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On the group of Poisson diffeomorphisms of the torus

T. RYBICKI

Riassunto: Si considera il gruppo dei diffeomorfismi hamiltoniani del toro con la
struttura standard di Poisson. Si mostra che questo gruppo è perfetto e che lo sono
anche i suoi ricoprimenti universali. Si estende questo risultato ad alcuni sottogruppi
del gruppo dei diffeomorfismi hamiltoniani di IRn. Il risultato generalizza alcuni noti
teoremi di Banyaga sugli omomorfismi simplettici.

Abstract: We consider the group of all Hamiltonian diffeomorphisms of the torus
with the standard Poisson structure. We show that this group as well as its univer-
sal covering are perfect. Next we extend this result to some subgroup of the group of
Hamiltonian diffeomorphisms of IRn with the standard Poisson structure. The results
and their proofs generalize well known theorems of Banyaga for symplectomorphisms.

1 – Introduction

Let (M, Ω) be a symplectic manifold. A diffeomorphism φ of M

onto M is called a symplectomorphism if φ∗(Ω) = Ω. By G(M, Ω)0

we denote the group of all symplectomorphisms which are isotopic to

the identity through compactly supported symplectomorphisms. Next

G∗(M, Ω) stands for the subgroup of all Hamiltonian diffeomorphisms.

For any topological group G the symbol G̃ denotes the universal
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covering group of G. Recall that the group is perfect if its abelianization

H1(G) = G/[G, G] is trivial.

The starting point is the following result being a corollary of a well

known paper [1] by A. Banyaga.

Theorem 1.1. For any compact symplectic manifold (M, Ω) the

groups G∗(M, Ω) and ˜G∗(M, Ω) are simple.

Indeed, this is a consequence of a main result of [1] and some proper-

ties of the flux homomorphism (see Section 3). Notice that in view of [4]

showing the simplicity amounts to showing the perfectness. Notice as

well that if M is noncompact the group G∗(M, Ω) is neither simple nor

perfect (see Theorem 3.3).

The first aim of this paper is to give a generalization of Theorem 1.1

to the torus T n with the standard Poisson structure Λ2k, 2k < n.

Theorem 1.2. Let G∗(T n,Λ2k) be the group of all Hamiltonian

diffeomorphisms of (T n,Λ2k). Then G∗(T n,Λ2k) is a perfect group, and

the same is true for its universal covering group.

For the proof, see Section 6. Observe that in our case the group in

question cannot be simple for obvious reasons.

By using the homology theory as in W. Thurston’s paper [18]

one can have the following result for the standard Poisson structure Λ2k

on IRn.

Theorem 1.3. Let G∗∗(IRn,Λ2k) be the group of all special Hamilto-

nian diffeomorphisms of (IRn,Λ2k) (for the definition of G∗∗ see Section 3

and 8). Then G∗∗(IRn,Λ2k) and ˜G∗∗(IRn,Λ2k) are perfect.

The proof will occupy Section 7. Certain consequences of this theo-

rem are pointed out in the last section.

In the proofs of the above results on one hand we generalize a method

of [7[, [18], [1] to the non-transitive case, and on the other we develop

modifications of this method in [14]. The extension of [1] is possible as we

restrict ourselves to Hamiltonian diffeomorphisms. It seems likely that

some analogues of results of [1] still hold for the identity component of the

group of all automorphisms of (M, Λ) but the proof would be essentially
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more complicated. Another difficulty is that the notion of the second

Calabi homomorphism for Poisson manifolds is not well understood, or

even not relevant (cf. [15]).

Other important candidates for the perfectness theorem are specified

in [16], where the problem of n-transitivity along leaves is studied. Let us

remark that only little is known about the automorphism groups of non-

transitive geometric structures (e.g. Poisson) in spite of their numerous

applications in Mechanics.

In the sequel all manifolds, tensors and diffeomorphisms are assumed

to be of class C∞. The main reason is that Implicit Function theorem in

Section 5 is no longer true in the space of Cr-mappings.

2 – Diffeomorphism groups of a Poisson manifold

Let M be a second countable C∞-smooth manifold. A Poisson struc-

ture can be introduced by a skew-symmetric (2, 0)-tensor Λ on M such

that [Λ, Λ] = 0, where [., .] is the Schouten-Nijenhuis bracket (cf. [19]).

Then the rank of Λp may vary but it is even everywhere. The ring of

the real smooth functions on M , C∞(M), can be given a Lie algebra

structure by means of the bracket

{f, g} := Λ(df, dg) for any f, g ∈ C∞(M),

and every adjoint homomorphism of this bracket is a derivation of C∞(M).

We have the “musical” bundle homomorphism associated with Λ

* : T ∗M → TM, β(α0) = Λ(α, β),

where α0 = *(α), for any α, β ∈ T ∗M . In case Λ is nondegenerate

(i.e. rank(Λ) = dim(M)), * is an isomorphism and we get a symplectic

structure. We then denote by 9 : TM → T ∗M the inverse isomorphism

of *.

In general, the distribution *(T ∗
p M), p ∈ M , integrates to a gen-

eralized foliation such that Λ restricted to any leaf induces a symplectic

structure. This foliation is called symplectic and will be denoted by F(Λ).

The symplectic form living on L ∈ F(Λ) will be denoted by ΩL.
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If the dimension of leaves is constant, i.e. if F(Λ) is a regular foli-

ation, the Poisson structure Λ is called regular. Since we shall appeal

to the diffeomorphism group on the torus T n with the standard Pois-

son structure Λ2k, we shall be concerned with regular Poisson structures

exclusively.

Suppose that (M, Λ) is a regular Poisson manifold such that dim(M)

= n, dim(F(Λ)) = 2k, h = n−2k. By extending the Darboux theorem for

a regular Poisson manifold (cf.[10, 19]) one has the existence of canonical

coordinates , namely for any p ∈ M one has a local coordinate system at p

(xi, yj), i = 1, . . . , 2k, j = 1, . . . h , such that the following relations hold

{xi, xi+k} = 1, {xi, xj} = 0 if |i − j| 1= k,

{xi, yj} = 0, {yi, yj} = 0.

