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Einstein manifolds and obstructions

to the existence of Einstein metrics

A. SAMBUSETTI

Riassunto: Questo articolo costituisce una panoramica sulle varietà di Einstein.
Si è scelto di menzionare alcuni fatti classici che sembrano avvalorare lo studio di
tale nozione, e si discutono alcuni esempi tipici di varietà di Einstein che entrano
naturalmente in gioco in geometria. Quindi, vengono trattati i problemi concernenti lo
spazio dei moduli, l’unicità e l’esistenza di metriche di Einstein su una varietà fissata,
presentando i nuovi sviluppi in materia.

Abstract: This article is a panorama about Einstein manifolds (which has not
to be intended as a complete report on the subject). We have chosen to mention some
classical facts which make the notion of Einstein metric worth of investigation, and
we discuss how Einstein manifolds naturally arise in geometry by means of typical
examples. Then, we survey the problems of moduli space, uniqueness and existence of
Einstein metrics on a given manifold, introducing recent developments on the subject.

1 – Curvature and Einstein metrics

1.1 A first, classical, motivation for introducing the notion of Einstein

metric is given by trying to answer to the following “naive” question:

Il contenuto di questo lavoro è stato oggetto di una conferenza tenuta dall’Autore al
Convegno “Recenti sviluppi in Geometria Differenziale”, Università “La Sapienza”,
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given any differentiable manifold X, do there exist any “distinguished”

or “nicest” Riemannian metrics on X?

In dimension 2, it comes natural to think about the constant cur-

vature metrics: every compact surface admits at least one Riemannian

metric of constant curvature, whose sign is equal to that of its Euler

characteristic [4]. On the other hand, even if a constant curvature met-

ric is distinguished among all metrics that one can consider on a given

compact surface, such a metric is not unique, exceptly in the cases of the

sphere and of the real projective plane: one knows that, generally, the

metrics of constant curvature on a fixed surface X, modulo the isometries

and a multiplicative factor, form a (singular) finite dimensional manifold,

i.e. the Moduli Space (see [2], [21]).

In dimension n greater than 2, the situation changes completely. In

fact, there are at least three significative and different notions of cur-

vature. If R is the curvature tensor of a metric g on X, one can talk

about

- the sectional curvature of tangent planes P of X: σ(P ) = σ(e1, e2) =

R(e1, e2, e1, e2) (where {e1, e2} is any orthonormal basis of P ), whose com-

plete knowledge permits to recover the whole curvature tensor R;

- the Ricci tensor, which is a symmetric bilinear form defined on each

tangent space TxX by Ric(u, v) =
∑n

i=1 R(u, ei, v, ei) (where {ei}i=1,... ,n

is any orthonormal basis of TxX). If u is a unit tangent vector, one let

Ric(u) = Ric(u, u) denote the Ricci curvature in the direction of u;

- the scalar curvature function on X, defined as the trace of the Ricci

tensor; namely, at a point x, scal(x) =
∑

i *=j R(ei, ej, ei, ej), for some

orthonormal basis {ei}i=1,... ,n of TxX.

It is known (see for instance [10]) that a manifold which admits a

metric with constant sectional curvature has universal covering which is

diffeomorphic either to the standard n-sphere Sn or to IRn. Moreover,

after renormalization, such a metric is locally isometric to only one of

the three classical models: Sn with its canonical metric, the Euclidian

space or the real hyperbolic space. The manifolds which admit a met-

ric of constant sectional curvature, therefore, seem to constitute a very

restricted class.

On the other hand, the condition of constancy of the scalar curvature

is too weak to characterize any metric: actually, by the solution of the

Yamabe problem (due to Yamabe, Trudinger, Aubin, Schoen and Yau),
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it has been showed that for every compact manifold X and every metric g

on X, there exists a function f on X such that ef ·g is a metric with con-

stant scalar curvature. Since the conformal classes of metrics, on a given

manifold, form an infinite dimensional family, we see that the constant

scalar curvature metrics are too many to be considered “distinguished”.

