On the Poisson kernel for the Kohn Laplacian

F. UGUZZONI - E. LANCONELLI

Riassunto: In questa nota otteniamo alcune stime della funzione di Green e del nucleo di Poisson per il Laplaciano di Kohn $\Delta_{\mathbb{H}^{n}}$ su domini limitati del gruppo di Heisenberg \mathbb{H}^{n}. Grazie ad esse otteniamo poi stime L^{p} delle funzioni $\Delta_{\mathbb{H}^{n}}$-armoniche in termini delle norme L^{p} dei loro valori al bordo.

Abstract: In this note we obtain some estimates of the Green function and the Poisson kernel for the Kohn Laplacian $\Delta_{\mathbb{H}^{n}}$ on bounded domains of the Heisenberg group \mathbb{H}^{n}. As a consequence we are able to give L^{p} estimates for $\Delta_{\mathbb{H}^{n}}$-harmonic functions in terms of the L^{p} norms of their boundary values.

1 - Introduction

We are concerned with the Kohn Laplacian $\Delta_{\mathbb{H}^{n}}$ on the Heisenberg group \mathbb{H}^{n} and with the study of $\Delta_{\mathbb{H}^{n}}$-harmonic functions on a bounded domain Ω of \mathbb{H}^{n}. The aim of this paper is to establish some estimates of the Green function G and the Poisson kernel P for $\Delta_{\mathbb{H}^{n}}$ on Ω, in terms of the natural distance d on \mathbb{H}^{n}.

Indeed, under suitable boundary regularity assumptions on Ω, we prove the following inequalities:

$$
\begin{equation*}
G(\xi, \eta) \leq c d(\eta, \partial \Omega) d(\xi, \eta)^{1-Q}, \quad\left|\nabla_{\mathbb{H}^{n}} G(\xi, \cdot)\right| \leq c d(\xi, \cdot)^{1-Q} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
|P(\xi, \eta)| \leq c d(\xi, \eta)^{1-Q}, \tag{1.2}
\end{equation*}
$$

where $Q=2 n+2$ denotes the homogeneous dimension of \mathbb{H}^{n} and c is a positive constant only depending on Ω and Q. As a consequence we easily obtain L^{p} estimates for $\Delta_{\mathbb{H}^{n}}$-harmonic functions in terms of the L^{p} norms of their boundary values. Our main results are theorem 3.6, theorem 4.3 and theorem 4.4.

For the classical Laplace operator in $\mathbb{R}^{N}, N \geq 3$, the estimates (1.1) and (1.2) are well known: for instance, a proof in the case of domains with Dini-Liapunov continuous boundary can be found in a paper by Widman [13]. As a matter of fact, our procedure is partially inspired to the technique introduced in [13].

The paper is organized as follows. In section 2, after introducing some notation, we obtain some estimates for the derivatives of $\Delta_{\mathbb{H}^{n}}$-harmonic functions and we prove some Green-type representation formulas.

In section 3 , theorem 3.6, we prove the inequalities in (1.1) for domains satisfying the uniform exterior ball condition (property (P), see definition 3.3). The proof is based on the maximum principle for $\Delta_{\mathbb{H}^{n}}$ and the estimates obtained in section 2.

In section 4 we show that, if Ω satisfies further regularity conditions, then the harmonic measures related to Ω are absolutely continuous with respect to the surface measure and have density functions given by the Poisson kernel

$$
P(\xi, \cdot)=-\langle A \nabla(G(\xi, \cdot)), N\rangle
$$

Moreover (1.2) holds (theorem 4.3). From (1.2) L^{p}-estimates immediately follow: there exists a positive constant c, only depending on Ω and the homogeneous dimension Q, such that

$$
\|u\|_{L^{p}(\Omega)}^{p} \leq c\|u\|_{L^{p}(\partial \Omega)}^{p}, \quad 1 \leq p<+\infty
$$

for every $\Delta_{\mathbb{H}^{n}}$-harmonic function u in Ω, continuous up to the boundary (theorem 4.4).

Finally, in the Appendix, we prove that every convex open set satisfies condition (P) (see remark 3.5). In particular, such a condition is verified by the balls of the intrinsic distance d.

We would like to close this introduction by quoting two papers which contain results partially related to ours. In [7] Gaveau and Vauthier showed an explicit representation formula for the Poisson kernelof a par-
ticular halfspace of \mathbb{H}^{1}. Very recently, in an article treating a statistical problem [10], KRylov has proved an L^{p} estimate for the Green's function of the intrinsic ball for Hormander's operators, sum of squares of vector fields.

2 - Notation and preliminary results

We denote the points of the Heisenberg group \mathbb{H}^{n} with $\xi=(z, t)=$ (x, y, t). The group law on \mathbb{H}^{n} is given by

$$
\xi \circ \xi^{\prime}=\left(z+z^{\prime}, t+t^{\prime}+2\left(\left\langle x^{\prime}, y\right\rangle-\left\langle x, y^{\prime}\right\rangle\right)\right)
$$

The Kohn Laplacian on \mathbb{H}^{n} is the operator

$$
\Delta_{\mathbb{H}^{n}}=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

where for every $j \in\{1, \ldots, n\}$

$$
X_{j}=\partial_{x_{j}}+2 y_{j} \partial_{t}, \quad Y_{j}=\partial_{y_{j}}-2 x_{j} \partial_{t}
$$

We set

$$
\nabla_{\mathbb{H}^{n}}=\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)
$$

We denote by $H(\Omega)$ the set of the $\Delta_{\mathbb{H}^{n}}$-harmonic functions in Ω. The operator $\Delta_{\mathbb{H}^{n}}$ has nonnegative characteristic form but it is not elliptic at any point of \mathbb{H}^{n} : however, for the $\Delta_{\mathbb{H}^{n}}$-harmonic functions the strong maximum principle holds (see [1]). It is also important to note that $\Delta_{\mathbb{H}^{n}}$ is a variational operator. Indeed

$$
\Delta_{\mathbb{H}^{n}}=\operatorname{div}(A \nabla)
$$

where

$$
A=\left(\begin{array}{ccc}
I_{n} & 0 & 2 y \\
0 & I_{n} & -2 x \\
2 y & -2 x & 4|z|^{2}
\end{array}\right)
$$

A natural group of dilations on \mathbb{H}^{n} is given by $\delta_{\lambda}(\xi)=\left(\lambda z, \lambda^{2} t\right)$, for
$\lambda>0$. The jacobian determinant of δ_{λ} is λ^{Q} where $Q=2 n+2$ is called the homogeneous dimension of \mathbb{H}^{n}. The operators $\nabla_{\mathbb{H}^{n}}$ and $\Delta_{\mathbb{H}^{n}}$ are invariant w.r.t. the left translations τ_{ξ} of \mathbb{H}^{n} and homogeneous w.r.t. the dilations δ_{λ} of degree one and of degree two, respectively. A remarkable analogy between the Kohn Laplacian and the classical Laplace operator is that a fundamental solution of $-\Delta_{\mathbb{H}^{n}}$ with pole at zero is given by

$$
\Gamma(\xi)=\frac{c_{Q}}{d(\xi)^{Q-2}}
$$

where c_{Q} is a suitable positive constant and

$$
d(\xi)=\left(|z|^{4}+t^{2}\right)^{1 / 4}
$$

(see [3]). Moreover, if we define $d\left(\xi, \xi^{\prime}\right)=d\left(\xi^{\prime-1} \circ \xi\right)$, then d is a distance on \mathbb{H}^{n} (see [2] for a complete proof of this statement). More details on the Heisenberg group and the Kohn Laplacian can be found, for example, in [4] and [6].