Let G(M) ⊂ Diff∞(M) be any diffeomorphism group. By a smooth

path in G(M) we mean any family {ft}t∈IR with ft ∈ G(M) such that

the map (t, x) (→ ft(x) is smooth. Next, G(M)0 denotes the subgroup

of all f ∈ G(M) such that there is a smooth path {ft}t∈IR with ft = id

for t ≤ 0 and ft = f for t ≥ 1, and such that each ft stabilizes outside

a fixed compact set. Notice that G(M)0 is the connected component

of id if G(M) is locally contractible and M is compact. Notice as well

that the group of all automorphisms of a regular Poisson manifold is

locally contractible (see [20, p. 339-40], the argument used there extends

to Poisson manifolds, cf. [6], [15]).

To any smooth path ft in G(M)0 we attach a family of vector fields

ḟt =
dft

dt
(f−1

t ).

Then the time-dependent family ḟt is a unique smooth path in the Lie

algebra corresponding to G(M)0 which satisfies the equality

(1)
dft

dt
= Xt ◦ ft with f0 = id.

Conversely, given a smooth family Xt of compactly supported vector fields

there exists a unique solution ft of (1) (see e.g. [9], where such a one-to-one

correspondence for infinite dimensional Lie groups is called regularity).
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In particular, ft is a flow if and only if the corresponding Xt = X is

time-independent, namely it is a unique compactly supported vector X

generating this flow. It is well known that only few diffeomorphisms are

elements of some flow (cf. [5], [13]).

A smooth mapping f of (M,Λ) into itself is called a Poisson mor-

phism if

{u ◦ f, v ◦ f} = {u, v} ◦ f for any u, v ∈ C∞(M).

Let G(M, Λ) stand for the group of all Poisson automorphisms of (M, Λ)

which are tangent to the leaves of F(Λ).

Let us denote by A ⊂ C∞(M) the subspace of all functions u such

that [Λ, u] = 0. Recall that a vector field X is an infinitesimal auto-

morphism of (M, Λ) if [Λ, X] = 0, that is LXΛ = 0, where L is the Lie

derivative. By L(M, Λ) we denote the Lie algebra of all infinitesimal

automorphisms with compact support which are tangent to F(Λ).

Next, let L∗(M, Λ) be the subspace of L(M, Λ) of all Hamiltonian

vector fields, i.e. X ∈ L∗(M, Λ) iff there exists compactly supported u ∈
C∞(M) such that

X = [Λ, u] or, equivalently, X = (du)0.

Both L(M, Λ) and L∗(M, Λ) are A-modules.

For Y ∈ L(M,Λ), X ∈ L∗(M, Λ) we get [Y,X] = LY [Λ, u] = [Λ,LY u],

so that L∗(M, Λ) is an ideal of L(M, Λ). Moreover we have

[L(M, Λ), L(M, Λ)] ⊂ L∗(M, Λ)

as a consequence of the equality [X1, X2] = [Λ, u], where u is defined by

u(p) = ι(X1(p)∧X2(p))ΩLp , Lp being the leaf passing through p (cf. [10]).

Proposition 2.1. Suppose that ft, Xt are related by the equa-

tion (1). Then ft ∈ G(M, Λ)0 for each t if and only if Xt ∈ L(M, Λ) for

each t.
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Proof. When restricting ft to a leaf L we have

d

dt
f∗

t ΩL = f∗
t (ι(Xt)dΩL + d(ι(Xt)ΩL)) = f∗

t d(ι(Xt)ΩL).

It follows that the claim is true on any leaf, and consequently so is on the

whole M (cf. [19]).

Definition 2.2. A smooth path satisfying Proposition 2.1 is called

a Poisson isotopy. A Poisson isotopy ft is said to be Hamiltonian if the

corresponding Xt ∈ L∗(M, Λ) for each t. A diffeomorphism f of (M, Λ)

is called Hamiltonian if there exists a Hamiltonian isotopy ft such that

f0 = id and f1 = f . The totality of all Hamiltonian diffeomorphisms is

denoted by G∗(M, Λ). Clearly G∗(M, Λ)0 = G∗(M, Λ).

Proposition 2.3. G∗(M, Λ) is a normal subgroup of G(M,Λ).

Proof. First we check that G∗(M, Λ) is a group. Let ft, gt be

Hamiltonian isotopies, that is ḟt = (dut)
0, ġt = (dvt)

0 for some smooth

families of C∞-functions ut and vt. Then ft ◦ gt is still a Hamiltonian

isotopy as
˙︷ ︸︸ ︷

(ft ◦ gt) = (d(ut + vt ◦ f−1
t ))0,

and f−1
t is Hamiltonian since

˙︷︸︸︷
f−1

t = (d(−ut ◦ ft))
0.

It follows that G∗(M, Λ) is a group.

Next, if ft is a Hamiltonian isotopy as above and g is a Poisson

diffeomorphism then

˙︷ ︸︸ ︷
(g−1 ◦ ft ◦ g) = (d(ut ◦ g))0.

This means that G∗(M, Λ) is a normal subgroup of G(M, Λ).

Proposition 2.4. Let (M, Ω) be a symplectic manifold. If t (→ ft

is a smooth path in G∗(M, Ω) then Xt is Hamiltonian for any t and,

consequently, ft is a Hamiltonian isotopy.
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For the (nontrivial) proof, see [12, p. 319-20].

Lemma 2.5. Let (M, Λ) be the product Poisson manifold, M =

L2k × Q, where L2k is a symplectic manifold and Q is a manifold. If

X ∈ L(M, Λ) then: X ∈ L∗(M, Λ) ⇔ X|L ∈ L∗(L,ΩL) for any leaf L.

Proof. (⇒) It follows by definition and by the assumption on (M, Λ).

(⇐) Let θL be a unique smooth 1-form on a leaf L such that we have

9L(θL) = X|L where 9L : TL → T ∗L is the isomorphism associated with

(L,ΩL). We have θL = duL for any L with uL ∈ C∞(L). The functions

uL are defined uniquely up to a constant.

Let us fix x0 ∈ L2k, and let (x1, . . . , x2k) be a canonical chart on L2k

at x0. As M = L2k ×Q one can choose for any y ∈ Q a canonical product

chart (x, y) = (x1, . . . , x2k, y1, . . . , yh) at (x0, y).

One can choose a 1-form θ on M such that θ|TL = θL for any leaf L.

If θ =
∑2k

i=1 ai(x, y)dxi in this chart then the equation

uLy(x) =

∫ x1

x0
1

a1(x, y)dx1 + C(y)

determines uniquely the constant C(y), where Ly is the leaf through

(x0, y). Clearly C(y) is a basic function. It follows that the function

u(x, y) = uLy(x) − C(y)

is smooth and satisfies X = (du)0.

