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Moduli and twistor spaces

R. HERRERA – S. SALAMON

Riassunto: Si studiano la geometria e la topologia di certi spazi di moduli di
fibrati stabili, di dimensione pari (arbitraria), su una superficie di Riemann iperellit-
tica, usando descrizioni di spazi twistor. Se ne deducono relazioni con la geometria
quaternionale di grassmaniane reali.

Abstract: We study the geometry and topology of certain moduli spaces of stable
bundles of (arbitrary) even rank on a hyperelliptic Riemann surface, by using a de-
scription involving twistor spaces. We show that there are interesting relations to the
quaternionic geometry of real grassmannians.

1 – Introduction

In this note we discuss some aspects of the geometry of certain moduli

spaces Mg,n of orthogonal vector bundles of even rank over a hyperellip-

tic Riemann surface
∑

g of genus g. These spaces may be described as

complex submanifolds of partial flag manifolds

Fg,n =
SO(2g + 2)

U(g + 1 − n) × SO(2n)
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[19], and it is from this description that we derive our knowledge about

Mg,n. Moreover, these flag manifolds are twistor spaces for the real

grassmannians

Gg,n =
SO(2g + 2)

SO(2g + 2 − 2n) × SO(2n)

in the sense of [21]. They project onto the real grassmannians with fibre

the hermitian symmetric space SO(2g + 2 − 2n)/U(g + 1 − n).

In § 4, we restrict ourselves to studying the cases when n = 2 and n =

g −1 for g ≥ 2 (see fig. 1), since with these values the real grassmannians

Gg,2 =
SO(2g + 2)

SO(2g − 2) × SO(4)
= Gg,g−1

are quaternionic Kähler symmetric spaces [29], and we are able to estab-

lish links with quaternionic geometry.

The note is organised as follows. In § 2 we define the moduli spaces of

orthogonal bundles. In § 3 we quote Ramanan’s result on Mg,n (see [19])

and explain some of its implications. In § 4 we describe some of our

results on the cohomology of these spaces [9], [8], including relations to

quaternionic geometry.
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2 – Moduli spaces of orthogonal vector bundles

Moduli spaces of vector bundles over algebraic varieties and differen-

tiable manifolds have been studied intensely in the last few decades, from

the points of view of Algebraic Geometry [15], [18], Differential Geometry

and Topology [1], [4], and Theoretical Physics [27].

Take for example, the moduli space M(2, 1) of rank 2 stable holo-

morphic vector bundles over a Riemann surface
∑

g (of genus g) with

fixed and odd determinant. This space has been largely studied and very

much is known about its topology [1], [2], [4], [3], [6], [15], [16], [23], [24],

[25], [26], [27], [30]. It can also be described in the following ways:

• M(2, 1) is the space of isomorphism classes of flat SU(2) connections

on
∑ − {p} with holonomy −1 around the point p.

• Let f :SU(2)2g −→ SU(2) be given by

(a1, b1, . . . , ag, bg) *→
∏

i

aibia
−1
i b−1

i .

Then M(2, 1) is isomorphic to f−1(−1)/SO(3) where SO(3) acts by

conjugation on each entry. This is actually the space of representa-

tions of π1(
∑

) in SU(2).

Replacing the structure group SU(2) with another algebraic/Lie

group G produces other moduli spaces of vector bundles over a Rie-

mann surface whose features depend very much on the group G. For

example, when G = SU(n) with n ≥ 2, the moduli spaces SU(n, d) of

rank n semistable holomorphic vector bundles over
∑

with fixed deter-

minant of degree d, have been studied by Jeffrey-Kirwan [10] and by

Witten [28].

In this note we take G to be the special Clifford group SCm = C∗ ×ZZ2

Spin(m), and we also impose some conditions on the vector bundles and

on
∑

. We first recall some Clifford algebra.