In our paper a basic role is played by the following mean value formulas, due to Gaveau [5] and to Garofalo and Lanconelli ([6], theorem 2.1). Let u be a $\Delta_{\mathbb{H}^{n}}$-harmonic function in an open subset Ω of \mathbb{H}^{n} and let $B_{r}=B_{d}(\xi, r)$ be a metric ball such that $\overline{B_{r}} \subseteq \Omega$. Then

$$
\begin{equation*}
u(\xi)=\frac{1}{Q \alpha_{Q} r^{Q-1}} \int_{\partial B_{r}} \frac{\psi\left(\xi, \xi^{\prime}\right)}{\left|\nabla d\left(\xi, \xi^{\prime}\right)\right|} u\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u(\xi)=\frac{1}{\beta_{Q} r^{Q+2}} \int_{B_{r}}\left|z-z^{\prime}\right|^{2} u\left(\xi^{\prime}\right) d \xi^{\prime} \tag{2.2}
\end{equation*}
$$

where we have set $\psi(\xi)=\frac{|z|^{2}}{d(\xi)^{2}}$ and $\psi\left(\xi, \xi^{\prime}\right)=\psi\left(\xi^{\prime-1} \circ \xi\right)$. We remark that the solid mean value formula (2.2) is different from the one in [6], but it can be easily obtained from (2.1) by integration. Indeed, by using
coarea formula and keeping in mind the definition of ψ,

$$
\begin{aligned}
u(\xi) & =\frac{Q+2}{r^{Q+2}} \int_{0}^{r} \varrho^{Q+1} u(\xi) d \varrho=\frac{1}{\beta_{Q} r^{Q+2}} \int_{0}^{r} \varrho^{2} \int_{\partial B_{\varrho}} \frac{\psi\left(\xi, \xi^{\prime}\right)}{\left|\nabla d\left(\xi, \xi^{\prime}\right)\right|} u\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right) d \varrho= \\
& =\frac{1}{\beta_{Q} r^{Q+2}} \int_{0}^{r} \int_{\partial B_{\varrho}} \frac{d\left(\xi, \xi^{\prime}\right)^{2} \psi\left(\xi, \xi^{\prime}\right)}{\left|\nabla d\left(\xi, \xi^{\prime}\right)\right|} u\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right) d \varrho= \\
& =\frac{1}{\beta_{Q} r^{Q+2}} \int_{B_{r}}\left|z-z^{\prime}\right|^{2} u\left(\xi^{\prime}\right) d \xi^{\prime}
\end{aligned}
$$

We will use (2.2) in order to obtain a priori estimates of the derivatives of u along the left-invariant fields X_{j} and Y_{j}.

Proposition 2.1. Let Ω be an open subset of $\mathbb{H}^{n}, u \in H(\Omega)$ and $\overline{B_{d}(\xi, r)} \subseteq \Omega$. Then for every $Z_{1}, \ldots, Z_{k} \in\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$ we have

$$
\begin{equation*}
\left|Z_{1} \ldots Z_{k} u(\xi)\right| \leq \frac{c}{r^{k}} \sup _{B_{d}(\xi, r)}|u| \tag{2.3}
\end{equation*}
$$

where $c=c(k, Q)$.
Proof. Let $\varphi \in C_{0}^{\infty}(] 0,1\left[,\left[0,+\infty[)\right.\right.$ be such that $\int \varphi=1$. For every $\varepsilon>0$, we set $\varphi_{\varepsilon}=\frac{1}{\varepsilon} \varphi(\dot{\bar{\varepsilon}})$ and define $\Phi: \mathbb{H}^{n} \rightarrow \mathbb{R}$,

$$
\Phi(\xi)=|z|^{2} \int_{d(\xi)}^{+\infty} \frac{\varphi(t)}{\beta_{Q} t^{Q+2}} d t
$$

We also set $\Phi_{\varepsilon}=\varepsilon^{-Q} \Phi \circ \delta_{\varepsilon^{-1}}$. It is easy to see that for every $\xi \in \mathbb{H}^{n}$

$$
\Phi_{\varepsilon}(\xi)=|z|^{2} \int_{d(\xi)}^{+\infty} \frac{\varphi_{\varepsilon}(t)}{\beta_{Q} t^{Q+2}} d t
$$

Moreover, for every $\xi \in \Omega_{\varepsilon}:=\left\{\xi \mid \overline{B_{d}(\xi, \varepsilon)} \subseteq \Omega\right\}$, we have

$$
\begin{equation*}
u(\xi)=\left(\Phi_{\varepsilon} * u\right)(\xi):=\int \Phi_{\varepsilon}\left(\xi^{\prime-1} \circ \xi\right) u\left(\xi^{\prime}\right) d \xi^{\prime} \tag{2.4}
\end{equation*}
$$

Indeed, by (2.2), we get

$$
\begin{aligned}
u(\xi) & =\int_{0}^{+\infty} \varphi_{\varepsilon}(\varrho) u(\xi) d \varrho=\int_{0}^{\varepsilon} \frac{\varphi_{\varepsilon}(\varrho)}{\beta_{Q} \varrho^{Q+2}} \int_{d\left(\xi, \xi^{\prime}\right)<\varrho}\left|z-z^{\prime}\right|^{2} u\left(\xi^{\prime}\right) d \xi^{\prime} d \varrho= \\
& =\int_{\mathbb{H}^{n}}\left|z-z^{\prime}\right|^{2} u\left(\xi^{\prime}\right) \int_{d\left(\xi, \xi^{\prime}\right)}^{+\infty} \frac{\varphi_{\varepsilon}(\varrho)}{\beta_{Q} \varrho^{Q+2}} d \varrho d \xi^{\prime}=\left(\Phi_{\varepsilon} * u\right)(\xi)
\end{aligned}
$$