Proposition 2.6. Let M = L2k × Q be the product Poisson mani-

fold. If ft is a smooth path in G∗(M, Λ) then ft is a Hamiltonian isotopy.

Proof. For each leaf L a smooth path t (→ ft|L is in G∗(L,ΩL). By

Proposition 2.4 ft|L is a Hamiltonian isotopy in (L,ΩL). It follows that

Xt|L ∈ L∗(L,ΩL) for each t. In view of Lemma 2.5 Xt ∈ L∗(M, Λ) for

each t. This means that ft is a Hamiltonian isotopy.

Corollary 2.7. Under the above assumption, let ft be a Poisson

isotopy. Then ft is Hamiltonian if and only if ft|L is Hamiltonian of

(L,Ω|L) for each L.
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Now we would like to put forward some questions. Denote by Ĝ(M,Λ)

(resp. Ĝ∗(M, Λ)) the subgroup of G(M, Λ) generated by all exp(X) where

X ∈ L(M, Λ) (resp. L∗(M, Λ)). It is a trivial observation that Ĝ(M, Λ)0 =

Ĝ(M, Λ) and Ĝ∗(M, Λ)0 = Ĝ∗(M, Λ).

Questions. Is it true that G(M, Λ)0 = Ĝ(M, Λ)? Note that this is

the case for symplectic manifolds (cf. [11]).

An analogue for Hamiltonian diffeomorphisms is whether Ĝ∗(M, Λ) =

G∗(M, Λ) holds true. Again, this is so for symplectic manifolds (see

Corollary 3.2).

We end this section with the fragmentation properties for G∗(M, Λ)

and G(M, Λ). From now on we adopt the following notation: GU(M) is

the subgroup of all elements of G(M) compactly supported in an open

ball U . In the sequel open balls are always assumed to be relatively

compact and extendable i.e. the closure of an open ball must be contained

in another open ball.

Definition 2.8 (Fragmentation property). If {Ui} is any finite fam-

ily of open balls and h ∈ G(M)0 such that supp(h) ⊂ ⋃
Ui, then there

exists a decomposition h = hs ◦ . . . ◦ h1 such that hj ∈ GUi(j)
(M)0 for

i = 1, . . . , s.

Lemma 2.9. Let (M, Λ) be a regular Poisson manifold and let {Ui}
be a finite family of open balls of M . If ft is a Hamiltonian isotopy of

(M, Λ) such that
⋃

t supp(ft) ⊂ ⋃
Ui then there are Hamiltonian isotopies

f j
t supported in Ui(j) and such that ft = f s

t ◦ · · · ◦ f1
t .

Proof. First observe that by considering f(p/m)tf
−1
(p−1/m)t, p=1, . . . ,m,

instead of ft we may assume that ft is sufficiently near the identity.

We choose a new family of open balls, {Vj}s
j=1, satisfying supp(ft) ⊂

V1∪. . .∪Vs for each t and which is starwise finer that {Ui}: ∀ j ∃ i star(Vj)

⊂ Ui(j).

ft being a Hamiltonian isotopy, for the corresponding family Xt we

have the equality

Xt = (dut)
0

for some smooth path ut in C∞(M). Let (λj)
s
j=1 be a partition of unity

subordinate to (Vj), and let vj
t = λjut. One then has Xt = (dv1

t )
0 + · · · +
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(dvs
t )

0. We define

Xj
t = (dv1

t )
0 + · · · + (dvj

t )
0.

Each of the smooth families Xj
t integrates to a Hamiltonian isotopy gj

t

with support in V1 ∪ . . . ∪ Vj. We get

ft = gs
t = f s

t ◦ · · · ◦ f1
t

where f j
t = gj

t ◦ (gj−1
t )−1 (g0

t = id). Finally, the inclusions

supp(f j
t ) = supp(gj

t ◦ (gj−1
t )−1) ⊂ star(Vj) ⊂ Ui(j),

which hold whenever ft is close to id, give the required property.

Corollary 2.10. G∗(M, Λ) verifies the fragmentation property.

Convention. In the sequel we shall omit for simplicity the compo-

sition sign ◦.

Lemma 2.11. Let M = L2k × Q be the product Poisson manifold

and let ft be a Poisson isotopy joining f0 = id with f1 = f . If U, V are

two open balls on M such that V = V1 × V2, where V1 is a ball on L2k,

and the closure of
⋃

t ft(U) is a subset of V , then there is a Hamiltonian

isotopy gt such that ft = gt on U and supp(gt) ⊂ V .

Proof. We have Xt ∈ L(M, Λ) where Xt is related to ft by (1).

V1 being a ball, Xt|L ∈ L∗(L,ΩL) for any leaf L. By Lemma 2.5 Xt ∈
L∗(M, Λ). It follows that Xt = (dut)

0 for a smooth family ut for com-

pactly supported C∞-functions.

Let λ : M → IR be C∞ such that λ = 1 on U and suppλ ⊂ V .

Then gt corresponding to Yt = (dvt)
0 satisfies the claim.

Although it seems likely that Lemma 2.5, Proposition 2.6 and Lemma 2.11

hold in a wider class of Poisson manifolds (e.g. for the regular case by a

method from [15]), the present form of them is sufficient for our purpose.
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3 – The flux homomorphism

Let G be a topological group. Provided G is locally arcwise con-

nected, its universal covering G̃ is described as the set of pairs (g, {gt}),

where gt, t ∈ I, is a path in G connecting g with e, and {gt} is the

homotopy class of gt rel. endpoints.

Let (M, Ω) be a symplectic manifold of dimension n = 2k. The group
˜G(M, Ω)0 can be endowed with multiplication in two equivalent ways:

either by the juxtaposition of isotopies, or by the pointwise composition

of isotopies. If ft is an isotopy in G(M, Ω)0 one defines

S̃({ft}) =

∫ 1

0

9(ḟt)dt.

This integral depends on the homotopy class rel. endpoints only (cf. [3],

[12]), so that one has a continuous epimorphism S̃ : ˜G(M, Ω)0 →H1
0 (M, IR),

where H1
0 (M, IR) is the first de Rham cohomology group with compact

support. This epimorphism is called the flux homomorphism or the first

Calabi homomorphism.

Let Γ be the image of the fundamental group π1(G(M, Ω)0, id) un-

der S̃. Then Γ is countable (cf. [1], [12]). Since

G(M, Ω)0 = ˜G(M, Ω)0/π1(G(M, Ω)0)

we get a continuous epimorphism

S : G(M, Ω)0 → H1
0 (M, IR)/Γ.