2.1 – Clifford algebra

We consider the standard quadratic form Q0 on Cm, and make the

following conventions:

Clm denotes the Clifford algebra;

Cl+m denotes the even Clifford algebra;

Cl∗m denotes the group of units;
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Cm = {s ∈ Cl∗m | a(s)Cms−1 ⊂ Cm} is the Clifford group, where a is

the involution of Clm induced by the map x *→ −x for x ∈ Cm;

SCm = Cm ∩ Cl+m is the special Clifford group.

Since for s ∈ SCm the transformation πs:x *→ a(s)xs−1 is orthogonal

(x ∈ Cm), we get an orthogonal representation of Cm

π :Cm −→ O(m)

where ker(π) = C∗, π(Cm) = O(m) and π(SCm) = SO(m). Furthermore,

SCm is a connected reductive algebraic group. The spinor norm is the

homomorphism

Nm: SCm −→ C∗

x1 · · ·xr *→ Q0(x1) · · ·Q0(xr)

where xj ∈ Cm. Thus, Spin(m) = ker Nm. Therefore, multiplication by

scalars induces a double cover

{±(1, 1)} −→ C∗ × Spin(m) −→ SCm ,

ie. SCm = C∗ ×ZZ2
Spin(m), and we also have the commutative diagram

1 −→ C∗ −→ SCm −→ SO(m) −→ 1

↑ ↑ ||
1 −→ ZZ2 −→ Spin(m) −→ SO(m) −→ 1

2.2 – Moduli spaces

We shall not be considering the full moduli space of semistable SCm-

bundles over
∑

(see [17]); instead, we take a subvariety described as

follows.

Let m = 2n and
∑

be a hyperelliptic Riemann surface with involution

ı:
∑ −→ ∑

and Weierstrass set {ω1, . . . , ω2g+2}. Let E −→ ∑
be a vector

bundle with structure group SC2n. Via the orthogonal representation

π :SC2n −→ SO(2n), E can be considered as an orthogonal vector bundle

of rank 2n. Suppose that it is ı-invariant, ie. that there is a lift of ı

to E such that E ∼= ı∗E. Thus, we have the restriction of the lift of

ı to the fibres over the Weierstrass points, ı:Eωj
−→ Eωj

; since ı2 =

1, the eigenvalues of ı on these fibres are ±1, and we denote E±
ωj

the
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corresponding eigenspaces. Let Λ be an ı-invariant line bundle over
∑

of

degree 2g − 1.

Definition 2.1. Let Mg,n denote the moduli space of rank 2n, ı-

invariant holomorphic semistable orthogonal vector bundles E → ∑
such

that dim((E ⊗Λ)−
ωj

) = 1 for all j = 1, . . . , 2g + 2.

Although the definition of Mg,n may look rather cumbersome, it does

generalise two well known moduli spaces of bundles.

Examples.

n = 1. Since SO(2) ∼= U(1), Mg,1 is the Jacobian J(
∑

) of
∑

(see [19]).

n = 2. The special Clifford group is

SC4 = {(A, B) ∈ Gl(2) × Gl(2) | det(A) · det(B) = 1}

and the homomorphism SC4 −→ SO(4) is given by (A, B) −→
A ⊗ B. Thus a SC4-bundle is essentially a pair of Gl(2)-bundles

M, N with det(M)⊗ det(N) = 1 a trivial bundle. Since C4 does

not distinguish between M and N we have that Mg,2 = M(2, 1)

is the moduli space of (stable) vector bundles of rank 2 and fixed

odd determinant (see [19]).

3 – Mg,n as a submanifold of a twistor space

Let
∑

be as in the previous section. Ramanan proved in [19] the

following theorem.