Let us denote the k-th order operator $Z_{1} \ldots Z_{k}$ by Z. By differentiating (2.4) and keeping in mind that every Z_{j} is invariant w.r.t. the left translations on \mathbb{H}^{n}, for every $\xi \in \Omega_{\varepsilon}$ we obtain

$$
\begin{aligned}
|Z u(\xi)| & =\left|\left(\left(Z \Phi_{\varepsilon}\right) * u\right)(\xi)\right| \leq\left(\sup _{B_{d}(\xi, \varepsilon)}|u|\right) \int\left|Z \Phi_{\varepsilon}\right|= \\
& =\left(\sup _{B_{d}(\xi, \varepsilon)}|u|\right) \varepsilon^{-k} \int|Z \Phi| \leq \frac{c}{\varepsilon^{k}} \sup _{B_{d}(\xi, \varepsilon)}|u|
\end{aligned}
$$

Recalling that $\Delta_{\mathbb{H}^{n}}=\operatorname{div} A \nabla$, by using the divergence theorem in a standard way we obtain the following representation formula:

$$
\begin{align*}
u(\xi)= & \int_{\partial D}(\Gamma(\xi, \cdot)\langle A \nabla u, N\rangle-u\langle A \nabla(\Gamma(\xi, \cdot)), N\rangle) d \sigma+ \tag{2.5}\\
& -\int_{D} \Gamma(\xi, \cdot) \Delta_{\mathbb{H}^{n}} u, \quad \forall \xi \in D
\end{align*}
$$

for every $u \in C^{\infty}(\bar{D})$. Here D denotes a bounded open set with boundary sufficiently smooth and N is the outer unit normal to D. As usual, we will say that a bounded open set $\Omega \subseteq \mathbb{H}^{n}$ has a Green function, if for every $\xi \in \Omega$ there exists the classical solution h_{ξ} of the Dirichlet problem

$$
\begin{cases}\Delta_{\mathbb{H}^{n}} h_{\xi}=0 & \text { in } \Omega \tag{2.6}\\ h_{\xi}=\Gamma(\xi, \cdot) & \text { in } \partial \Omega\end{cases}
$$

In such a case the Green function is defined by

$$
\begin{equation*}
G\left(\xi, \xi^{\prime}\right)=\Gamma\left(\xi, \xi^{\prime}\right)-h_{\xi}\left(\xi^{\prime}\right) \quad \forall \xi, \xi^{\prime} \in \Omega \tag{2.7}
\end{equation*}
$$

Let now D be a smooth domain with closure \bar{D} contained in a bounded open set Ω having a Green function G. If $u \in H(\Omega)$ we have, by the
divergence theorem,

$$
0=\int_{D}\left(u \Delta_{\mathbb{H}^{n}} h_{\xi}-h_{\xi} \Delta_{\mathbb{H}^{n}} u\right)=\int_{\partial D}\left(u\left\langle A \nabla h_{\xi}, N\right\rangle-h_{\xi}\langle A \nabla u, N\rangle\right) d \sigma
$$

Adding this identity to (2.5) and keeping in mind (2.7), we obtain

$$
\begin{equation*}
u(\xi)=\int_{\partial D}(G(\xi, \cdot)\langle A \nabla u, N\rangle-u\langle A \nabla(G(\xi, \cdot)), N\rangle) d \sigma \tag{2.8}
\end{equation*}
$$

3 - Estimates of the Green function

We start by proving this simple lemma.
Lemma 3.1. Let $r>0$ and $\xi, \xi^{\prime} \in \mathbb{H}^{n} \backslash B_{d}(0, r)$. Then

$$
\begin{equation*}
\left|\Gamma(\xi)-\Gamma\left(\xi^{\prime}\right)\right| \leq c r^{1-Q} d\left(\xi, \xi^{\prime}\right) \tag{3.1}
\end{equation*}
$$

where $c=c(Q)$.
Proof. We set $t=d(\xi), t^{\prime}=d\left(\xi^{\prime}\right)$ and we apply the mean value theorem to the function t^{2-Q}. Since $t, t^{\prime} \geq r$, there exists $t_{0} \geq r$ such that

$$
\begin{aligned}
\left|\Gamma(\xi)-\Gamma\left(\xi^{\prime}\right)\right|= & c\left|t^{2-Q}-t^{\prime^{2-Q}}\right|=c\left|(2-Q) t_{0}{ }^{1-Q}\left(t-t^{\prime}\right)\right| \leq \\
& \leq c r^{1-Q}\left|d(\xi)-d\left(\xi^{\prime}\right)\right| \leq c r^{1-Q} d\left(\xi, \xi^{\prime}\right)
\end{aligned}
$$

The following lemma shows a behavior of $\Delta_{\mathbb{H}^{n}}$-harmonic functions near the boundary points where they locally vanish.

Lemma 3.2. Let D be a bounded open subset of $\mathbb{H}^{n}, \xi_{0} \in \partial D$ and $u \in H(D) \cap C(\bar{D})$. We set $\varphi=\left.u\right|_{\partial D}$. If there exist $r>0$ and $\eta_{0} \in \mathbb{H}^{n}$ such that
(i) $B_{d}\left(\eta_{0}, r\right) \cap D=\emptyset, \xi_{0} \in \partial B_{d}\left(\eta_{0}, r\right)$,
(ii) $\varphi \equiv 0$ in $\partial D \cap B_{d}\left(\eta_{0}, 2 r\right)$,
then

$$
\begin{equation*}
|u(\xi)| \leq c\left(\max _{\partial D}|\varphi|\right) \frac{d\left(\xi, \xi_{0}\right)}{r} \quad \forall \xi \in D \tag{3.2}
\end{equation*}
$$

where $c=c(Q)$ only depends on Q.

Proof. We set $M=\max _{\partial D}|\varphi|$ and define

$$
w(\xi)=M \frac{\Gamma(r)-\Gamma\left(\xi, \eta_{0}\right)}{\Gamma(r)-\Gamma(2 r)}, \quad \xi \in D
$$

Since w is $\Delta_{\mathbb{H}^{n}}$-harmonic in D and, due to (ii), $w \geq|\varphi|$ in ∂D, by the maximum principle we obtain $w \geq|u|$ in D. Then, using (3.1)

$$
|u(\xi)| \leq M \frac{\Gamma\left(\xi_{0}, \eta_{0}\right)-\Gamma\left(\xi, \eta_{0}\right)}{c r^{2-Q}} \leq c M \frac{r^{1-Q} d\left(\xi, \xi_{0}\right)}{r^{2-Q}} \quad \forall \xi \in D
$$

where all the constants c only depend on Q.

