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Manifolds with local quaternion Kähler structures

P. PICCINNI

Riassunto: Si presentano alcuni risultati relativi a varietà M4n localmente qua-
ternionali kähleriane e localmente conformi quaternionali kähleriane. Si mostra che
entrambe queste classi di varietà M4n possono essere ottenute dallo studio delle azioni
libere di gruppi finiti su varietà 3-sasakiane P . A seconda che tali azioni cambino o
preservino le foglie 3-dimensionali di una foliazione canonica, dal quoziente P = P/Γ
si ottengono varietà proiettive 3-sasakiane o localmente 3-sasakiane. Le due classi so-
pra citate di varietà M4n con struttura quaternionale kähleriana locale possono essere
presentate rispettivamente come spazi delle foglie della foliazione indotta su P o come
fibrati principali piatti in S1 sopra P .

Abstract: We give a survey on locally quaternion Kähler and locally conformal
quaternion Kähler manifolds M4n. We show that the study of these two classes of
Riemannian manifolds can be reported to the common framework of free actions of finite
groups on 3-sasakian manifolds P . According to whether such actions interchange or
preserve the 3-dimensional leaves of a canonical foliation, then projective 3-sasakian or
locally 3-sasakian manifolds are obtained as quotients P =P/Γ. Then the two mentioned
classes of manifolds M4n with local quaternion Kähler structures can be presented as
leaf spaces of the induced foliation on P or as flat principal S1-bundles over P .

1 – Introduction

The theory of quaternion Kähler manifolds is distinguished by their

Einstein property into the three cases of positive, zero, and negative
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scalar curvature s. The intermediate situation s = 0 of Ricci-flat metrics

corresponds to locally hyperkähler manifolds, whose reduced holonomy H0

is contained in the quaternionic unitary group Sp(n). The full holonomy

H of locally hyperkähler manifolds is thus a subgroup of Sp(n) · Sp(1),

the normalizer of Sp(n) in O(4n). In terms of the rank 3 vector bundle

H ⊂ End TM , locally spanned by compatible almost complex structures

and that defines the quaternionic structure of M , the locally hyperkähler

case corresponds to a flat induced Levi Civita connection on H.

The simplest examples of locally and non globally hyperkähler mani-

folds appear in dimension 4: the Enriques surfaces: K/Z2 and the Hitchin

manifolds: K/(Z+
2 ×Z−

2 ) - with full holonomy group respectively isomor-

phic to Sp(1) · Z4 and to Sp(1) · Q8 - are the only finite quotients of

hyperkähler K3-surfaces K [8]. Some quotients of flat 4-tori, that are not

4-tori themselves, show that also compact flat locally and non globally

hyperkähler 4-dimensional Riemannian manifolds exist (cf. [4] for a clas-

sification). However, going to higher dimensions, it seems that very few

examples of locally non globally hyperkähler manifolds are known. In

particular, no examples of quotients of Beauville hyperkähler manifolds

K [r] and Kr are known to the author, except for some Z2 and Z+
2 × Z−

2 -

quotients of K [2p+1] with a factor by factor action, assured to be free by

the odd quaternionic dimension (cf. [1] for a description of the manifolds

K [r] and Kr, and [11] for these quotients).

In this paper we report on some recent work concerning two differ-

ent classes of 4n-dimensional Riemannian manifolds (M 4n, g) admitting

local and non global quaternion Kähler structures. Namely, we shall be

concerned with:

A) Locally quaternion Kähler manifolds (M, g), i.e. complete Rie-

mannian manifolds whose reduced holonomy group H0(M) is a subgroup

of Sp(n) · Sp(1).

B) Locally conformal quaternion Kähler (M,H, g), i.e. manifolds M

equipped with a quaternionic structure H ⊂ End TM , and with local

quaternion Kähler metrics g′
Ui

defined on open neighborhoods Ui cover-

ing M , that are required to be conformally related to a unique global

quaternion hermitian metric g.

