0* ™% =o'~
€ neB 3

Keeping in mind the meaning of v and p, this proves (3.5). 0
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4 — The Poisson kernel and L? estimates of Apr-harmonic
functions

Let © be an open subset of IH". We will say that Q satisfies (/) if
(I1) 09 is smooth.
Moreover, we will say that € satisfies ([3) if
(1) 0(Kq)=0

where o denotes the surface measure and

K¢ = {characteristic points of 02}

Here N = N(&) denotes, as usual, the outer unit normal to Q. The
following almost obvious remark will be useful to our purposes.

REMARK 4.1. If Q is bounded then K is compact.

Let Q be a bounded open subset of IH" satisfying (P), (I;) and (I3).
Let G be the Green function of 2. For every £ € Q and n € 9Q \ Kq we
define

(4.1) P(&n) = —(AV(G(, ), N)(n)-

We want to stress that, due to KOHN and NIRENBERG results [11] (see
also [9], theorem 7.1) the function G(&, -) is smooth up to 9N\ Kq. Then,
P in (4.1) is well defined.

LEMMA 4.2. Let Q2 be a bounded open subset of H" wverifying (P),
(I,) and (Iy) and let ¢ € C*(0). Suppose that ¢ is constant in a
neighborhood of K = Kq. Then if we denote by u the classical solution
to

U= in OS2

we have

(4.2) V| € L2(Q)
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(4.3) w(€) = /Em P(¢, )pdo VEEQ.

ProoF. Without loss of generality we can suppose ¢ = 0 in V' N 02
where V' is an open subset of IH" containing K. Since K is compact and
Q verifies (P), there exist another neighborhood V; of K, V; C V, and
a radius r; > 0 such that: for every n € (0Q2) NV} there is an exterior
ball of radius r; touching ) in 1 and such that the corresponding double
radius ball is contained in V. Then, by lemma 3.2, for every £ € 2 and
n € (0Q) NV,

d(€m)
< s LA/ VA '
()] < emaxip| == = ed(&, )
Moreover there exists another neighborhood V5 of K, V, C Vi, such that
for every £ € Vo, N Q and for every {’ € By = By(&, d(é’m)), there exists

2
n" € (0Q2) N'V; such that d(&',00) = d(£',n'). Hence,

[u(€)| < cd(¢,00) V¢ € Be.

We also have d(&’,09) < d(¢', &) +d(&,09) < 2d(€,09). Therefore, using
the estimate (2.3) for |[Vpru| in B, we obtain for every £ € V2 N Q
c c

 — ’ <e
ai€.00) 50 = dgom S, 10 =

[Vinu(§)] <

This proves that |Vynu| is bounded in Vo, N 2. On the other hand, by
means of the results in [11], |Vgru| € C*(2 \ V2). Then (4.2) holds.
We now show that (4.3) follows from (4.2). Let {2.}.-0 be a family

of smooth open sets such that Q. € Q and |J Q. = €. For every € > 0
e>0

the representation formula (2.8) holds for D = Q.. As e goes to zero,
from these representation formulas we obtain (4.3). Indeed, for every
fixed £ € Q, G(§,n) goes to zero as n approaches the boundary of .
Moreover (by (3.3) and (4.2))

(AVu, N)G(E, )| < (AVu, Vu)/(AN, N)2G(g, ) <
< Vil || A2 G(E ) < ed(, ) < ce



672 F. UGUZZONI - E. LANCONELLI [14]

and, by (3.5),
[u(AVG(E, ), N)| < [uVinG(&, )| | A [2< ed(€,) 9 < e

in €., if € is small enough. U

We are now in position to prove the main results of this paper.

THEOREM 4.3.  Let Q be a bounded open subset of H" verifying
(P), (I) and (I5) and let £ € Q. Let us denote by pu* the Ayn-harmonic
measure of Q0 with respect to £&. Then

(4.4) dpt = P(&,-)do

where o denotes the surface measure. Moreover, the following estimate
of the Poisson kernel P holds:

(4.5) 0< P(&n) <cd&n)'™@  VEE€Q, Ve
where ¢ = ¢(Q, Q).