Definition 3.3. We say that an open subset Ω of \mathbb{H}^{n} verifies the uniform exterior ball property (or, in short, that it verifies (P)) if there exists $r_{0}>0$ such that

$$
\begin{align*}
& \left.\forall \xi \in \partial \Omega \quad \forall r \in] 0, r_{0}\right] \exists \eta \in \mathbb{H}^{n} \\
& \text { such that } B_{d}(\eta, r) \cap \Omega=\emptyset \text { and } \xi \in \partial B_{d}(\eta, r) . \tag{P}
\end{align*}
$$

REMARK 3.4. If Ω is a bounded open set satisfying (P) then, for every $\varphi \in C(\partial \Omega)$ the Dirichlet problem

$$
\begin{cases}\Delta_{\mathbb{H}^{n}} u=0 & \text { in } \Omega \\ u=\varphi & \text { in } \partial \Omega\end{cases}
$$

has a classical solution $u \in H(\Omega) \cap C(\bar{\Omega})$ (see [2], see also [8] and [12]). In particular Ω has the Green function.

REMARK 3.5. Every convex open set (in particular every d-ball) verifies $(\mathrm{P})_{r_{0}}$ for every $r_{0}>0$.

For the proof (not immediate) of the last statement we refer to the appendix (corollary A.3).

THEOREM 3.6. Let Ω be a bounded and connected open subset of \mathbb{H}^{n} verifying (P) and let G be its Green function. Then for every $\xi, \eta \in \Omega$,
$\xi \neq \eta$, we have

$$
\begin{align*}
0<G(\xi, \eta) & \leq c d(\xi, \eta)^{2-Q} \tag{3.3}\\
G(\xi, \eta) & \leq c d(\eta, \partial \Omega) d(\xi, \eta)^{1-Q} \tag{3.4}\\
\left|\nabla_{\mathbb{H}^{n}} G(\xi, \cdot)\right|(\eta) & \leq c d(\xi, \eta)^{1-Q} \tag{3.5}
\end{align*}
$$

where $c=c(\Omega, Q)$.
Proof. From the maximum principle we immediately obtain $0<$ $h_{\xi}<\Gamma(\xi, \cdot)$ in Ω. Then (3.3) holds.

We now prove (3.4). There exists $r_{0}=r_{0}(\Omega)>0$ such that Ω verifies $(\mathrm{P})_{r_{0}}$. We fix $\xi_{0}, \eta_{0} \in \Omega\left(\xi_{0} \neq \eta_{0}\right)$ and we set

$$
\delta=d\left(\eta_{0}, \partial \Omega\right), \varrho=d\left(\xi_{0}, \eta_{0}\right)
$$

We define also

$$
\begin{equation*}
r=\min \left\{\frac{\varrho}{8}, r_{0}\right\} \tag{3.6}
\end{equation*}
$$

If either $\delta \geq 2 r_{0}$ or $\varrho \leq 4 \delta$, then (3.4) easily follows from (3.3), since Ω is bounded. Suppose $\delta<2 r_{0}$ and $\varrho>4 \delta$, i.e

$$
\begin{equation*}
\delta<2 r \tag{3.7}
\end{equation*}
$$

There exists $\eta_{1} \in \partial \Omega$ such that

$$
d\left(\eta_{0}, \eta_{1}\right)=\delta
$$

Moreover, since Ω verifies $(\mathrm{P})_{r_{0}}$ and $r \leq r_{0}$, there exists $\eta_{2} \in \mathbb{H}^{n}$ such that

$$
\begin{equation*}
B_{d}\left(\eta_{2}, r\right) \cap \Omega=\emptyset, \quad \eta_{1} \in \partial B_{d}\left(\eta_{2}, r\right) \tag{3.8}
\end{equation*}
$$

We define

$$
\begin{array}{rlrl}
B_{1} & =B_{d}\left(\eta_{2}, r\right), & B_{2}=B_{d}\left(\eta_{2}, 2 r\right), & \\
D & B_{4}=B_{d}\left(\eta_{2}, 4 r\right), \\
D \cap B_{4}, & & \partial_{0}=(\partial \Omega) \cap B_{2}, & \\
\partial_{1}=\left(\partial B_{4}\right) \cap \Omega
\end{array}
$$

We now choose $\varphi \in C(\partial D)$ such that

$$
\begin{equation*}
\varphi \equiv 0 \text { in } \partial_{0}, \quad \varphi \equiv 1 \text { in } \partial_{1}, \quad 0 \leq \varphi \leq 1 \tag{3.9}
\end{equation*}
$$

Since both Ω and B_{4} verify (P) (see remark 3.5) also D does. Then, by remark 3.4, there exists $u \in H(D) \cap C(\bar{D})$ such that $u=\varphi$ in ∂D. Moreover, from the maximum principle and from (3.9), $0 \leq u \leq 1$. Thanks to (3.8) and (3.9) we can now use lemma 3.2 and obtain

$$
|u(\xi)| \leq c \frac{d\left(\xi, \eta_{1}\right)}{r} \quad \forall \xi \in D
$$

where $c=c(Q)$. In particular, since $\eta_{0} \in D$ by (3.7), we get

$$
\begin{equation*}
\left|u\left(\eta_{0}\right)\right| \leq c \frac{\delta}{r} \tag{3.10}
\end{equation*}
$$

We now compare $v:=G\left(\xi_{0}, \cdot\right)$ and u in D. By (3.6), (3.7) and (3.8) we have

$$
\begin{aligned}
d\left(\xi_{0}, \eta_{2}\right) & \geq d\left(\xi_{0}, \eta_{0}\right)-d\left(\eta_{0}, \eta_{2}\right) \geq \varrho-d\left(\eta_{0}, \eta_{1}\right)-d\left(\eta_{1}, \eta_{2}\right)= \\
& =\varrho-\delta-r>\varrho-3 r \geq \varrho-\frac{3}{8} \varrho=\frac{5}{8} \varrho
\end{aligned}
$$

so that

$$
\begin{equation*}
d\left(\xi_{0}, \bar{D}\right) \geq d\left(\xi_{0}, \overline{B_{4}}\right) \geq d\left(\xi_{0}, \eta_{2}\right)-4 r \geq \frac{5}{8} \varrho-\frac{\varrho}{2}=\frac{\varrho}{8} \tag{3.11}
\end{equation*}
$$

Recalling (3.3), for every $\xi \in \bar{D}$ we finally obtain

$$
v(\xi) \leq c d\left(\xi, \xi_{0}\right)^{2-Q} \leq c_{0} \varrho^{2-Q}
$$

Thereby, if we set

$$
w=\frac{v}{c_{0} \varrho^{2-Q}}
$$

we have $w \leq 1$ in \bar{D}. As a consequence, using (3.9),

$$
w \leq 1=u \text { in } \partial_{1}
$$

Since $G\left(\xi_{0}, \xi\right)=0$ for every $\xi \in \partial \Omega$, we also have

$$
w=0 \leq u \text { in } \partial \Omega \cap \partial D=\partial D \backslash \partial_{1}
$$