Note that the first class includes the locally hyperkähler manifolds,

and we shall see that the compact representatives of the second class
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turn out to be locally conformal to locally hyperkähler manifolds, that

play therefore a special rôle in both situations. On the other hand, it is

convenient not to include the globally quaternion Kähler and the globally

conformal quaternion Kähler metrics in the descriptions of classes A)

and B). Indeed, these two global counterparts of classes A) and B) are

in several respects not so much subcases as opposite cases of the local

ones. Accordingly, we will assume throughout this paper that all the

local quaternion Kähler structures considered are not global.

Thus, by the term locally quaternion Kähler we shall understand

that the full holonomy group H(M) is not allowed to be a subgroup of

Sp(n)·Sp(1). Similarly, the term locally conformal quaternion Kähler will

be reserved for the situation where no quaternion Kähler metric exists in

the conformal class of g.

A geometric description of the positive representatives in the class

A) and of the compact representatives in the class B) will be given in the

following two paragraphs separately. References respectively [16] and [14]

contain more informations. A common feature of these two classes will

be pointed out in the last paragraph, where a general construction for

the positive representatives in A) and the compact representatives in B)

is described in the framework of 3-sasakian geometry.

2 – Positive locally quaternion Kähler manifolds

Let (M 4n, g) be a locally — and non globally — quaternion Kähler

manifold, and let (M
4n

, g) be its quaternion Kähler universal covering.

We assume that the scalar curvature s of the Einstein metric g is positive

as well as the completeness of M , referring to these manifolds by saying

that (M 4n, g) is positive locally quaternion Kähler (cf. [10]).

A basic observation is now that Sp(n) · Sp(1), maximal subgroup of

SO(4n), cannot be the identity component of disconnected subgroups of

O(4n) [16]. This, together with Berger holonomy theorem for non locally

symmetric irreducible Riemannian manifolds, proves the following fact.

Proposition 2.1. Any positive locally quaternion Kähler manifold

(M 4n, g) is compact, locally symmetric, and admits a finite covering M →
M , where M is a quaternion Kähler Wolf space.
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Thus the problem of classifying positive locally quaternion Kähler

manifolds is reduced to determine all the finite groups of isometries act-

ing freely on the quaternion Kähler Wolf spaces. This is the so called

“space form problem”, discussed for most of compact irreducible sym-

metric spaces in Wolf’s book [20]. Indeed, the quaternion Kähler Wolf

spaces:

HP n, Gr2(C
n+2), G̃r4(R

n+4), G2/SO(4)

F4/Sp(3) · Sp(1), E6/SU(6) · Sp(1), E7/Spin(12) · Sp(1), E8/E7 · Sp(1)

are not even mentioned in Wolf’s book, although in its chapter 9 the

classification of finite groups of isometries that act freely on them is

implicitely contained. In particular, none of the exceptional quater-

nion Kähler Wolf spaces admits quotients. As for the three families

HP n, Gr2(C
n+2), G̃r4(R

n+4), some restrictions to both n and the types

of actions apply (cf. [20], p. 304). The following list of positive locally

quaternion Kähler manifolds can thus be deduced.

Theorem 2.2. The positive locally quaternion Kähler manifolds

M = M/Γ are classified in the following table 1, where ⊥, θ, σW , J

denote the orthocomplementation, the change of orientation, the symme-

try with respect to W ⊂ C4 or R8, and the standard complex structure,

respectively.

Table 1

M Γ generators

HP 1 Z2 ⊥
Gr2(C

4) Z2 ⊥
Gr2(C

4) Z2 ⊥ ◦σC3

G̃r4(R
8) Z2 ⊥

G̃r4(R
8) Z2 ⊥ ◦σR6

G̃r4(R
8) Z2 × Z2 (⊥, θ)

G̃r4(R
8) Z2 × Z2 (⊥ ◦σR6 , θ)

G̃r4(R
8) Z4 ⊥ ◦σR7

G̃r4(R
8) Z4 ⊥ ◦σR5

G̃r4(R
m), m ≥ 7 Z2 θ

G̃r4(R
2k), k ≥ 4 Z2 θ ◦ J
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Consider now the quaternionic structure H of the universal covering

M , i.e. the vector subbundle of End TM locally generated by compatible

almost hypercomplex triples (I1, I2, I3). Recall that the local (I1, I2, I3)

and (I ′
1, I

′
2, I

′
3) are related in the intersection U ∩ U ′ of their trivializ-

ing open sets by SO(3)-valued functions. Then H induces on the finite

quotients M = M/Γ a weaker structure that can be described as follows.