PrROOF. We first prove (4.5). From the maximum principle and
from (4.3) it follows that P > 0. Moreover, using the estimate (3.5)
we get,

P(&,m) < ((AVG(E, ), VG(E, ) 2 (AN, N) /) (n) <

<[VirG(E,)lm) | Al 1|2 < cad(€,m)' ™7

Then (4.5) holds.
We now prove (4.4). We fix £ € 2 and we set, for every measurable
subset E of 052,

PEE) = [ Pl Vo
E
Then, since P > 0, P% is a positive measure on 9. We have to prove

that P® = puf. For sake of brevity we set P = P¢, = u*, K = Kq.
Thanks to lemma 4.2 we know that

/ pdp = / edP
o o0
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for every function ¢ € C§°(9€) constant in a neighborhood of K. Let E
be a closed subset of 2. Then for every € > 0 there exists an open subset
A of 9Q such that E C A, P(A\ E) < e. Moreover, since o(K) = 0,
there exist Uy, Uy, Us, open subsets of 92, such that K C U, C U, C
U CU, CU,y, P(Uy) <e. Let now ®,p,1 € C2(99Q) be such that

0<d<1,P=1in 00~ U;,P=0 in Uy,
0<p<1l,¢=0in N\Uy,,p=1 in Uy,

0<¢<1,4v=01in 00\A, v=1 in FE.

We have
pl0) < [ pdp= [ odP < PWs) <,

then
§s+/¢®du:s+/¢®dP§€+P(A) .
=ec+ P(E)+ P(ANE) < P(E)+2¢.

As € — 0 we obtain

W(E) < P(E)

for every closed subset E of 0{2. This estimate can be extended to the
open subsets of €2 by a standard argument. In particular, keeping the
previous notation, u(A \ E) < P(A \ E). Hence for every ¢ > 0 we get

P(E)< P(U))+P(E~U)) <e+P(E~U,) <

<5+/¢<I>dP—5+/w<I>du<5+u( ) =

=e+uE)+p(ANE) <e+p(E)+ P(ANE) <
< w(E)+ 2,

then P(E) < u(E). Therefore P(E) = u(E) for every closed subset E of
0f). This implies that P = p. O
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THEOREM 4.4. Let Q be a bounded open subset of H" verifying (P),
(I1) and (Iy). Let ¢ € C(0N2) and define

u© = [ P(e)pds,  geq.

Then wu is the (unique) classical solution of
Apgru =0 in Q)
U= in 0N

Moreover, for every p € [1,+00],

[ u ||1£p(9)§ clle Hip(ﬁﬂ)
where ¢ only depends on 2 and Q.

PROOF. The first part of the theorem is a straightforward conse-
quence of (4.4). The L” estimate can be easily proved by using (4.5).
Indeed, remarking that [,, P(&,-)do = 1, by the Hélder inequality we
get

P
P’

lulle < [ || Ple)do]”| [ Plelodalas =
= [ 1o’ [ P& mdgdotn) <
o0 Q
<o / el o) [ d(€ ) Cdgdotn) < i || ¢ oo
since

sup [ d(&,n) " 9dE < +oo. 0
neon Ja

— Appendix

PROPOSITION A.1. Let m be an hyperplane of TH" and let § € m;
then for every R > 0 there exist two metric balls B and B of radius R,
lying on opposite sides of w, such that

Eﬁﬂ:{fo}zgﬁw.
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PROOF. Since 7¢, is a bijective affine transformation mapping balls
into balls, without loss of generality we can suppose &, = 0.
If the hyperplane 7 includes the t axis, then

m={&=(21) | (4 2) =0}

where A = (a,b) € R* « {0}. By means of a direct computation we
easily verify that the metric balls of radius R centered at (Rﬁ’ 0) and

—(R"A‘%‘, 0) have the required properties.

Let us now suppose that m does not include the ¢ axis. In this case

m={ ="y, 1) [ ¥ = (a,2") + (b,y)}

where a,b € IR". We want to find two points &, € 0B4(0, R), lying on

opposite sides with respect to m, such that the origin is a minimum point

of the functions d(¢,-),d(¢,-) : # — IR. We set o = |a|>+ [b|? and r = R*.

If o = 0, then the points ¢ = (0, R?) and E: —¢ satisfy our requirement.
If o # 0 we set

1
(A.1) t= E(_STQ + 4N/t £ 2r3)2
Then t is a solution of the equation
(A.2) o*tt + 16r*t* — 16r° = 0.