Therefore $w \leq u$ in ∂D. Moreover, since $\xi_{0} \notin \bar{D}$ (see (3.11)), $w \in H(D)$. By the maximum principle we then obtain $w \leq u$ in D, i.e. $v \leq c_{0} \varrho^{2-Q} u$ in D. This inequality, together with (3.10), yields

$$
\begin{aligned}
G\left(\xi_{0}, \eta_{0}\right) & =v\left(\eta_{0}\right) \leq c_{0} \varrho^{2-Q} u\left(\eta_{0}\right) \leq c \frac{\delta}{r} \varrho^{2-Q}= \\
& =c \delta\left(\frac{\varrho}{r}\right) \varrho^{1-Q}=c\left(\frac{\varrho}{r}\right) d\left(\eta_{0}, \partial \Omega\right) d\left(\xi_{0}, \eta_{0}\right)^{1-Q}
\end{aligned}
$$

This proves (3.4) since $\frac{\varrho}{r} \leq c(\Omega)$ (see (3.6)).
Let us prove (3.5). While we will keep the previous notation $\left(\delta=d\left(\eta_{0}, \partial \Omega\right), \varrho=d\left(\xi_{0}, \eta_{0}\right)\right.$ and $\left.v=G\left(\xi_{0}, \cdot\right)\right)$ we define

$$
\begin{aligned}
\varepsilon & =\frac{1}{2} \min \{\varrho, \delta\} \\
B & =B_{d}\left(\eta_{0}, \varepsilon\right), B_{0}=B_{d}\left(\eta_{0}, 2 \varepsilon\right)
\end{aligned}
$$

It results $\bar{B} \subseteq B_{0} \subseteq \Omega$ and $v \in H\left(B_{0}\right)$. Moreover, for every $\eta \in B$,

$$
\left\{\begin{array}{l}
d\left(\xi_{0}, \eta\right) \geq d\left(\xi_{0}, \eta_{0}\right)-d\left(\eta, \eta_{0}\right) \geq \varrho-\varepsilon \geq \frac{\varrho}{2} \tag{3.12}\\
d(\eta, \partial \Omega) \leq d\left(\eta_{0}, \partial \Omega\right)+d\left(\eta, \eta_{0}\right) \leq \delta+\varepsilon \leq \frac{3}{2} \delta
\end{array}\right.
$$

We now use the estimate (2.3) for $\left|\nabla_{\mathbb{H}^{n} v}\right|$ in B :

$$
\left|\nabla_{\mathbb{H}^{n}} v\left(\eta_{0}\right)\right| \leq \frac{c}{\varepsilon} \sup _{B}|v|
$$

Then if $\delta \leq \varrho$, i.e. $\varepsilon=\frac{\delta}{2}$, using (3.4) and (3.12) we get

$$
\left|\nabla_{\mathbb{H}^{n}} v\left(\eta_{0}\right)\right| \leq \frac{c}{\varepsilon} \sup _{\eta \in B}\left(d(\eta, \partial \Omega) d\left(\xi_{0}, \eta\right)^{1-Q}\right) \leq \frac{c}{\varepsilon} \delta \varrho^{1-Q}=c \varrho^{1-Q}
$$

On the other hand, if $\delta \geq \varrho$, i.e. $\varepsilon=\frac{\varrho}{2}$, using (3.3) and (3.12) we obtain

$$
\left|\nabla_{\mathbb{H}^{n}} v\left(\eta_{0}\right)\right| \leq \frac{c}{\varepsilon} \sup _{\eta \in B} d\left(\xi_{0}, \eta\right)^{2-Q} \leq \frac{c}{\varepsilon} \varrho^{2-Q}=c \varrho^{1-Q}
$$

Keeping in mind the meaning of v and ϱ, this proves (3.5).

4 - The Poisson kernel and L^{p} estimates of $\Delta_{\mathbb{H}^{n}}$-harmonic functions

Let Ω be an open subset of \mathbb{H}^{n}. We will say that Ω satisfies $\left(I_{1}\right)$ if
(I_{1}) $\partial \Omega \quad$ is smooth.

Moreover, we will say that Ω satisfies (I_{2}) if

$$
\begin{equation*}
\sigma\left(K_{\Omega}\right)=0 \tag{2}
\end{equation*}
$$

where σ denotes the surface measure and

$$
\begin{aligned}
K_{\Omega} & =\{\text { characteristic points of } \partial \Omega\} \\
& =\left\{\xi \in \partial \Omega \mid N_{j}+2 y_{j} N_{2 n+1}=0=N_{n+j}-2 x_{j} N_{2 n+1} \forall j \in\{1, \ldots, n\}\right\} .
\end{aligned}
$$

Here $N=N(\xi)$ denotes, as usual, the outer unit normal to Ω. The following almost obvious remark will be useful to our purposes.

Remark 4.1. If Ω is bounded then K_{Ω} is compact.
Let Ω be a bounded open subset of \mathbb{H}^{n} satisfying (P), (I_{1}) and (I_{2}). Let G be the Green function of Ω. For every $\xi \in \Omega$ and $\eta \in \partial \Omega \backslash K_{\Omega}$ we define

$$
\begin{equation*}
P(\xi, \eta)=-\langle A \nabla(G(\xi, \cdot)), N\rangle(\eta) . \tag{4.1}
\end{equation*}
$$

We want to stress that, due to Kohn and Nirenberg results [11] (see also [9], theorem 7.1) the function $G(\xi, \cdot)$ is smooth up to $\partial \Omega \backslash K_{\Omega}$. Then, P in (4.1) is well defined.