Theorem 3.1 [19, theorem 3]. Mg,n is isomorphic to the variety

of (g + 1 − n)-dimensional subspaces of C2g+2 which are isotropic with

respect to the two quadratic forms

(1)
2g+2∑

i=1

y2
i ,

2g+2∑

i=1

ωiy
2
i .
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Therefore we have a holomorphic embedding of Mg,n into the com-

plex partial flag manifold

Fg,n =
SO(2g + 2)

U(g + 1 − n) × SO(2n)

which clearly parametrises the (g+1−n)-dimensional subspaces of C2g+2

which are isotropic with respect to the fist quadratic form. Fg,n is a

twistor space for Gg,n since the fibre SO(2g + 2 − 2n)/U(g + 1 − n)

parametrises orthogonal almost complex structures on the real oriented

(2g + 2 − 2n)-dimensional subspaces of IR2g+2, and which are compatible

with the orientation.

Let Q, W denote the duals of the tautological complex vector bun-

dles over Fg,n with fibres Cg+1−n, C2n and structure groups U(g + 1 −
n), SO(2n) respectively. The second quadratic form in theorem 3.1 de-

termines a holomorphic non-degenerate section of the second symmet-

ric tensor power S2Q of Q, whose zero-set is precisely Mg,n. In this

way we know that Mg,n is a smooth manifold with complex dimension

(2n − 1)(g + 1 − n).

The standard representation of SO(2g + 2) on C2g+2 splits under

U(g + 1 − n) × SO(2n) as

(2) Q∗ ⊕Q⊕W = 2g + 2.

This implies that

so(2g+2)c
∼= (u(g+1−n) ⊕ so(2n))c ⊕ (∧2Q⊕Q⊗ W )⊕ (∧2Q⊕Q⊗W ) ,

where ∧2Q⊕Q⊗W corresponds to the holomorphic tangent bundle

T 1,0Fg,n of Fg,n. Here ∧2Q is the holomorphic tangent bundle to the

hermitian fibres SO(2g + 2 − 2n)/U(g + 1 − n) of Fg,n −→ Gg,n and its

complement Q⊗W is a holomorphic horizontal bundle.

On the other hand we have that

T 1,0Fg,n|Mg,n = T 1,0Mg,n ⊕S2Q|Mg,n ,

so that

T = T 1,0Mg,n = ∧2Q⊕Q⊗W − S2Q ,
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and we get the following

Proposition 3.1.

T = Q⊗W − ψ2Q ,

where ψ2 = S2 − ∧2 in K-theory.

The operator ψ2 is one of the series of Adams operators, defined by the

formula ∑

p≥0

(ψpE)tp = r − t
d

dt
log Λ−tE,

where E ∈ K(M) has virtual rank r and ΛtE =
∑

i≥0(∧iE)ti [5]. Each ψp

is a ring homomorphism in K-theory, and is characterised by the property

that

(3) chk(ψ
pE) = pkchk(E) ,

where chk(E) denotes the term of dimension 2k in the Chern character.

4 – Some intersection numbers and cohomology

From now on, we shall restrict ourselves to the cases n = 2 and

n = g − 1 for g ≥ 2, in which the real grassmannians Gg = Gg,2 = Gg,g−1

are quaternionic Kähler symmetric spaces [29], and we will recall some of

their quaternionic features.

These real grassmannians parametrise real oriented 4-dimensional

subspaces of IR2g+2. Consider g to be fixed. Let V be the rank 4 tau-

tological vector bundle over Gg whose complexification pulls back to W

on Fg,2 and to Q⊕Q∗ on Fg,g−1. Let V ⊥ be its orthogonal complement

with respect to the standard equivariant metric. Thus

TGg = V ⊗V ⊥.

Lifting the SO(4) structure of V to Spin(4) ∼= SU(2) × SU(2) ∼= Sp(1) ×
Sp(1) on a suitable open dense subset Gg

′ ⊂ Gg implies that

Vc = U1 ⊗ U2
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where U1, U2 are rank 2 complex vector bundles over Gg
′ corresponding

to each one of the SU(2)’s (the subscript c denotes complexification).