Definition 2.3. Let P(TM) be the projectified tangent bundle of a

4n-dimensional manifold M . A projective (almost) quaternionic structure

on M is a family of triples of local bundle maps I1, I2, I3: P(TM) →
P(TM), defined over open sets covering M , that are projective maps on

each fiber and satisfy the following conditions:

i) (I1)
2 = (I2)

2 = (I3)
2 = id; Iα ◦Iβ = Iβ ◦Iα = Iγ for all the cyclic

permutations (α, β, γ) of (1, 2, 3);

ii) in the intesections of the open sets U, U ′ where they are defined,

the local maps I1, I2, I3 and I ′
1, I ′

2, I ′
3 are related by elements of

SO(3).

When the maps I1, I2, I3 are globally defined on P(TM), then the

triple I1, I2, I3 is a projective (almost) hypercomplex structure. By look-

ing at the actions of the finite groups Γ described in table 1, it is easy to

recognize that a projective quaternionic structure is induced on all the

manifolds M = M/Γ listed in table 1 (the prefix “almost” is here dropped

with respect to the 1-integrable quaternionic structure of M). Thus:

Proposition 2.4. Any positive locally quaternion Kähler manifold

admits a subordinated projective quaternionic structure.

We want now to recognize that all the actions listed in table 1 can be

lifted to both the twistor space Z and the simply connected 3-sasakian

homogeneous manifold P over the quaternion Kähler Wolf spaces M
4n

.

The fibrations:

P → Z → M

from a 3-sasakian manifold P projecting to a positive quaternion Kähler

M through its twistor space Z, have been recently recovered to furnish

a wide range of examples in both the manifolds’ and the orbifolds’ con-

texts [2]. We are here interested only in the situations arising from those
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M admitting locally quaternion Kähler quotients. These are, up to finite

coverings, the three fibrations:

S7 → CP 3 → HP 1 ,

F 1
1,2(C

4) → F1,2(C
4) → Gr2(C

4) ,

SO(m)

SO(m − 4) × Sp(1)
→ SO(m)

SO(m − 4) × U(2)
→ G̃r4(R

m) ,

where F1,2(C
4) and F 1

1,2(C
4) are the flag manifolds {L1 ⊂ L2 ⊂ C4} and

{real L1 ⊂ L1 ⊂ L2 ⊂ C4}, respectively twistor space and 3-sasakian

homogeneous SO(3)-bundle over Gr2(C
4). A similar description of the

two bundles over G̃r4(R
m) is the following:

SO(m)

SO(m − 4) × U(2)
=

{
(oriented 4-planes β in Rm,

complex structures on β)
}

SO(m)

SO(m − 4) × Sp(1)
=

{
(oriented 4-planes β in Rm,

hypercomplex structures on β)
}

.

Proposition 2.5. For all the free actions Γ : M → M listed in

table 1, there is a corresponding free action of a finite group of isometries

ΓP : P → P on the 3-sasakian manifold P inducing both the actions of Γ

and of a group ΓZ : Z → Z on the twistor space.

This can be checked by looking at all the Γ appearing in table 1. It

is worth to note that all the lifted actions to the twistor space Z and

to the 3-sasakian bundle P can be expressed by means of multiplication

in the octonians’ algebra Ca. For example, the action of Z2 on HP 1 is

induced by an action of Z4 on S7 given by (q1, q2)ε = (−q̄2, q̄1), where ε

is the unit octonian realizing Ca ∼= H ⊕ Hε, and (q1, q2) ∈ S7 ⊂ H2. In

this way the first quotiented fibration to be considered is:

S7/Z4 → CP 3/Z2 → RP 4 .
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Similarly, one has fibrations:

F 1
1,2(C

4)/Z2 → F1,2(C
4)/Z2 → Gr2(C

4)/Z2 ,

where both the actions of Z2 = (⊥) and Z2 = (⊥ ◦σC3) on the basis

M can be lifted to the twistor and 3-sasakian flag manifolds through the

right multiplication by ε.