Lemma 4.2. Let Ω be a bounded open subset of \mathbb{H}^{n} verifying (P), $\left(I_{1}\right)$ and $\left(I_{2}\right)$ and let $\varphi \in C^{\infty}(\partial \Omega)$. Suppose that φ is constant in a neighborhood of $K=K_{\Omega}$. Then if we denote by u the classical solution to

$$
\begin{cases}\Delta_{\mathbb{H}^{n}} u=0 & \text { in } \Omega \\ u=\varphi & \text { in } \partial \Omega\end{cases}
$$

we have

$$
\begin{equation*}
\left|\nabla_{\mathbb{H}^{n} u} u\right| \in L^{\infty}(\Omega) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u(\xi)=\int_{\partial \Omega} P(\xi, \cdot) \varphi d \sigma \quad \forall \xi \in \Omega \tag{4.3}
\end{equation*}
$$

Proof. Without loss of generality we can suppose $\varphi=0$ in $V \cap \partial \Omega$ where V is an open subset of \mathbb{H}^{n} containing K. Since K is compact and Ω verifies (P), there exist another neighborhood V_{1} of $K, V_{1} \subseteq V$, and a radius $r_{1}>0$ such that: for every $\eta \in(\partial \Omega) \cap V_{1}$ there is an exterior ball of radius r_{1} touching Ω in η and such that the corresponding double radius ball is contained in V. Then, by lemma 3.2 , for every $\xi \in \Omega$ and $\eta \in(\partial \Omega) \cap V_{1}$,

$$
|u(\xi)| \leq c \max _{\partial \Omega}|\varphi| \frac{d(\xi, \eta)}{r_{1}}=c d(\xi, \eta)
$$

Moreover there exists another neighborhood V_{2} of $K, V_{2} \subseteq V_{1}$, such that for every $\xi \in V_{2} \cap \Omega$ and for every $\xi^{\prime} \in B_{\xi}=B_{d}\left(\xi, \frac{d(\xi, \partial \Omega)}{2}\right)$, there exists $\eta^{\prime} \in(\partial \Omega) \cap V_{1}$ such that $d\left(\xi^{\prime}, \partial \Omega\right)=d\left(\xi^{\prime}, \eta^{\prime}\right)$. Hence,

$$
\left|u\left(\xi^{\prime}\right)\right| \leq c d\left(\xi^{\prime}, \partial \Omega\right) \quad \forall \xi^{\prime} \in B_{\xi}
$$

We also have $d\left(\xi^{\prime}, \partial \Omega\right) \leq d\left(\xi^{\prime}, \xi\right)+d(\xi, \partial \Omega) \leq \frac{3}{2} d(\xi, \partial \Omega)$. Therefore, using the estimate (2.3) for $\left|\nabla_{\mathbb{H}^{n}} u\right|$ in B_{ξ}, we obtain for every $\xi \in V_{2} \cap \Omega$

$$
\left|\nabla_{\mathbb{H}^{n}} u(\xi)\right| \leq \frac{c}{d(\xi, \partial \Omega)} \sup _{B_{\xi}}|u| \leq \frac{c}{d(\xi, \partial \Omega)} \sup _{\xi^{\prime} \in B_{\xi}} d\left(\xi^{\prime}, \partial \Omega\right) \leq c
$$

This proves that $\left|\nabla_{\mathbb{H}^{n}} u\right|$ is bounded in $V_{2} \cap \Omega$. On the other hand, by means of the results in [11], $\left|\nabla_{\mathbb{H}^{n}} u\right| \in C^{\infty}\left(\overline{\Omega \backslash V_{2}}\right)$. Then (4.2) holds.

We now show that (4.3) follows from (4.2). Let $\left\{\Omega_{\varepsilon}\right\}_{\varepsilon>0}$ be a family of smooth open sets such that $\overline{\Omega_{\varepsilon}} \subseteq \Omega$ and $\bigcup_{\varepsilon>0} \Omega_{\varepsilon}=\Omega$. For every $\varepsilon>0$ the representation formula (2.8) holds for $D=\Omega_{\varepsilon}$. As ε goes to zero, from these representation formulas we obtain (4.3). Indeed, for every fixed $\xi \in \Omega, G(\xi, \eta)$ goes to zero as η approaches the boundary of Ω. Moreover (by (3.3) and (4.2))

$$
\begin{aligned}
|\langle A \nabla u, N\rangle G(\xi, \cdot)| & \leq\langle A \nabla u, \nabla u\rangle^{1 / 2}\langle A N, N\rangle^{1 / 2} G(\xi, \cdot) \leq \\
& \leq\left|\nabla_{\mathbb{H}^{n}} u\right|\|A\|^{\frac{1}{2}} G(\xi, \cdot) \leq c d(\xi, \cdot)^{2-Q} \leq c_{\xi}
\end{aligned}
$$

and, by (3.5),

$$
|u\langle A \nabla G(\xi, \cdot), N\rangle| \leq\left|u \nabla_{\mathbb{H}^{n}} G(\xi, \cdot)\right|\|A\|^{\frac{1}{2}} \leq c d(\xi, \cdot)^{1-Q} \leq c_{\xi}
$$

in $\partial \Omega_{\varepsilon}$, if ε is small enough.
We are now in position to prove the main results of this paper.
THEOREM 4.3. Let Ω be a bounded open subset of \mathbb{H}^{n} verifying $(\mathrm{P}),\left(I_{1}\right)$ and $\left(I_{2}\right)$ and let $\xi \in \Omega$. Let us denote by μ^{ξ} the $\Delta_{\mathbb{H}^{n}}$-harmonic measure of Ω with respect to ξ. Then

$$
\begin{equation*}
d \mu^{\xi}=P(\xi, \cdot) d \sigma \tag{4.4}
\end{equation*}
$$

where σ denotes the surface measure. Moreover, the following estimate of the Poisson kernel P holds:

$$
\begin{equation*}
0 \leq P(\xi, \eta) \leq c d(\xi, \eta)^{1-Q} \quad \forall \xi \in \Omega, \forall \eta \in \partial \Omega \tag{4.5}
\end{equation*}
$$

where $c=c(\Omega, Q)$.
Proof. We first prove (4.5). From the maximum principle and from (4.3) it follows that $P \geq 0$. Moreover, using the estimate (3.5) we get

$$
\begin{aligned}
P(\xi, \eta) & \leq\left(\langle A \nabla G(\xi, \cdot), \nabla G(\xi, \cdot)\rangle^{1 / 2}\langle A N, N\rangle^{1 / 2}\right)(\eta) \leq \\
& \leq\left|\nabla_{\mathbb{H}^{n}} G(\xi, \cdot)\right|(\eta)\|A(\eta)\|^{\frac{1}{2}} \leq c_{\Omega} d(\xi, \eta)^{1-Q}
\end{aligned}
$$