Therefore

(TGg)c
∼= U1 ⊗ (U2 ⊗V ⊥

c )

which shows that Gg is a quaternionic Kähler manifold [29], [20] since

Sp(1)SO(2g − 2) ⊂ Sp(2g − 2) and the holonomy is then contained in

Sp(2g−2)Sp(1). Also, given that U1 can be thought of as a locally defined

quaternionic line bundle, the quaternionic structure is characterised by a

4-dimensional cohomology class u = −c2(U1), called a quaternionic class.

Analogously, we have for U2, a 4-class v = −c2(U2), which by symmetry

gives rise to another quaternionic structure. The bundles S2U1, S2U2 are

globally defined, thus the classes 4u, 4v ∈ H4(Gg,ZZ). Finally, note that

the form 4u (resp. 4v) is non-degenerate.

Now we will study the two cases n = 2 and n = g − 1.

4.1 – Case n = 2. In this case

Fg,2 =
SO(2g + 2)

U(g − 1) × SO(4)
−→ Gg,2 =

SO(2g + 2)

SO(2g − 2) × SO(4)

with fibre SO(2g − 2)/U(g − 1), Q has rank g − 1 and W has rank 4.

Let L = det(Q) be the ample line bundle on Fg,2 which pulls back to the

ample generator of Pic(Mg,2).

Universal cohomology classes

(4) α ∈ H2(Mg,2,ZZ), β ∈ H4(Mg,2,ZZ), γ ∈ H6(Mg,2,ZZ)

were introduced by Newstead [15], [1]. They are obtained from the

Künneth components of the characteristic class c2(V), where V is a uni-

versal SO(3) bundle over Mg,2, and generate the ring H∗
I (Mg,2) of coho-

mology classes of Mg,2 invariant by the action of the mapping class group

on H3(Mg,2). From our point of view these classes are characterised as

follows:

α = c1(L);

β = p1(W ) (see below);

γ is Poincaré dual to 2g copies of Mg−1,2 in Mg,2 [25].
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By expressing T = T 1,0Mg,2 in terms of a push-forward of V, New-

stead obtained the following result, which we take as given and is effec-

tively the definition of (4) for our purposes:

Theorem 4.1 [16, theorem 2].

ch (T )=3g−3+2α+
∑

k≥2

chk

k!
, where

{
ch2k−1 = 2αβk−1− 8(k−1)γβk−2,

ch2k = 2(g−1)βk.

Applying lemma 3.1 and (2), we see that the complexification of the

real tangent bundle of Mg,n is

(5)

T + T ∗ = (Q∗ + Q)W − ψ2(Q∗ + Q),

= (2g + 2 − W )W − (2g + 2 − ψ2W )

= (2g + 2)(W − 1) − W 2 + ψ2W.

which implies for n = 2

p1(W ) = β, p2(W ) = 0,

(6) ch (W ) = 2 + e
√

β + e−
√

β

on Mg,2.

Theorem 4.2 [16,Conjecture (a)].

βg = 0.

Proof. Given that Q∗ +Q = 2g+2−W is a genuine complex vector

bundle of rank 2g − 2, the top dimensional component of its Chern class

is of dimension 4g − 4 in

c(Q⊕ Q∗) = c(W )−1 =
∞∑

k=0

βk
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This was first proved in [13] and later in [11], [27], [26]

The fact that p1(Mg,2) = 2(g − 1)β generates the Pontrjagin ring

of Mg,2 can be linked to the geometry of the real grassmannian Gg,2.

For W and Q + Q∗ are (complexifications of) the pullbacks of the real

vector bundles V , V ⊥ over Gg = Gg,2, and the real tangent bundle of

Gg is isomorphic to V ⊗ V ⊥. The choice of an orientation of V gives

the manifold Gg a quaternion-Kähler structure with quaternionic form

Ω = 4u ∈ H4(Gg,ZZ) arising from the curvature of the locally-defined

quaternionic line bundle U1, ie. u = −c2(U1) [14].

Proposition 4.1. For g ≥ 3, β is the pull-back of the class 4u by

means of the mapping Mg,2 ↪→ Fg,2 → Gg,2.