The grassmannian G̃r4(R
8) admits eight different group actions (two

appearing also in higher dimensions): by looking at the descriptions of
SO(8)

SO(4)×U(2)
and of SO(8)

SO(4)×Sp(1)
given above, all of them are seen to extend

to the twistor and the 3-sasakian manifold. Thus again fibrations:

SO(8)

SO(4) × Sp(1)
/ΓP → SO(8)

SO(4) × U(2)
/ΓZ → G̃r4(R

8)/Γ

are obtained for all the listed Γ ∼= Z2,Z2 ×Z2,Z4. The remaining cases of

θ or θ◦J acting on G̃r4(R
m) and G̃r4(R

2k) are similarly described: θ lifts

to P as (β; I1, I2, I3) → (θ(β);−I1,−I2,−I3), and θ ◦J as (β; I1, I2, I3) →
(θ ◦ J(β);−JI1J,−JI2J,−JI3J).

Observe that the 3-sasakian structure of P is not invariant by any

of the finite group actions. In fact the induced structure on the quo-

tients P can be described as “projective” 3-sasakian. To formalize the

definition, look at the simplest example, namely at the quotient S7/Z4.

Let (1, i1, i2, i3, ε, i1ε, i2ε, i3ε) be the standard basis of the octonions Ca,

whose non-associativity gives (iαx)ε '= iα(xε), but (xiα)ε = −(xε)iα, for

any x ∈ Ca. We denote by Iα, E ∈ End TS7 the multiplication on the

right of tangent vectors by iα, ε, respectively. Thus neither the left nor

the right natural 3-sasakian structure of S7 project to the quotient S7/Z4,

Z4 : x → xε. This gives:

S7 s1

−−−→ CP 3 S2

−−−→ HP 1

2
2

2

S7/Z4
S1

−−−→ CP 3/Z2 −−−→ RP 4

where only the line fields spanned by the vectors I1x, I2x, I3x of S7 project

to the quotient S7/Z4.
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More generally, all the cases described in table 1 yield similar dia-

grams. Thus:

Corollary 2.6. Let M = M/Γ be a positive locally quaternion

Kähler manifold. Then there is a diagram:

P
S1

−−−→ Z
S2

−−−→ M
2

2
2

P
S1

−−−→ Z
S2

−−−→ M

where the vertical maps are projections over finite quotients carrying the

following structures:

i) Z = Z/ΓZ is locally Kähler-Einstein with positive scalar curvature;

ii) P = P/ΓP is an Einstein manifold with positive scalar curvature,

and carries three global mutually orthogonal distinguished tangent lines

k1, k2, k3.

Of course, locally three unit Killing vector fields K1, K2, K3 can be

chosen on P defining a local 3-sasakian structure. We call the triple of

distinguished lines k1, k2, k3 a projective 3-sasakian structure on P , due

to their correspondance, via the covariant derivative of the local vector

fields K1, K2, K3, with the projective quaternionic structure of the locally

quaternion Kähler M (proposition 2.4).

Going back to the example S7/Z4, it can be noted that there are still

some global 3-sasakian structures on S7 that project to S7/Z4. These

are given by the three Killing vector fields I∗
αx, E∗x, E∗(I∗

αx), α = 1, 2, 3,

defined through the multiplication on the left of x looked at as a pair of

quaternions. The basis (1, iα, ε, iαε) of quaternions over the reals is here

understood. The generator of Z4, previously expressed as the multiplica-

tion on the right by ε, preserves in fact all the three Killing vector fields

I∗
αx, E∗x, E∗(I∗

αx), allowing them to induce a global 3-sasakian structure

on S7/Z4. On the other hand, global regular 3-sasakian structures can

be supported only by simply connected manifolds or RP 4n−1 [3]. Thus:

Remark 2.7 None of the projective 3-sasakian manifolds P = P/ΓP

is allowed to carry an additional global regular 3-sasakian structure.
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We compute now the Betti numbers of the projective 3-sasakian P =

P/ΓP appearing in the extension 2.5 of table 1. Recall first that the map:

π∗ : Hp(M) −→ Hp(P ),

induced by the projection π : P → M from a 4n+3-dimensional regular 3-

sasakian P over its quaternion Kähler basis M is surjective for p ≤ 2n+1,

and ker π∗ is the intersection with the ideal generated by the Kähler 4-

form Ω of M [5].