Then (4.5) holds.
We now prove (4.4). We fix $\xi \in \Omega$ and we set, for every measurable subset E of $\partial \Omega$,

$$
P^{\xi}(E)=\int_{E} P(\xi, \cdot) d \sigma
$$

Then, since $P \geq 0, P^{\xi}$ is a positive measure on $\partial \Omega$. We have to prove that $P^{\xi}=\mu^{\xi}$. For sake of brevity we set $P=P^{\xi}, \mu=\mu^{\xi}, K=K_{\Omega}$. Thanks to lemma 4.2 we know that

$$
\int_{\partial \Omega} \varphi d \mu=\int_{\partial \Omega} \varphi d P
$$

for every function $\varphi \in C_{0}^{\infty}(\partial \Omega)$ constant in a neighborhood of K. Let E be a closed subset of $\partial \Omega$. Then for every $\varepsilon>0$ there exists an open subset A of $\partial \Omega$ such that $E \subseteq A, P(A \backslash E)<\varepsilon$. Moreover, since $\sigma(K)=0$, there exist U_{0}, U_{1}, U_{2}, open subsets of $\partial \Omega$, such that $K \subseteq U_{0} \subseteq \overline{U_{0}} \subseteq$ $U_{1} \subseteq \overline{U_{1}} \subseteq U_{2}, P\left(U_{2}\right)<\varepsilon$. Let now $\Phi, \varphi, \psi \in C_{0}^{\infty}(\partial \Omega)$ be such that

$$
\begin{aligned}
& 0 \leq \Phi \leq 1, \Phi \equiv 1 \text { in } \partial \Omega \backslash U_{1}, \Phi \equiv 0 \text { in } U_{0} \\
& 0 \leq \varphi \leq 1, \varphi \equiv 0 \text { in } \partial \Omega \backslash U_{2}, \varphi \equiv 1 \text { in } U_{1} \\
& 0 \leq \psi \leq 1, \psi \equiv 0 \text { in } \partial \Omega \backslash A, \psi \equiv 1 \text { in } E
\end{aligned}
$$

We have

$$
\mu\left(U_{1}\right) \leq \int \varphi d \mu=\int \varphi d P \leq P\left(U_{2}\right)<\varepsilon
$$

then

$$
\begin{aligned}
\mu(E) & \leq \mu\left(U_{1}\right)+\mu\left(E \backslash U_{1}\right)<\varepsilon+\mu\left(E \backslash U_{1}\right) \leq \\
& \leq \varepsilon+\int \psi \Phi d \mu=\varepsilon+\int \psi \Phi d P \leq \varepsilon+P(A)= \\
& =\varepsilon+P(E)+P(A \backslash E)<P(E)+2 \varepsilon
\end{aligned}
$$

As $\varepsilon \rightarrow 0$ we obtain

$$
\mu(E) \leq P(E)
$$

for every closed subset E of $\partial \Omega$. This estimate can be extended to the open subsets of $\partial \Omega$ by a standard argument. In particular, keeping the previous notation, $\mu(A \backslash E) \leq P(A \backslash E)$. Hence for every $\varepsilon>0$ we get

$$
\begin{aligned}
P(E) & \leq P\left(U_{1}\right)+P\left(E \backslash U_{1}\right)<\varepsilon+P\left(E \backslash U_{1}\right) \leq \\
& \leq \varepsilon+\int \psi \Phi d P=\varepsilon+\int \psi \Phi d \mu \leq \varepsilon+\mu(A)= \\
& =\varepsilon+\mu(E)+\mu(A \backslash E) \leq \varepsilon+\mu(E)+P(A \backslash E)< \\
& <\mu(E)+2 \varepsilon
\end{aligned}
$$

then $P(E) \leq \mu(E)$. Therefore $P(E)=\mu(E)$ for every closed subset E of $\partial \Omega$. This implies that $P=\mu$.

ThEOREM 4.4. Let Ω be a bounded open subset of \mathbb{H}^{n} verifying (P), $\left(I_{1}\right)$ and $\left(I_{2}\right)$. Let $\varphi \in C(\partial \Omega)$ and define

$$
u(\xi)=\int_{\partial \Omega} P(\xi, \cdot) \varphi d \sigma, \quad \xi \in \Omega
$$

Then u is the (unique) classical solution of

$$
\begin{cases}\Delta_{\mathbb{H}^{n}} u=0 & \text { in } \Omega \\ u=\varphi & \text { in } \partial \Omega\end{cases}
$$

Moreover, for every $p \in[1,+\infty[$,

$$
\|u\|_{L^{p}(\Omega)}^{p} \leq c\|\varphi\|_{L^{p}(\partial \Omega)}^{p}
$$

where c only depends on Ω and Q.
Proof. The first part of the theorem is a straightforward consequence of (4.4). The L^{p} estimate can be easily proved by using (4.5). Indeed, remarking that $\int_{\partial \Omega} P(\xi, \cdot) d \sigma=1$, by the Hölder inequality we get

$$
\begin{aligned}
\|u\|_{L^{p}(\Omega)}^{p} & \left.\leq\left.\int_{\Omega}\left|\int_{\partial \Omega} P(\xi, \cdot) d \sigma\right|^{\frac{p}{p^{\prime}}}\left|\int_{\partial \Omega} P(\xi, \cdot)\right| \varphi\right|^{p} d \sigma \right\rvert\, d \xi= \\
& =\int_{\partial \Omega}|\varphi|^{p}(\eta) \int_{\Omega} P(\xi, \eta) d \xi d \sigma(\eta) \leq \\
& \leq c_{\Omega} \int_{\partial \Omega}|\varphi|^{p}(\eta) \int_{\Omega} d(\xi, \eta)^{1-Q} d \xi d \sigma(\eta) \leq c_{\Omega}^{\prime}\|\varphi\|_{L^{p}(\partial \Omega)}^{p}
\end{aligned}
$$

since

$$
\sup _{\eta \in \partial \Omega} \int_{\Omega} d(\xi, \eta)^{1-Q} d \xi<+\infty
$$

- Appendix

Proposition A.1. Let π be an hyperplane of \mathbb{H}^{n} and let $\xi_{0} \in \pi$; then for every $R>0$ there exist two metric balls B and \widetilde{B} of radius R, lying on opposite sides of π, such that

$$
\bar{B} \cap \pi=\left\{\xi_{0}\right\}=\overline{\widetilde{B}} \cap \pi
$$

Proof. Since $\tau_{\xi_{0}}$ is a bijective affine transformation mapping balls into balls, without loss of generality we can suppose $\xi_{0}=0$.

If the hyperplane π includes the t axis, then

$$
\pi=\{\xi=(z, t) \mid\langle A, z\rangle=0\}
$$

where $A=(a, b) \in \mathbb{R}^{2 n} \backslash\{0\}$. By means of a direct computation we easily verify that the metric balls of radius R centered at $\left(R \frac{A}{|A|}, 0\right)$ and $-\left(R \frac{A}{|A|}, 0\right)$ have the required properties.

Let us now suppose that π does not include the t axis. In this case

$$
\pi=\left\{\xi^{\prime}=\left(x^{\prime}, y^{\prime}, t^{\prime}\right) \mid t^{\prime}=\left\langle a, x^{\prime}\right\rangle+\left\langle b, y^{\prime}\right\rangle\right\}
$$

where $a, b \in \mathbb{R}^{n}$. We want to find two points $\xi, \tilde{\xi} \in \partial B_{d}(0, R)$, lying on opposite sides with respect to π, such that the origin is a minimum point of the functions $d(\xi, \cdot), d(\widetilde{\xi}, \cdot): \pi \rightarrow \mathbb{R}$. We set $\varrho=|a|^{2}+|b|^{2}$ and $r=R^{4}$. If $\varrho=0$, then the points $\xi=\left(0, R^{2}\right)$ and $\widetilde{\xi}=-\xi$ satisfy our requirement.