The subgroup K = Ker(S) is arcwise connected (cf. [1, p. 189]). Moreover,

we have the following

Proposition 3.1. Let ft be an isotopy in G(M, Ω)0. Then ft is an

isotopy in K if and only if ḟt = (dut)
0 is a smooth curve in L∗(M, Ω), the

Lie algebra of Hamiltonian vector fields of (M, Ω).
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For the proof, see [1, p. 190]. Observe that due to Theorem 10.12

in [12] S̃({ft}) = 0 if and only if ft is homotopic rel. endpoints to a

Hamiltonian isotopy.

Corollary 3.2. For any symplectic manifold (M, Ω) we have

K = G∗(M, Ω) = Ĝ∗(M, Ω) (the notation as in Section 2).

Proof. In [11] it is shown that for any symplectic manifold (not

necessarily compact) we have K = Ĝ∗(M, Ω). The equality K = G∗(M, Ω)

follows by Propositions 3.1 and 2.4.

Observe that Theorem 1.1 is a consequence of this corollary and the

fact that K is simple whenever M is compact (cf. Theorem II.6.1 in [1]).

Now if M is noncompact, the family ut from Proposition 3.1 is unique-

ly determined. This enables us to define a new continuous epimorphism

R̃ : K̃ → IR (the second Calabi homomorphism) by

R̃({ḟt}) =

∫ 1

0

( ∫

M

utη
)
dt,

where η is a symplectic volume. Then R̃ descends to a continuous epi-

morphism R : K → IR/Λ (cf. [3], [12]).

Theorem 3.3 [1]. For any open connected symplectic manifold

(M,Ω) the group Ker(R) is simple.

In particular, the group G∗(M, Ω) is not simple in this case. It follows

easily by [4], or by an argument of Thurston [1, p. 225-6] that G∗(M, Ω)

is neither perfect.

Definition 3.4. Let 2k < n and let (IRn,Λ2k) be the standard

Poisson structure, i.e. IRn = IR2k × IRh where IR2k is equipped with the

standard symplectic form Ω2k =
∑k

i=1 dxi ∧ dxk+i. For any L ∈ F(Λ2k)

we denote by RL : G∗(L,ΩL) → IR/Λ the corresponding second Calabi

homomorphism. Now f ∈ G∗∗(IRn,Λ2k) if, by definition, RL(f |L) = 0 for

any L.

Similarly we define G∗∗(T n,Λ2k) where Λ2k is the standard Poisson

structure on T n = T 2k × T h.
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Now we turn our attention to the case (T 2k,Ω2k), where Ω2k is the

standard symplectic structure on the torus T 2k, i.e. Ω =
∑k

i=1 dxi ∧dxk+i

in the canonical chart (xi)
2k
i=1.

For each α ∈ T 2k we define the rotation Rα ∈ G(T 2k,Ω2k)0 by

Rα(z) = (e2πiα1z1, . . . , e2πiα2kz2k).

We have the canonical inclusion

α ∈ T 2k ↪→ Rα ∈ G(T 2k,Ω2k)0.

Remark 3.5. It is straightforward that Rα is not a Hamiltonian

unless α = 0. Indeed, one has Ṙtα =
∑

tαi∂i, where α = (α1, . . . , α2k),

∂i = ∂/∂xi. We then have

∫ 1

0

ι(Ṙtα)Ω2kdt = (1/2)
k∑

i=1

(αixk+i − αk+idxi) 1= 0

so that in view of Theorem 10.12 in [12] Rα is not Hamiltonian.

For any α ∈ IR2k we may take a smooth path Rtα in G(T 2k,Ω2k).

Therefore, we obtain a map j : IR2k → ˜G(T 2k,Ω2k)0. It is visible that

j(ZZ2k) ⊂ π1(G(T 2k,Ω2k)0). Consequently, j induces the map

j : T 2k = IR2k/ZZ2k → G(T 2k,Ω2k)0.

Further, since S̃(π1(G(T 2k,Ω2k)0)) ⊂ H1
0 (T 2k,ZZ) = ZZ2k we have the map

S : G(T 2k,Ω2k)0 → H1
0 (T 2k, IR2k)/H1

0 (T 2k,ZZ2k) = IR2k/ZZ2k = T 2k.

Thus we have defined the map

J := S ◦ j : T 2k → T 2k.

In other words, J is the restriction of S to T 2k ⊂ G(T 2k,Ω2k)0.
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Proposition 3.6. The map J : T 2k → T 2k is actually the isomor-

phism defined by

J(x1, x2, . . . , x2k−1, x2k) = (−x2, x1, . . . ,−x2k, x2k−1).

For the (rather obvious) proof, see [1, p. 222].

4 – Topological preliminaries

Let G be a topological group. We shall be concerned with H1(G), the

first homology group of G in the sense of Eilenberg-Mclane. This group

is identified with the abelianization G/[G, G] (see e.g. [2]).

With any topological group G we can associate some simplicial set as

follows (cf. [2]). The symbol G∆n
will stand for the set of all continuous

mappings of ∆n into G, ∆n being the standard n-dimensional simplex.

The group G acts on G∆n
by the pointwise multiplication. Let BnG =

G∆n
/G, that is BnG is the set of orbits of the action of G. It is visible that

BnG can be identified with the set (G, e)(∆n,0) of continuous mappings

of ∆n into G sending 0 to e. Then BG =
⋃

BnG is a simplicial set

with some face operators ∂i : BnG → Bn−1G and degeneracy operators

si : BnG → Bn+1G (for the definition see [2] or [1]). These operators

verify relevant compatibility conditions.

It is important that BG is a Kan complex and it is possible to give

a purely combinatorial definition of homotopy groups (cf. [8]). Namely

the following equivalence relation is given on BG: for any 1-simplices σ,

τ ∈ B1G

σ ∼ τ iff ∃ c ∈ B2G : ∂0c = σ, ∂1c = τ, ∂2c = e

where e is the constant map. Then the first homotopy group of BG is

defined by π1(BG) = B1G/ ∼.

It follows by definition that for any σ ∈ B1G the classes of σ with

respect to the relation ∼ and with respect to the homotopy rel. endpoints

are the same, that is

π1(BG) = B1G/ ∼= G̃.
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The following will be useful in the next section.

Lemma 4.1. Let σ, τ be 1-simplices in G. Then σ, Adτ(1)σ are

homological.