Table 2

generators of H2 generators of H4 generators of H8

Gr2(C
4) ω ω2, Ω ω4, Ω2

G̃r4(R
8) Ω, Ω′, Ω′′ Ω2, ΩΩ′, ΩΩ′′, Ω′Ω′′

F 1
1,2(C

4) π∗ω π∗ω2

SO(8)/(SO(4) × Sp(1)) π∗Ω′, π∗Ω′′ π∗(Ω′Ω′′)

The Poincaré polynomials PoinP(t) of most the cases involved in our

discussion can be computed by choosing cohomology generators of the

base manifold M as in table 2.

The notations ω, Ω in table 2 indicate the complex Kähler 2-form

and the quaternion Kähler 4-form in Gr2(C
4), and Ω,Ω′,Ω′′ denote in

G̃r4(R
8) the Kähler 4-forms of three of the four different quaternion

Kähler structures (cf. [18], [7]). The relations of their cohomology classes

with the Euler and Pontrjagin classes e, e⊥, p1 of the tautological vector

bundle V and its orthogonal complement V ⊥ are:

Ω = 2e + p1 , Ω′ = −2e + p1 , Ω′′ = 2e⊥ − p1

(the forth quaternion Kähler 4-form giving Ω′′′ = −2e⊥ − p1 = −Ω −
Ω′ − Ω′′). The cohomology generators for the corresponding P are then

deduced as in table 2.

Thus the Poincaré polynomials of the 3-sasakian manifolds P are:

PoinF1
1,2

(C4)(t) = 1 + t2 + t4 + t7 + t9 + t11 ,

PoinSO(8)/(SO(4)×Sp(1))(t) = 1 + 2t4 + t8 + t11 + 2t15 + t19 .
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By looking at the description of the groups ΓP given in the proof of

proposition 2.5, the Poincaré polynomial of all the projective 3-sasakian

manifolds P → Gr2(C
4)/Γ and P → G̃r4(R

8)/Γ are then deduced:

PoinP (t) =1 + t4 + t7 + t11, P = Z2

− quotients of F 1
1,2(C

4),

PoinP (t) =1 + t4 + t8 + t11 + t15 + t19, P = Z2

− quotients of
SO(8)

SO(4) × Sp(1)
,

PoinP (t) =1 + t8 + t11 + t19, P = Z2 × Z2 or Z4

− quotients of
SO(8)

SO(4) × Sp(1)
.

Thus, a comparison with the constrains in [5] confirms that none of the

projective 3-sasakian P considered so far can admit a regular 3-sasakian

structure. The remaining cases are quotients P of P = SO(m)

SO(m−4)×Sp(1)
,

n ≥ 7, 3-sasakian bundle over G̃r4(R
m). Here the allowed Z2 - actions

are generated by θ or by θ ◦ J . But these actions, restricted to the

submanifolds G̃r4(R
6), reduce to the ones just considered on Gr2(C

4).

3 – Locally conformal quaternion Kähler manifolds

Let now (M 4n, H, g) be a quaternion hermitian manifold. As in the

previous paragraph, H ⊂ End TM denotes the quaternionic structure

locally spanned by almost hypercomplex triples. If the quaternion her-

mitian metric g is locally conformal quaternion Kähler, the 1-integrability

of H is assured by the Weyl connection D, obtained by glueing together

the Levi Civita connections of the local quaternion Kähler metrics, and

as such torsion free and preserving H.

An alternative description of these data is to say that (M,H, [g], D)

is a quaternion hermitian Weyl manifold, i.e. that besides H and the

conformal class [g], a torsion free connection D is given such that DH ⊂
H, Dg = ω ⊗ g, where the Lee 1-form ω is closed. In this respect and

on account of the Einstein property of quaternion Kähler metrics, locally

conformal quaternion Kähler manifolds can be viewed as examples of

Einstein Weyl manifolds, cf. [6], [14], [15].
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We assume now that g is locally and non globally quaternion Kähler.