If $\varrho \neq 0$ we set

$$
\begin{equation*}
t=\frac{1}{\varrho}\left(-8 r^{2}+4 \sqrt{4 r^{4}+\varrho^{2} r^{3}}\right)^{1 / 2} \tag{A.1}
\end{equation*}
$$

Then t is a solution of the equation

$$
\begin{equation*}
\varrho^{2} t^{4}+16 r^{2} t^{2}-16 r^{3}=0 \tag{A.2}
\end{equation*}
$$

In particular $t^{2}<r$. We set $\gamma=\sqrt{r-t^{2}}$ and

$$
\left\{\begin{align*}
x & =-\frac{t}{2 r}(t b+\gamma a) \tag{A.3}\\
y & =\frac{t}{2 r}(t a-\gamma b) \\
\xi & =(x, y, t)
\end{align*}\right.
$$

Using (A.2) a simple computation yields

$$
\begin{equation*}
d(\xi)=R \tag{A.4}
\end{equation*}
$$

We now set $F_{\xi}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
F_{\xi}\left(z^{\prime}\right) & =d\left(\xi,\left(z^{\prime},\left\langle a, x^{\prime}\right\rangle+\left\langle b, y^{\prime}\right\rangle\right)\right)^{4}= \\
& =\left|z-z^{\prime}\right|^{4}+\left(\left\langle a-2 y, x^{\prime}\right\rangle+\left\langle b+2 x, y^{\prime}\right\rangle-t\right)^{2}
\end{aligned}
$$

By a direct computation one can verify that (since (A.3) and (A.4) hold) it is

$$
\nabla F_{\xi}(0)=0 .
$$

Hence the origin is a critical point for F_{ξ}. Moreover F_{ξ} has hessian

$$
H\left(z^{\prime}\right)=H_{F_{\xi}}\left(z^{\prime}\right)=\left(8 \zeta_{j} \zeta_{k}+4|\zeta|^{2} \delta_{j, k}+2 \alpha_{j} \alpha_{k}\right)_{j, k \in\{1, \ldots, 2 n\}}
$$

(where we have set for shortness $\zeta=z^{\prime}-z, \alpha=(a-2 y, b+2 x)$) which is positive semidefinite for every $z^{\prime} \in \mathbb{R}^{2 n}$, since for every $w \in \mathbb{R}^{2 n}$ we have

$$
\left\langle H\left(z^{\prime}\right) w, w\right\rangle=8\langle\zeta, w\rangle^{2}+4|\zeta|^{2}|w|^{2}+2\langle\alpha, w\rangle^{2} \geq 0 .
$$

In addition, H is positive definite in the origin, since $|z| \neq 0$ (being $t^{2}<r$) and

$$
\langle H(0) w, w\rangle \geq 4|z|^{2}|w|^{2}
$$

Therefore F_{ξ} is convex and 0 is its strong absolute minimum point.
Since also $\tilde{t}=-t$ is a solution of (A.2), if we define $\widetilde{\xi}$ replacing \tilde{t} to t in (A.3), $F_{\widetilde{\xi}}$ has the same properties of F_{ξ}. To conclude the proof it is now enough to observe that ξ and $\widetilde{\xi}$ belong to different connected components of $\mathbb{H}^{n} \backslash \pi$ since $\frac{\xi+\widetilde{\xi}}{2} \in \pi$, being

$$
\langle(a, b,-1), \xi+\widetilde{\xi}\rangle=\left\langle(a, b,-1),\left(-\frac{t^{2}}{r} b, \frac{t^{2}}{r} a, 0\right)\right\rangle=0 .
$$

Corollary A.2. If Ω is an halfspace of \mathbb{H}^{n} then for every $\xi_{0} \in \partial \Omega$ and for every $R>0$ there exists a metric ball B of radius R such that $\bar{B} \cap \bar{\Omega}=\left\{\xi_{0}\right\}$.

Corollary A.3. If Ω is a convex subset of \mathbb{H}^{n} (in particular if Ω is a d-ball) then for every $\xi_{0} \in \partial \Omega$ and for every $R>0$ there exists a metric ball B of radius R such that $\bar{B} \cap \bar{\Omega}=\left\{\xi_{0}\right\}$.

We explicitly remark that every d-ball centered at the origin is a convex set since d is a convex function. As a consequence every d-ball $B_{d}(\xi, r)$ is convex because $B_{d}(\xi, r)=\tau_{\xi}\left(B_{d}(0, r)\right)$ and τ_{ξ} is an affine mapping.

REFERENCES

[1] J. M. Bony: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenoble, 19 (1969), 277-304.
[2] J. Cygan: Wiener's test for the Brownian motion on the Heisenberg group, Colloquium Math., 39 (1978), 367-373.
[3] G. B. Folland: A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376.
[4] G. B. Folland - E. M. Stein: Estimates for the $\overline{\bar{\partial}_{b}}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.
[5] B. Gaveau: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groups nilpotents, Acta Math., 139 (1977), 95-153.
[6] N. Garofalo - E. Lanconelli: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier Grenoble, 40 (1990), 313-356.
[7] B. Gaveau - J. Vauthier: The Dirichlet problem on the Heisenberg group III: harmonic measure of a certain half-space, Can. J. Math., 38 (1986), 666-671.
[8] W. Hansen - H. Hueber: The Dirichlet problem for subLaplacians on nilpotent Lie groups-Geometric criteria for regularity, Math. Ann., 276 (1987), 537-547.
[9] D. S. Jerison: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group I, J. Funct. An., 43 (1981), 97-142.
[10] N. Krylov: An L_{p} estimate for Green's functions under Hörmander's condition, preprint.
[11] J. J. Kohn - L. Nirenberg: Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492.
[12] P. Negrini - V. Scornazzani: Wiener criterion for a class of degenerate elliptic operators, J. Diff. Eq., 66 (1987), 151-164.
[13] K. O. Widman: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967), 17-37.

Lavoro pervenuto alla redazione il 9 maggio 1997 ed accettato per la pubblicazione il 9 luglio 1997.

Bozze licenziate il 23 settembre 1997

Indirizzo DEGLI Autori:

F. Uguzzoni - E. Lanconelli - Dipartimento di Matematica, Università di Bologna - Piazza di Porta S. Donato 5-40127 Bologna, Italy
E-mail: uguzzoni@dm.unibo.it
lanconel@dm.unibo.it