Then, one is naturally brought to consider the notion of constant

Ricci curvature.

1.2 A metric which satisfies the condition Ric(g) = λ · g for some

constant λ (equivalently, such that the Ricci curvature in every direction

and in every point is constant) is said to be an Einstein metric. A mani-

fold which admits an Einstein metric is called an Einstein manifold. The

constant λ is unessential, since, by rescaling the metric, one can always

assume to have λ = −1, 0 or 1, so that only the sign of λ is important. It

is called the sign of the Einstein metric.

In dimension n = 2, 3 this notion coincides with that of metric of

constant sectional curvature (see [4]) but, in higher dimensions, as we

shall see in section 2, Einstein metrics constitute a quite larger class,

which seems already to lead to a promising notion.

1.3 From the algebraic viewpoint, the Einstein condition in 1.2 is

translated into a simpler expression for the curvature tensor R.

A metric g on a manifold X gives rise to an action of the orthogonal

group on each tangent space TxX and, consequently, on all associated

vector spaces (tensor, symmetric and exterior powers of TxX). In par-

ticular, one deduces an action on the vector spaces CxX of the algebraic

curvature tensors, that is the subspace of tensors of S2
∧2TxX which sat-

isfy the formal Bianchi identity (i.e. the tensors of the same type and

which satisfy the same algebraic properties of the curvature tensor). As

a result, one has a decomposition of CxX = UxX ⊕ ZxX ⊕ WxX into

irreducible representations of the orthogonal group. With respect to this

decomposition, R splits into a sum R = U + Z + W , where

– U = scal(g)

2n(n−1)
· g A g is a tensor involving the scalar curvature;

– Z = 1
n−2

(Ric(g) − scal(g)

n
g) A g involves the trace-free part of the

Ricci tensor;

– W is the Weyl tensor of g.

(Here, A stands for the Kulkarni-Nomizu product of two symmetric 2-

tensors, see [4]).
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Consequently, Einstein metrics are characterized by the vanishing of

the tensor Z(g). This fact plays an important role in dimension 4, because

of the expression of the Gauss-Bonnet formula in this dimension (see 4.2).

1.4 Let S2X denote the set of all (differentiable) symmetric 2-tensor

fields on a compact manifold X and let M1X ⊂ S2X be the (infinite

dimensional) differentiable manifold made up of all metrics g on X with

fixed volume Vol(g) = 1.

Consider the functional total scalar curvature S : g (→ ∫
X scal(g)dvg,

defined on M1X. It can be shown [4] that S is differentiable and that

S′
g(h) =

〈scal(g)

2
g − Ric(g), h

〉
g

(where 〈h, k〉g =
∫

X Trg(H ◦ K)dvg, if H and K are the symmetric endo-

morphisms associated to h, k via g). Since TgM1 ={h∈S2X, 〈h, g〉g =0}
one sees that g is a critical point for S if and only if Ric(g) is proportional

in every point to g. This last condition is easily seen to be equivalent to

the Einstein condition, in dimension greater than 2 (see [4]).

So, Einstein metrics correspond exactly to the critical points of the

total scalar curvature functional.

2 – Examples

2.1 The first examples of Einstein metrics are given by the so called

two point homogeneous spaces. These are the Riemannian manifolds

whose isometry group acts transitively on the unit tangent bundle: con-

sequently, the Ricci curvature in all directions is constant. This class is

known [25] to consist of all the symmetric spaces of rank one: namely,

beyond the constant curvature spaces IEn, Sn and IRHn, there are the

hyperbolic and projective spaces over the field of the complex numbers

and of quaternions CHn, CP n, IHHn, IHP n and the Cayley hyperbolic and

projective plane CaH2, CaP 2.