In the language of quaternion hermitian-Weyl structures, this is equiv-

alent to require that the Lee form ω is not exact. If M is compact,

this assumption enables to choose g in its conformal class such that ω

is parallel with respect to the Levi Civita connection ∇ of g. This pos-

sibility follows from a result of P. Gauduchon [6], and a remarkable

consequence of it is that the underlying Einstein Weyl structure is indeed

Ricci-flat Weyl, i.e. the Ricci tensor of D vanishes. In fact the constancy

of the scalar curvature sD shows, after derivation of the local conformal

requirement sD = e−fi [s∇|Ui
−c], that ω|Ui

= dfi = dln[s∇|Ui
−c], i.e. that

ω is exact for sD '= 0, a condition equivalent to globally conformal Kähler.

On the other hand, the existence of a parallel Lee form shows that

locally conformal quaternion Kähler manifolds are endowed with some

canonical foliations. We are interested here with the 1-dimensional fo-

liation B, generated by the vector field B, the dual of ω, and with the

4-dimensional D, given by the integrable quaternionic span of B.

The Ricci flatness of the Weyl connection D on compact locally con-

formal quaternion Kähler manifolds suggests that the geometry of such

manifolds can be very close to that of their subclass of locally conformal

hyperkähler manifolds. The following result draws in fact together these

two locally conformal situations, in sharp contrast with their non locally

conformal counterparts, namely quaternion Kähler and hyperkähler man-

ifolds.

Theorem 3.1. Let (M 4n,H, g) be a compact locally conformal quater-

nion Kähler manifold that is not quaternion Kähler. Assume that all the

leaves of B and of D are compact. Then:

(i) M admits a finite covering M that is locally conformal hyperkähler

and that enters into the commutative diagram:

M
S1

−−−→ P
S3/H−−−→ N

2
2

2

M
S1

−−−→ P
S3/G−−−→ N

whose vertical arrows are finite coverings and horizonthal arrows are Rie-

mannian submersions over orbifolds. The middle orbifolds P and P are
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globally and locally 3-sasakian, respectively (cf. definition 3.2), projecting

over quaternion Kähler orbifolds with positive scalar curvature N , N .

The fibers of these latter maps are 3-dimensional spherical space forms

S3/H, S3/G, homogeneous or generally inhomogeneous, in the two cases.

(ii) Any such M admits a global integrable compatible complex struc-

ture J ∈ H, making it a complex locally conformal Kähler manifold, that

projects in 1-dimensional complex tori over the twistor space Z of N .

It follows that the metric g is locally conformal locally hyperkähler.

The proof is obtained by looking at both the geometry of the fibers in the

horizontal arrows and the actions producing the vertical arrows. We give

here a sketch of the arguments, referring for more details to [13], [14].

The following definition describes the structure produced by the middle

vertical action in the diagram.

Definition 3.2. Let (P, g) be a Riemannian manifold with Levi

Civita connection ∇ and let K ⊂ TP be a rank 3 vector subbundle of its

tangent bundle. K is said to define a locally 3-sasakian structure on P if:

(i) K is locally spanned by orthonormal Killing vector fields X1, X2,

X3, defined over open sets U ⊂ P so that: [Xα, Xβ] = 2Xγ for all the

cyclic permutations (α, β, γ) of (1, 2, 3);

(ii) on the intersections U ∩ U ′ of such open sets X ′
λ =

∑
µ fλµXµ,

with (fλµ) : U ∩ U ′ → SO(3);

(iii) the local tensor fields Fα = ∇Xα, α = 1, 2, 3, satisfy

(∇Y Fα)Z = ηα(Z)Y − g(Y,Z)Xα ,

where ηα = X3
α.