Proof (See e.g. [1]). The paths µ(t) = [τ(1), σ(t)] and ν(t) =

[τ(t), σ(t)] are homotopic rel. the endpoints µ(0) = ν(0) = e and µ(1) =

ν(1) = [τ(1), σ(1)]. In fact, the homotopy can be given by

H(s, t) = [τ(s + t − st), σ(t)].

Since the class of ν in G̃ belongs to [G̃, G̃], {ν} ∈ H1(BG, ZZ) = G̃/[G̃, G̃]

is equal to 0. Hence {µ} = 0. Thus the paths t (→ σ(t) and t (→
τ(1)σ(t)τ(1)−1 are homological.

Further, it is well known that

H1(BG, ZZ) =
π1(BG)

[π1(BG), π1(BG)]
,

and, consequently,

(2) H1(BG, ZZ) = H1(π1(BG)) = H1(G̃).

Thus to prove that ft ∈ G̃ is in the commutator subgroup it suffices

to have that {ft} = 0 in H1(BG, ZZ). This will be useful in the proof of

Theorem 1.3.

5 – Implicit function theorem

The concept of L-category was introduced in [17]. Roughly speak-

ing, an object in this category is a quadruple (E, B, N ,S), where E is

a Fréchet space, N = (| |i) is an increasing sequence of norms defining

the topology of E, S = (St), t > 0, is a one-parameter family of “ap-

proximation” operators on E, and B is an open subset with respect to

some norm from N . Let Ei denote the completion of E with respect to

the norm | |i, and let ρji : Ej → Ei be an extension if idE, j ≥ i. Then

topologically E = lim←(Ei, ρji). An interpretation of the operators St is
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the following. Each St extends to an St : E0 → E and St approximates

an element from E0 by an element from E. The greater is t the better is

an approximation.

The concept of Cr (weak) morphism in the L-category is even more

complicated (see [17]). Of course, all morphisms are continuous map-

pings.

By means of the L-category one can introduce the notion of L-

manifold of class Cr, 1 ≤ r ≤ ∞. This is a topological space endowed

with an L-atlas, i.e. an atlas modeled on an L-object in the usual way. In

particular, the concept of tangent space of L-manifold at a point is well

defined. The spaces of Cr mappings are clue examples of L-manifolds,

and the need of a generalized smooth structure on them motivated the

definition of L-category.

The object of our interest will be L-groups, that is topological groups

such that their group products and inverse mappings are L-morphisms.

Of course, the diffeomorphism groups are here the main example. In

obvious way one can define also a notion of L-action of an L-group on an

L-manifold.

We begin with an Implicit function theorem in the case of L-actions

(cf. [17]). Let G, H be L-groups of class Cr (r ≥ 2) and M be an L-

manifold. Denote by α : G×G → G, β : H ×H → H the group products

and let Φ : G × M → M,Ψ : H × M → M be L-actions of class Cr.

Next, let ∆ : G × H × M → M, be an “action” of G × H, defined by

∆(g, h, x) = Φ(g,Ψ(h, x))

for g ∈ G, h ∈ H, x ∈ M. By d∆ we denote the differential of ∆ with

respect to two first variables. By the chain rule one has

d∆(g, h, x, ĝ, ĥ) = d1Φ(g,Ψ(h, x), ĝ) + d2Φ(g,Ψ(h, x), d1Ψ(h, x, ĥ)).

(Here we adopt the notation ĝ ∈ Tg(G), x̂ ∈ Tx(M) and so on.) Let us

fix x0 ∈ M. By making use of the local triviality of the tangent bundle

TM one can identify Tx(M) with T = Tx0
(M) for x being near x0.

Likewise, Tg(G) is identified with T1 = Te(G), whenever g ∈ G is near e,

and Th(H) is identified with T2 = Te(H), whenever h ∈ H is near e. Then

by applying Implicit function theorem one has the following
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Theorem 5.1 [17, 4.2.5]. Suppose that there exists an L-morphism

of class C∞ , L : U ×T → T1 ×T2 , where U is a neighborhood of e in H,

such that if L(h, x̂) = (ĝ, ĥ), then

d∆(e, e,Ψ(h, x), ĝ, ĥ) = x̂.

Then there exists a neighborhood V of x0 in M and a weak L-morphism

of class C∞ s : V → G × H such that ∆(g, h, x0) = x if s(x) = (g, h).

Now let k ≥ 1 and let Fk denote the trivial k-dimensional foliation

on the torus T n, i.e. Fk = {T k × {pt}}. The symbol G(T n, Lk)0 stands

for the group of all leaf preserving diffeomorphisms on (T n,Fk) which are

isotopic to the identity through leaf preserving diffeomorphisms.

Notice that we have the canonical inclusion α∈T k ↪→Rα ∈G(T n, Lk)0,

where

Rα(z1, . . . , zn) = (e2πiα1z1, . . . , e2πiαkzk, zk+1, . . . , zn).

The following result is a version of Theorem 5.2.1 in [17], or funda-

mental lemma in [7].

Theorem 5.2. Let α ∈ T k verify Diophantine condition. There

exist a neighborhood V of Rα in G(T n, Lk)0 and a weak L-morphism of

class C∞

s : V → G(T n, Lk)0 × T k

such that h = Rλg−1Rαg whenever h ∈ V, and s(h) = (g, λ). Moreover,

if ht, t ∈ I, is a smooth isotopy in V and s(ht) = (gt, λt) then gt, λt

depend smoothly on t.

Recall that α = (α1, . . . , αn) ∈ IRn satisfies the Diophantine condi-

tion if there are small c > 0 and large N such that for any (n + 1)-tuple

of integers (q0, q1, . . . , qn) with (q1, . . . , qn) 1= 0 one has

|q0 + q1α1 + · · · + qnαn| > c(|q1| + · · · + |qn|)−N .

We can extend this definition to elements of T n by saying that α ∈ T n

is Diophantine if so is its representant in IRn; this definition is indepen-

dent of the choice of representant. It is well known that the set of all
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Diophantine elements of T n is dense. Moreover, it has the Haar measure

equal to 1.

It is obvious that if α ∈ T k is Diophantine then so is α′ = (α, 0) ∈ T n.

Proof. The proof follows closely [17], or [7], and it is given here for

the completeness sake.

Let G = T k, H = G(T n, Lk)0 endowed with the structure opposite to

the usual. Define actions of G and H, respectively, on H by

Φ(λ, h) = Rλh,

Ψ(g, h) = g−1hg.