Proof. β is the pull-back to Mg,2 of β̂ = p1(V ). A calculation

from [22] shows that

p2(V ) = (β̂ − 4u)2 ∈ H8(Gg,2,ZZ) .

Assuming that g ≥ 3, b4(Mg,2) = 2 and so β̂−4u must pull back to aα2+

bβ on Mg,2 for some a, b ∈ ZZ; from (6), (aα2 + bβ)2 = 0. Siebert and

Tian [24] provided a minimal set of relations on the subring of H∗(Mg,2)

generated by α, β, γ (see corollary 4.1 and comments after it). This

implies that there are no non-trivial relations involving α4, α2β, β2 in

H8(Mg,2) except that

0 = −8 (c4(Q) − α c3(Q)) = α4 + 2α2β − 3β2

in genus 3. (There are actually four distinct quaternion-Kähler structures

on G3,2 = SO(8)/(SO(4)×SO(4)), and proposition 4.1 holds for only two

of them. See remarks after proposition 4.3). It follows that in all cases

β = 4u in H4(Mg,2).

On the other hand, the quaternionic volume of Gg is

v(Gg) =
〈
(4u)2g−2, [Gg]

〉
=

2

g

(
4g − 3

2g − 1

)
,

which shows the contrast to the non-degenerate nature of the 4-form Ω =

4u over Gg, and reflects the failure of Mg,2 to map onto a quaternionic

subvariety of Gg. Analogous results hold also for 4v.
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On the other hand, from lemma 3.1 and theorem 4.1 one may readily

compute the Chern character of Q in terms of the classes (4).

Theorem 4.3.

ch (Q) = g − 1 + α +
∑

k≥2

sk

k!
, where

{
s2k−1 = αβk−1 + 2γβk−2,

s2k = −βk.

Proof. Let chk, sk denote the components of ch (T ), ch (Q), respec-

tively, in dimension 2k. Using lemma 3.1, (3) and (6),

3g − 3 +
∑

k≥1

chk

k!
= 2

(
g − 1 +

∑

k≥1

sk

k!

)(
2 +

∑

k≥1

βk

(2k)!

)
−

(
g − 1 +

∑

k≥1

2ksk

k!

)
.

The result now follows from theorem 4.1 by induction on k.

An analogue of the last equation can be found in [2], though the

authors were led to it by the paper of Siebert and Tian [24], who give an

equivalent expression for ch (Q). Using a standard trick [30], theorem 4.3

leads to their recurrence relation for the Chern classes of Q.

(7)

c(t) = exp
[ ∑

k≥1

(−1)k−1skt
k

k

]
=

= exp
[
αt +

∑

n≥2

(αβn−1 + 2γβn−2)
t2n−1

2n − 1
+

∑

n≥1

βn t2n

2n

]
.

Thus the relation [24, proposition 25], namely

(1 − βt2)c′(t) = (α + βt + 2γt2)c(t).

Whence

Corollary 4.1. The Chern classes of the rank g − 1 bundle Q on

Mg satisfy

(k + 1)ck+1 = αck + kβck−1 + 2γck−2 .
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The identities in α, β, γ arising from the equations ck = 0 for k =

g, g+1, g+2 provide a minimal set of relations which completely determine

the cohomology ring H∗
I (Mg,2) [30], [2], [12], [24]. It is worth pointing

out that corollary 4.1 is analogous, but simpler, to the recurrence relation

for the Chern classes of T given at the end of [16].

4.2 – Case n = g − 1. In this case

q :Fg,2 =
SO(2g + 2)

U(2) × SO(2g − 2)
−→ Gg,2 =

SO(2g + 2)

SO(4) × SO(2g − 2)

with fibre SO(4)/U(2) ∼= CIP1, Q has rank 2 and W has rank 2g − 2.

Let L = det(Q) be the ample line bundle on Fg,2 which pulls back to an

ample element of Pic(Mg,g−1).