The globally 3-sasakian manifolds are obtained when K is glob-

ally trivialized by such Killing vector fields X1, X2, X3. Since the lo-

cal sasakian conditions (iii) assures the flatness of K for any locally 3-

sasakian P , the pullback K → P to the universal covering P is a trivial

vector bundle. To recognize that its triviality is specified by an induced

globally 3-sasakian structure, two extra observations are needed. First,

the integrability of K shows that locally 3-sasakian manifolds P are en-

dowed with a canonical foliation K. The computation of the curvature of

its leaves identifies them with (generally inhomogeneous) 3-dimensional
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spherical space forms S3/G. The classification of the allowed groups

G ⊂ SO(4) shows that all of them admit a global sasakian structure.

Thus a global compatible sasakian structure exists on the manifold P .

The second fact is that the analiticity of g, assured by the Einstein prop-

erty of locally 3-sasakian metrics, allows to extend local Killing vector

fields to global ones on the simply connected manifold P . This result

goes back to K. Nomizu [12], and his construction of the extended vector

field can be pursued as well, in this locally 3-sasakian situation, including

the condition (iii). Once two global orthonormal Killing-sasakian vector

fields are obtained in these ways, their bracket completes the global 3-

sasakian structure of P . This discussion describes the middle vertical

arrow P → P in the diagram.

The two manifolds appearing in the left vertical arrow M → M are

flat principal S1-bundles over P and P , respectively. The structure is

here locally conformal hyperkähler on M and locally conformal quater-

nion Kähler on M , and relates with those of P and P in a way that is

very similar to the complex case as described in [19]. Finally, the right

vertical arrow is between the quaternion Kähler leaf spaces —generally

orbifolds— of the foliation D mentioned in the statement. The distinc-

tion between the two groups H and G, both acting freely on S3 and thus

defining the fibers in the right horizonthal arrows, is that they are finite

subgroups respectively of S3 and of SO(4). Accordingly, homogeneous or

generally inhomogeneous fibers are obtained.

The existence of the compatible global J ∈ H is a consequence of the

structure of the (possibly) inhomogeneous fibers S3/G. A basic result

in the classification of 3-dimensional spherical space forms is in fact that

the finite group G ⊂ SO(4) is necessarily conjugate to a subgroup of

either Sp(1) · U(1) or U(1) · Sp(1). Thus, as already mentioned, both

the locally 3-sasakian manifolds S3/G and P admit a global compatible

sasakian structure, allowing to construct the complex structure J on M

having the claimed property.

The next statement contains further similarities between compact

locally conformal quaternion Kähler and compact locally conformal hy-

perkähler manifolds. We look here at the unicity of the induced Weyl

structure and at the topology allowing it. Recall that the term quater-

nionic structure includes the existence of a torsion free connection pre-

serving H ⊂ End TM .
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Theorem 3.3. Let (M 4n, H) be a compact manifold equipped with

a quaternionic structure.

(i) For each quaternion hermitian metric h on M there is at most

one compatible quaternion hermitian-Weyl structure.

(ii) If a locally conformal quaternion Kähler metric g exists on M ,

making D a regular foliation, then the Betti numbers of M and N = M/D
satisfy the following relations:

b2p(M) = b2p+1(M) = b2p(N) − b2p−4(N), (0 ≤ 2p ≤ 2n − 2) ,

b2n(M) = 0 .

Moreover:
n−1∑

k=1

k(n − k + 1)(n − 2k + 1)b2k(M) = 0 ,

and all these constrains hold in particular when M 4n is locally conformal

hyperkähler.

The unicity statement (i) reduces in the locally conformal hyper-

kähler case to the characterization of the Obata connection as the unique

torsion free hypercomplex connection, thus coinciding with the Weyl con-

nection associated to the metric. More generally, although the torsion free

quaternionic connections have a structure of affine space modelled on the

space of 1-forms, at most one of them can preserve a fixed conformal

class [h] of hermitian metrics. This can be recognized by the fact that

the wedge multiplication by the Kähler 4-form of the metric maps the

1-forms injectively into the 5-forms.

The constrains (ii) on Betti numbers can be deduced from those of

compact positive quaternion Kähler manifolds (cf. [1], pp. 417-419, [10]),

by writing the Gysin sequences associated to the fibrations of theorem 3.1.

The existence of a global compatible complex structure on M plays here

a rôle, allowing to project M to the twistor space Z of N , and thus

factorizing the projection M → N into three sphere bundles. In the lo-

cally conformal hyperkähler case, the constrains (ii) were observed in [13]

and [5].