Let ∆ : G × H × H → H be the composition of these actions

∆(λ, g, h) = Φ(λ, Ψ(g, h)) = Rλg−1hg.

We make use of Theorem 5.1. We have

d∆(e, e, h, λ̂, ĝ) = λ̂ + dh · ĝ − ĝ · ∆,

where λ̂ ∈ IRk = Te(T
k), ĝ ∈ C∞(T n, IRk) = Tid(G(T n, Lk)0). Consider

the equation

(3) λ̂ + d(g−1Rαg) · ĝ − ĝ · (g−1Rαg) = ĥ.

In view of Theorem 5.1 we have to solve (3) for given g, h ∈ G(T n, Lk),

and with respect to the unknowns λ̂, ĝ. Set f̂ = dg ·ĝ ·g−1 ∈ C∞(T n, IRk).

Since dRα = id, we get

(4) f̂ − f̂ · Rα = dg · (ĥ − λ̂) · g−1

If m be the normalized Haar measure on T n, we have

(5)

∫

Tn
dg · (ĥ − λ̂) · g−1dm = 0.

The equality (5) determines uniquely λ̂ ∈ IRk, provided g is sufficiently

near id in G(T n, Lk)0.
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The rest consists in showing the existence of f̂ ∈ C∞(T n, IRk) satis-

fying (4). This will follow by using the condition on α. Suppose that we

have the following expansion in Fourier series

f̂(x) =
∑

p∈ZZn−{0}
ape

2πi(p,x), ap ∈ IRk.

Further, suppose that the right hand side of (4) has the Fourier expansion

∑

p∈ZZn

bpe
2πi(p,x), bp ∈ IRk.

Then, in view of (4), we get

ap =
bp

1 − e2πi(p,α)
,

for p > 0, and a0 = 0. The Diophantine condition now gives

|ap| ≤ c|bp||p|N ,

where |p| =
∑

i |pi|. This implies that f̂ is of class C∞ (when Cr, r finite,

would be considered, one could not avoid the “loss of smoothness”, i.e. f̂

is of class Cr−β, β depending on α).

The second assertion follows from the fact that s is a C∞ L-morphism

(Theorem 5.1), and it sends smooth curves to smooth curves.

6 – The case of G∗(T n,Λ2k)

Let Λ2k be the standard Poisson structure on the torus T n, i.e. T n =

T 2k × T h is the product of T 2k with the standard symplectic structure

by T h. In particular, for any leaf L we have ΩL =
∑k

i=1 dxi ∧ dxk+i in

the canonical chart (x1, . . . , x2k, y1, . . . , yh). Theorem 5.2 enables us the

study of the group of Hamiltonian diffeomorphisms of this structure. The

following argument is a modification of [1, Theorem III.6.2].

Proof of Theorem 1.2. Clearly it suffices to prove the second

assertion. Let ft be an isotopy in G∗(T n,Λ2k) connecting f = f1 with
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id = f0. Our purpose is to show that ft is in the commutator subgroup.

In view of Sect.4 we have to show that {ft} = 0 in H1(BG∗(T n,Λ2k), ZZ).

We may assume that ft ∈ V ′, V ′ being a neighborhood of id such

that RαV ′ ⊂ V, where V, α are as in Theorem 5.2, and α is so small

that Rα is in a contractible neighborhood of id. This assumption can

be accomplished by replacing ft by the product of f(p/m)tf
−1
(p−1/m)t, p =

1, . . . , m, for a sufficiently large m. Then, in view of Theorem 5.2, we

have Rαft = Rλtg
−1
t Rαgt or

(6) ft = RλtR
−1
α g−1

t Rαgt

where gt ∈ G(T n, L2k)0. Since Rα ∈ G(T n, L2k) we get

Λ2k = ft∗Λ2k = (g−1
t )∗Rα∗gt∗Λ2k,

that is

(7) gt∗Λ2k = Rα∗gt∗Λ2k.

Let ᾱ ∈ IR2k be a representant of α ∈ T 2k. The Diophantine condition

on α ensures us that the components of ᾱ are linearly independent over Q.

Consequently α generates a dense subgroup of T 2k. By (7) the tensor

gt∗Λ2k is invariant by Rα∗. This implies that gt∗Λ2k is T 2k-invariant, and

gt∗Λ2k has constant coefficients in the canonical chart. Let L ∈ F(Λ2k).

The forms (gt|L)∗ΩL and ΩL are cohomologous on L and they must have

the same periods (cf. [12, p. 319]). It follows that all the coefficients

of (gt|L)∗ΩL, and of (gt|L)∗Λ2k, are equal to 1. Therefore we get gt ∈
G(T n,Λ2k)0.

Note that another method to obtain the last claim is to use Theo-

rem 2.3 in [6].

Now we return to the equality (6). Let L be any leaf of F(Λ2k). In

view of Corollary 3.2 we get

0=SL(ft|L)=SL(Rλt |L) − SL(Rα|L) − SL(gt) + SL(Rα|L) + SL(gt|L) =

=SL(Rλt |L) = J(λt),

where SL is the flux homomorphism for (L,ΩL). It follows from Propo-

sition 3.6 that λt = 0. Therefore

(8) ft = R−1
α g−1

t Rαgt.
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Now it suffices to make a modification of (8) in order to have all factors

of it in G∗(T n,Λ2k).

Let L ∈ F(Λ2k). We set

βt = J−1SL(gt|L), γt = α + βt.

Note that βt and γt depend on leaves, i.e. they are basic functions

with respect to F(Λ2k). For any basic function λ by R̂λ we denote a diffeo-

morphism such that R̂λ|Ly = Rλ(y), i.e. R̂λ is a rotation when restricted

to a leaf.

Next we set

ht = R̂−1
βt

gt and kt = R̂βtg
−1
t .

Then we have ht, kt ∈ G∗(T n,Λ2k) by corollaries 3.2 and 2.7 as e.g. for ht

SL(ht|L) = SL(R−1
βt

) + SL(gt|L) = −J(βt) + J(βt) = 0.

We obtain from (8) the equality

(9) ft = R̂−1
γt

ktR̂γtht.

Let T n =
⋃r

i=1 Ui be a covering by open balls. Due to Lemma 2.9 we

have a decomposition kt = kr
t . . . k1

t with supp(ki
t) ⊂ Ui. Notice that by

definition

R−1
α htRα = R̂−1

γt
k−1

t R̂γt .