In particular t* < r. We set v = v/r — 2 and
t

v 2r

(tb +va)

(A.3) y = 2—7;(ta —b)

§=(z,y,1)
Using (A.2) a simple computation yields
(A4) d¢)=R.
We now set Fr : R*" — IR,

Fe() = d(&, (¢, (a,a) + (b,y'))* =
=z ="+ ({a = 2y,2") + (b + 22,9) —1)*.
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By a direct computation one can verify that (since (A.3) and (A.4) hold)
it is

Hence the origin is a critical point for F¢. Moreover F¢ has hessian
H(Y) = HFE(Z/) = (8¢;Ck + 4|C|25j,k + 2ajak)j,ke{1,... 2n}

(where we have set for shortness ( = 2’ — z, a = (a — 2y, b+ 2x)) which is
positive semidefinite for every 2’ € IR*", since for every w € IR*" we have

(H(z)w,w) = 8(C,w)* + 4|¢[*lw]* + 2{a, w)* > 0.

In addition, H is positive definite in the origin, since |z| # 0 (being t* < r)
and
(H(0)w,w) > 4fz|*|w]* .

Therefore F¢ is convex and 0 is its strong absolute minimum point.

Since also t = —t is a solution of (A.2), if we define ¢ replacing t
to ¢t in (A.3), Fg has the same properties of F;. To conclude the proof
it is now enough to observe that { and £ belong to different connected
components of IH" \ 7 since 5%5 € m, being

((a,b,-1),6 +&) = <(a,b,—1),(—$b,§a,0)> =0. 0

COROLLARY A.2. IfQ is an halfspace of H" then for every &, € 02
and for every R > 0 there exists a metric ball B of radius R such that

COROLLARY A.3. If Q is a convex subset of H" (in particular if
Q is a d-ball) then for every & € 0 and for every R > 0 there exists a
metric ball B of radius R such that BN Q = {&}.

We explicitly remark that every d-ball centered at the origin is a convex
set since d is a convex function. As a consequence every d-ball B,(&,r)
is convex because By(&,r) = 7¢(Bq(0,7)) and 7¢ is an affine mapping.



[19] On the Poisson kernel for the Kohn Laplacian 677

REFERENCES

[1] J. M. BONY: Principe du mazimum, inégalité de Harnack et unicité du probléme
de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenoble,
19 (1969), 277-304.

[2] J. CYGAN: Wiener’s test for the Brownian motion on the Heisenberg group, Col-
loquium Math., 39 (1978), 367-373.

[3] G. B. FOLLAND: A fundamental solution for a subelliptic operator, Bull. Amer.
Math. Soc., 79 (1973), 373-376.

[4] G. B. FOLLAND — E. M. STEIN: Estimates for the O, complex and analysis on the
Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.

[5] B. GAVEAU: Principe de moindre action, propagation de la chaleur et estimées
sous elliptiques sur certains groups nilpotents, Acta Math., 139 (1977), 95-153.

[6] N. GAROFALO — E. LANCONELLL: Frequency functions on the Heisenberg group,
the uncertainty principle and unique continuation, Ann. Inst. Fourier Grenoble,
40 (1990), 313-356.

[7] B. GAVEAU — J. VAUTHIER: The Dirichlet problem on the Heisenberg group III:
harmonic measure of a certain half-space, Can. J. Math., 38 (1986), 666-671.

[8] W. HANSEN — H. HUEBER: The Dirichlet problem for subLaplacians on nilpotent
Lie groups-Geometric criteria for reqularity, Math. Ann., 276 (1987), 537-547.

[9] D. S. JERISON: The Dirichlet problem for the Kohn Laplacian on the Heisenberg
group I, J. Funct. An., 43 (1981), 97-142.

[10] N. KrYLOV: An L, estimate for Green’s functions under Hérmander’s condition,
preprint.

[11] J. J. KOnN — L. NIRENBERG: Non-coercive boundary value problems, Comm. Pure
Appl. Math., 18 (1965), 443-492.

[12] P. NEGRINI — V. SCORNAZZANL: Wiener criterion for a class of degenerate elliptic
operators, J. Diff. Eq., 66 (1987), 151-164.

[13] K. O. WIDMAN: Inequalities for the Green function and boundary continuity of
the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967),
17-37.

Lavoro pervenuto alla redazione il 9 maggio 1997
ed accettato per la pubblicazione il 9 luglio 1997.
Bozze licenziate il 23 settembre 1997

INDIRIZZO DEGLI AUTORI:

F. Uguzzoni — E. Lanconelli — Dipartimento di Matematica, Universita di Bologna — Piazza di
Porta S. Donato 5 — 40127 Bologna, Italy
E-mail: uguzzoni@dm.unibo.it

lanconel@dm.unibo.it