We say that M is a locally conformal quaternion Kähler homogeneous

manifold if there exists a Lie group which acts transitively and effectively
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on the left on M by quaternionic isometries. This condition implies the

regularity of all the foliations involved in the structure of M , and in fact

the following classification statement can be deduced (cf. [2], [13]).

Theorem 3.4. Any compact locally conformal quaternion Kähler

homogeneous manifold M is finitely covered by the total space M → P

of a flat principal S1-bundles over one of the 3-sasakian homogeneous

manifolds:

S4n−1,RP 4n−1, SU(m)/S(U(m − 2)×U(1)), SO(k)/(SO(k−4) × Sp(1)),

G2/Sp(1), F4/Sp(3), E6/SU(6), E7/Spin(12), E8/E7.

More precisely, the allowed M are the products of the listed P with the

circle S1 and the Möbius band over RP 4n−1.

4 – Local quaternion Kähler and 3-sasakian geometry

The above two paragraphs suggest the existence of a unique frame-

work to present the geometries of both positive locally quaternion Kähler

manifolds and compact locally conformal quaternion Kähler manifolds.

Both these two classes of manifolds appear in fact from constructions

on compact 3-sasakian manifolds P acted on freely by finite groups Γ of

isometries.

Namely, by looking at proposition 2.5, the following approach to

positive locally quaternion Kähler manifolds is recognized. Consider on

a compact 3-sasakian manifold P the canonical 3-dimensional foliation K
generated by its structure Killing vector fields and the fibration P → N to

the positive quaternion Kähler leaf space N = P/K. If K is a regular foli-

ation, N is a manifold, and this is certainly the case for all the 3-sasakian

homogeneous manifolds. Any of the groups Γ described in the proof of

proposition 2.5 and acting on the allowed 3-sasakian P , interchanges the

leaves of K, so inducing a free action on the quaternion Kähler basis

N . The quotient N of these induced actions are thus the positive lo-

cally quaternion Kähler manifolds listed in table 1. Since positive locally

quaternion Kähler manifolds are locally symmetric (proposition 2.1), the
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class of 3-sasakian manifolds P to be considered here is that of 3-sasakian

homogeneous manifolds, classified in [2] (cf. also theorem 3.4 above).

We can also have a finite group Γ acting on the single leaves of the

foliation K. In this case, there is no induced action on the leaf space N ,

and again the global 3-sasakian structure may be not preserved by the

action. Examples of this situation are the spheres S4n+3, acted on freely

and diagonally by finite subgroups of SO(4) that are not subgroups of

S3. The corresponding induced structure on P = P/Γ is now generally

locally 3-sasakian.

Next, consider any flat principal S1-bundle π : M → P . If u is a

closed 1-form on M defining a flat connection on π, define the metric

gM = π∗gP + u ⊗ u. Define also a subbundle H ⊂ End TM , by the

requirement that H is locally generated by the local almost complex

structures:

IαY = −∇Y Xα − ηα(Y )B, IαB = Xα .

(ηα is here the dual of the structure Killing vector field Xα, Y is any

horizontal vector field, and B is the dual vector field of u, α = 1, 2, 3).

Then these data define a locally conformal quaternion Kähler structure

on M .

This discussion can be summarized in the following statement.

Theorem 4.1. Both the classes of positive locally quaternion Kähler

manifolds and of compact locally quaternion Kähler manifolds can be ob-

tained from free actions of finite groups Γ of isometries on compact 3-

sasakian manifolds P . Namely, in terms of the structure foliation K of P :

(i) Positive locally quaternion Kähler manifolds are leaf spaces of

the foliation induced by K on projective 3-sasakian manifolds P = P/Γ,

when P is 3-sasakian homogeneous and when the action of Γ is among

the leaves of K. Table 1, together with proposition 2.5, gives in this case

the list of the allowed groups acting.

(ii) Compact locally quaternion Kähler manifolds are flat principal

S1-bundles over locally 3-sasakian manifolds, obtained again as P = P/Γ,

but when the group Γ acts on each leaf of K.
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