Hence we have the decomposition

R−1
α htRα = h̄1

t . . . h̄r
t , where h̄i

t = R̂−1
γt

(ki
t)

−1R̂γt .

By making use of Lemma 2.11 we can find ρi
t ∈ G∗

Ui
(M, Λ) satisfying

ρi
t = R̂γt on supp(ki

t). In particular, (ki
t)

−1 = ρi
th̄

i
t(ρ

i
t)

−1. Likewise, there

are σi
t ∈ G∗

(ρi
1
)−1(Ui)

(M, Λ) such that σi
t = Rtα on (ρi

1)
−1(Ui).

Thus the equality (9) is transformed into

(10)
ft = (ρr

t )
−1kr

t ρ
r
t · · · (ρ1

t )
−1k1

t ρ
1
tRαh̄1

t · · · h̄r
tR

−1
α

= (ρr
t )

−1kr
t ρ

r
t · · · (ρ1

t )
−1k1

t ρ
1
tσ

1
1h̄

1
t (σ

1
1)

−1 · · ·σr
1h̄

r
t (σ

r
1)

−1.

By the abelianity of H1( ˜G∗(T n,Λ2k)) we get that the r.h.s. of (10) on the

homology level is trivial. This completes the proof.
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Actually we shall need in Sect.7 a more specified version of Theo-

rem 1.2.

Theorem 6.1. Let V ′, W ′ be open balls in T h such that V
′ ⊂ W ′,

and let V = T 2k × V ′, W = T 2k × W ′. If ft is an isotopy in G∗
V (T n,Λ2k)

then {ft} = 0 in H1( ˜G∗
W (T n,Λ2k)).

Proof. Let ft ∈ G∗
V (T n,Λ2k). By Theorem 1.2 we have

ft ∼ [h1
t , k

1
t ] . . . [h

r
t , k

r
t ]

where ∼ stands for the homotopy rel. endpoints, and hi
t, k

i
t ∈ G∗(T n,Λ2k).

Choose a smooth bump function µ : T h → [0, 1] such that suppµ ⊂ W ′

and µ = 1 on V ′. Then we set

h̄i
t(x, y) = hi

µ(y)t(x, y), k̄i
t(x, y) = ki

µ(y)t(x, y)

where (x, y) = (x1, . . . , x2k, y1, . . . , yh) is the canonical chart. First note

that as hi
t, ki

t are leaf preserving diffeomorphisms then so are h̄i
t, k̄i

t.

Note as well that in view of Corollary 2.7 h̄i
t, k̄

i
t ∈ G∗

W (T n,Λ2k). Finally,

observe that we have

ft ∼ [h̄1
t , k̄

1
t ] . . . [h̄

r
t , k̄

r
t ].

Indeed, the initial homotopy is leafwise so that the required modification

of it is obvious.

By interpreting the above theorems in terms of homology we get

Corollary 6.2. The group H1(BG∗(T n,Λ2k),ZZ) is trivial. Fur-

thermore, if ι : G∗
V (T n,Λ2k) ↪→ G∗

W (T n,Λ2k) is the canonical inclusion

then the image of

ι∗ : H1(BG∗
V (T n,Λ2k),ZZ) → H1(BG∗

W (T n,Λ2k),ZZ)

is trivial.
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7 – Proof of Theorem 1.3

Let Λ2k be the standard Poisson structure on T n. For simplicity we

denote G∗
U = G∗

U(T n,Λ2k) and G∗∗
U = G∗∗

U (T n,Λ2k) for any open U ⊂ T n.

First we define some open subsets of T n = T 2k × T h. We set

U = U1 × U2

B = U1 × W2

V = T 2k × V2

W = T 2k × W2

W ′ = T 2k × W ′
2.

Here U1 is an open ball in T 2k, and U2, V2, W2, W
′
2 are open balls in T h

satisfying U 2 ⊂ V2 ⊂ V 2 ⊂ W2 ⊂ W 2 ⊂ W ′
2. Then we have the following

commutative diagram

H1(BG∗∗
U ,ZZ)

ι1∗−−−→ H1(BG∗∗
B ,ZZ)

ι4∗
2 ι2∗

2

H1(BG∗
U ,ZZ) H1(BG∗

B,ZZ)

ι5∗
2 ι3∗

2

H1(BG∗
V ,ZZ)

ι6∗−−−→ H1(BG∗
W ,ZZ)

where all the arrows come from the canonical inclusions, i.e. ι1 : G∗∗
U ↪→

G∗∗
B , etc. The commutativity follows from the identification (2), the func-

toriality of H∗, and the fact that such a diagram holds for ι̃1 : G̃∗∗
U → G̃∗∗

B

etc. The latter is due to the definition of the universal covering. Observe

that thanks to Corollary 6.2 we know that the images of ι5∗ and ι6∗ are

trivial.

The following two lemmas will be of use.

Lemma 7.1. With the above notation, there exist a finite family of

open balls {Bi}s
i=1 such that W =

⋃
Bi and a related family of isotopies

{φi
t}s

i=1 in G∗
W ′ such that φi

1(B
i) ⊂ B and

φi
1|Bi ∩ Bj = φij

1 ◦ φj
1|Bi ∩ Bj ,

where φij
t is an isotopy in G∗

B, for each (i, j) such that Bi ∩ Bj 1= ∅.
Moreover, we may have that Bi ∩ Bj, whenever nonempty, is a ball.
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Proof. In view of Lemma III.5.2 [1] there exists a covering {U i
1}s

i=1

of T 2k by open balls such that U i
1 ∩U j

1 is a ball whenever nonempty. Fur-

thermore, there exist Hamiltonian isotopies ψi
t in G∗(T 2k,Ω2k), and ψij

t

in G∗
U1

(T 2k,Ω2k) such that

ψi
t|U i

1 ∩ U j
1 = ψij

1 ◦ ψj
1|U i

1 ∩ U j
1 .

Then we let Bi = U i
1 × W2 and φi

t = ψi
µ(y)t × id, φij

t = ψij
µ(y)t × id, where

µ : T l → [0, 1] is a bump function such that suppµ ⊂ W ′
2 and µ = 1

on W2.

Let us recall that c ∈ BnG has its support in U if and only if ∀x,

y ∈ ∆n the diffeomorphism c(x)c(y)−1 is supported in U .

The following is a version of Lemma III.5.3 in [1] specified to our

case.

Lemma 7.2. Let U , W , {Bi = U i
1 × W2}s

i=1 be as above. If a

1-chain σ ∈ BG∗∗
U is a boundary of a 2-chain c =

∑
cα ∈ BG∗

V then σ

is a boundary of a 2-chain C =
∑

Cα such that the supports of Cα are

subordinate to {Bi}.