This time the complex (4g−3)-dimensional homogeneous space Fg,g−1

is the usual twistor space of Gg,g−1 fibring by rational curves. From stan-

dard facts about twistor spaces [20], [14] one knows that Pic(Fg,g−1) is

generated by a holomorphic line bundle L on Fg,g−1 such that

i. the restriction of L to each fibre CIP1 equals O(2),

ii. L2g−1 is isomorphic to the anticanonical bundle κ−1 of Fg,g−1.

In our case, L also corresponds to detQ, and it admits a square root over

Gg
′ ⊂ Gg on which U1 and U2 are defined; there is a C∞-isomorphism

q∗U1
∼= L1/2 ⊕ L−1/2 .

Let l = c1(L) in H2(Fg,g−1,ZZ). From the Leray-Hirsch theorem, there is

an identity
(

l
2

)2
+ q∗c2(U1) = 0 of real cohomology classes. In terms of

integral classes and omitting q∗

l2 = 4u.

The bundle Q is actually

Q ∼= L−1/2 ⊗ q∗U2

where the right hand side is well defined on Fg,g−1, even though the

individual factors only make sense locally.
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We can compute the Hilbert polynomial dimH0(Mg,g−1,O(Lk))

(which is the Verlinde formula of the moduli space) by using a Koszul

complex (see [22], [8]). Let (k) denote the operation of tensoring with Lk.

Since Mg,g−1 is the zero set of a section of the bundle σ∗ = S2Q = S2V (1),

we have

0 −→ OF(∧3Q∗(k)) −→ OF(∧2Q∗(k)) −→ OF(Q∗(k)) −→
−→ OF(k) −→ OM(k) −→ 0 .

which gives

h0(Mg,g−1,O(Lk)) = ak − bk−1 + bk−2 − ak−3

where

ak = χ(Fg,g−1,O(k)), bk = χ(Fg,g−1,O(S2V (k))).

Using the Borel-Weil-Bott theorem we can compute these numbers [8].

Proposition 4.2.

ak =
(2g + 2k − 1)(g + k)(g + k − 1)

g(g − 1)(2g − 1)(2g − 2)

(
2g + k − 2

2g − 3

)(
2g + k − 3

2g − 3

)

bk =
3(2g + 2k − 1)(g + k + 1)(g + k − 2)

g(g − 1)(2g − 1)(2g − 2)

(
2g + k − 1

2g − 3

)(
2g + k − 4

2g − 3

)
.

Since the coefficient of the top power of k in the Verlinde formula

must be l4g−6

(4g−6)!
, we have the following table.

Table 1.

g 2 3 4 5 6 7 8

l4g−6 32 224 2112 22880 268736 3328192 42791040

Recall that l2 = 4u, so that this time we get

Proposition 4.3. The quaternionic form Ω = 4u when pulled back

to Mg,g−1 via Mg,g−1 ↪→ Fg,g−1 −→ Gg,g−1 is non-degenerate.



710 R. HERRERA – S. SALAMON [14]

Proof. This follows from the fact that l corresponds to the first

Chern class of a positive line bundle on Mg,g−1.

Remark 1. This actually corresponds to the fact that q∗Vc =

Q⊕Q∗, and it is in contrast to proposition 4.1. This is because the

quaternionic structure in the case n = 2 is determined by the factor of

the isotropy group of Gg which is fixed in the twistor fibration. On the

other hand, in the case n = g−1 the quaternionic structure is determined

by the factor of the isotropy group for which the twistor fibration is being

considered.

Remark 2. When g = 3 the two lines in fig. 1 meet, so that both

propositions 4.1 and 4.3 actually hold. This is no inconsistency since as

was said before, the quaternionic structures being considered, although

denoted by the same symbols, are different because they come from the

two different SO(4) factors of the isotropy group.

Several interesting questions are still open, such as for example defin-

ing universal classes for Mg,n and determine their intersection pairings.

For Mg,2 this has been done by several authors [4], [25], [27], [9]. Also,

it would be interesting to know more about the image of Mg,n in Gg,n.
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