The original proof in [18], [1] is very long and difficult. It still works

in our case as the groups in question are still locally contractible and the

fragmentation property holds. We shall not reproduce a reasoning from

[1, p. 213-19] only indicating why it applies to our case.

B1 = {U i
1}s

i=1 is a covering of T 2k by open balls. It is well known that

there exists a triangulation of T 2k, T (B1) = {∆j
i}, i ∈ Ij, j = 0, 1, . . . , 2k,

which is starwise finer than B1. Next by induction on j one can choose

V1 = {V j,i
1 }, i ∈ Ij, a covering by open balls of T 2k finer than B1, such

that {V j,i
1 }i∈Il,j=1,... ,m, is a covering of the m-skeleton of T (B1) and V

j,i

1 ∩
V

j,i′

1 = ∅ for any i 1= i′. We set V = {V j,i}, where V j,i = V j,i
1 × W2.

The proof consists in applications of Lemma 2.9 many times. This is

done by means of complicated induction reasonings with respect to the

covering V. The “product” form of it enables us to choose the functions λi

in the proof of Lemma 2.9 defined on T 2k rather than on T n, i.e. they are

common for each leaf. Therefore the whole construction from [1] can be

carried over to our case leaf by leaf. The assumption that σ ∈ BG∗∗
U is
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necessary in order to accomplish a construction of edges of new simplices

exactly for the same reasons as in [1].

Proposition 7.3. If σ ∈ B1G∗∗
U satisfies ι3∗ι2∗ι1∗{σ} = 0 then

ι2∗ι1∗{σ} = 0.

Proof. Let σ ∈ B1G∗∗
U . Thanks to Corollary 6.2 σ = ∂c where

c =
∑

cα ∈ B2G∗
V . In view of Lemma 7.2 we assume that support of

each cα is contained in some Bi.

Under the notation of Lemma 7.1 the following convention will be

useful:

(i) supp(∂jcα) ⊂ Bi(j,α) and by φ
i(j,α)
t we denote the corresponding iso-

topy;

(ii) we assume that Bi(j,α) = B and φ
i(j,α)
t = id, if supp(∂jcα) ⊂ B;

(iii) if ∂jcα = ±∂lcβ then Bi(j,α) = Bi(l,β) and φ
i(j,α)
t = φ

i(l,β)
t ;

(iv) supp(cα) ⊂ Bi(α) and φ
i(α)
t denotes the corresponding isotopy;

(v) we denote χjαβ = φi(j,α)i(β).

The following equality holds

(11) σ =
∑

α

2∑

j=0

(−1)j∂jcα =
∑

α

2∑

j=0

(−1)jAd
φ

i(j,α)
1

(∂jcα).

If fact, if support of the edge ∂jcα is in B then nothing will change.

Otherwise, this edge must be reduced in the sum on the left hand side,

and by (iii) so must be on the right hand side.

By making use of Lemmas 7.1 and 4.1 we have

Ad
φ

i(j,α)
1

(∂jcα) = Adχjαα
Ad

φ
i(α)
1

(∂jcα) ∼ Ad
φ

i(α)
1

(∂jcα) = ∂jAd
φ

i(α)
1

(cα).

By substituting this to (11)

σ ∼
∑

α

2∑

j=0

(−1)j∂jAd
φ

i(α)
1

(cα) = ∂
∑

α

Ad
φ

i(α)
1

(cα) ,

and, by (iv), supp(
∑

α Ad
φ

i(α)
1

(cα)) ⊂ B. Thus σ is a coboundary in BG∗
B,

as required.
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Proposition 7.4. The map ι2∗ : H1(BG∗∗
B ,ZZ) → H1(BG∗

B,ZZ) is a

monomorphism.

The proof is a Poisson version of that of Lemma III.5.4 [1]. As B =

U1 × W2 with a canonical chart the required modifications are obvious.

Proof of Theorem 1.3. If ft is a Hamiltonian isotopy of (IRn,Λ2k)

we may assume that supp(ft) ⊂ U , where U is in a domain of a canonical

chart. Moreover, we may and do assume that U ⊂ B such that B is still

in this domain, and U and B are identified with those fixed on T n at the

beginning of this section.

Let σ = {ft} ∈ B1G∗∗
U . First we have that in view of Corollary 6.2

ι3∗ι2∗ι1∗{σ} = 0. By Proposition 7.3 we get ι2∗ι1∗{σ} = 0. Next, by

Proposition 7.4 ι1∗{σ} = 0. Therefore {ft} = 0 in H1(BG∗∗
B ,ZZ). This

means that ft is homologous (or homotopic rel. endpoints) to a product

of commutators of special Hamiltonian isotopies supported in B. Finally

if G̃ is perfect then so is G.

8 – The case of regular Poisson manifolds

First we give the definition of G∗∗(M, Λ), where (M, Λ) is an arbitrary

regular Poisson manifold. A Hamiltonian diffeomorphism f ∈ G∗∗(M, Λ)

if there is a finite covering of supp(f) by canonical chart domains, {Ui},

such that f = f s · · · f1 and f j ∈ G∗∗
Ui(j)

. (The definition of G∗∗
U is given in

Section 3.)

The following is a Poisson counterpart of Theorem 3.3.

Theorem 8.1. G∗∗(M, Λ) is a perfect group.

Indeed, this follows immediately from Theorem 1.3.

It is still an open problem whether G∗(M, Λ) is perfect for any com-

pact regular Poisson manifold (M, Λ). It seems likely that it is so at least

if all leaves of F(Λ) are compact.

Another question is whether G∗∗(M, Λ) = G∗(M, Λ) for any com-

pact regular Poisson manifold (M, Λ). Notice that due to a difficult

Lemma III.3.2 in [1] this is the case of any compact symplectic manifold.

Notice as well that, in general, G∗∗(M, Λ) 1= G∗(M, Λ) for M noncompact

(Theorem 3.3).
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Fréchet et quelques applications, Ann. Scient. Ec. Norm. Sup., 5 (1972), 599-660.



[27] On the group of Poisson diffeomorphisms of the torus 129

[18] W. Thurston: On the structure of volume preserving diffeomorphisms, (1973),
unpublished.

[19] I. Vaisman: Lectures on the Geometry of Poisson Manifolds, Progress in Math.
118, Birkhäuser, 1994.
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