Clearly, since the Einstein condition is local, any quotient X/G of

these spaces, by a subgroup G of isometries acting properly discontinuosly

and without fixed points, will become an Einstein manifold, endowed with

the metric induced by that of X. When X = IRHn, CHn we call such

a quotient, respectively, a real or complex hyperbolic manifold. Since a
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complex hyperbolic manifold turns out to be a complex manifold, we

shall call a complex hyperbolic manifold of real dimension 4 a complex

hyperbolic surface (complex dimension equal to 2).

2.2 More generally, any homogeneous Riemannian manifold X =

G/H (i.e. a Riemannian manifold X whose isometry group acts tran-

sitively on X), such that the isotropy representation of H into ToX is

irreducible (where o is the base point of X = G/H), is Einstein.

In fact, since H acts by isometries on X, its action on S2ToX leaves

fixed both the metric g and the Ricci tensor Ric(g) in o. Since g is positive

definite, from the Schur lemma it follows that the space of invariant

bilinear forms on ToX has dimension 1, so g and Ric(g) are proportional

(in o, hence everywhere).

In particular, all irreducible Riemannian symmetric spaces are Ein-

stein, since their adjoint representation is irreducible (see [4], pp. 201-202

for a complete list). Some examples are the Grassmann manifolds.

2.3 (G. Jensen, [14]) Consider the Hopf fibration on the quaternion

projective space h : S4m+3 → IHP m, defined by sending u ∈ S4m+3 ⊂
IHm+1 into the quaternionic line passing through u. Each fiber is a copy

of the group of the units of quaternions, that is diffeomorphic to S3. With

respect to the canonical constant curvature metric of S4m+3 and to the

symmetric metric of IHP m, the map h is a Riemannian submersion with

totally geodesic fibers.

One can modify the metric g = ghor ⊕gvert along the fibers, obtaining

the family of metrics gt = ghor ⊕ t·gvert on the sphere S4m+3.

Now, motivated by 1.4, one looks for the critical points of

S(t) =
1

Vol(gt)(4m+1)/(4m+3)

∫

S4m+3
scal(gt)dvgt .

For t0 = 1/(2m + 3) one finds that gt0 is Einstein.

The metric gt0 is still a homogeneous metric but it is not isometric to

the canonical metric of S4m+3. In 1982 W. Ziller [32] showed that, for

m 1= 3, every homogeneous Einstein metric on S4m+3 is homothetic to gt0

or to the canonical one, while S15 has 3 different homogeneous Einstein

metrics.

2.4 Non-homogeneous Einstein metrics on compact manifolds are

more difficult to find. A well known example was found in 1979 by
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D. Page [5], who constructed an Einstein metric on the connected sum

CP 2*CP 2 (where CP 2 denotes CP 2 endowed with the orientation oppo-

site to that given by the complex structure). Recall that this manifold is

diffeomorphic to the complex surface obtained by blowing up CP 2 at a

point. On the contrary, we shall see in 4.2 that blowing up CP 2 at more

than 8 points gives a complex surface which does not admit any Einstein

metric.

2.5 We discuss below some relevant non-homogeneous examples of

Einstein metrics which concern kähler geometry: they come from the Yau

and Aubin solution (see [7]) of the Calabi conjecture (which exploits hard

analysis machineries). For the sequel, every manifold is meant to have

(real) dimension greater than two.

A kähler manifold can be described as a Riemannian manifold (X, g)

such that

1) X has a complex structure J ;

2) the tensor J is an isometry, i.e. g(Ju, Jv) = g(u, v);

3) the 2-form defined by ωg(u, v) = g(Ju, v) is parallel (hence closed).

A Hermitian metric, corresponding to g, will be given by G = g + iωg; G

or, equivalently, g are called kähler metrics. One says that a manifold X

is of kähler type if it admits a kähler metric. A Kähler-Einstein manifold

is a kähler manifold (X, g) such that g is an Einstein metric.

Every kähler manifold (X, g) has the property that its first Chern

class c1(X) is represented, in De Rham cohomology, by 1
2π

R̃ic(g), where

R̃ic(g) is the Ricci form of g (that is, the closed, real 2-form of type

(1, 1) associated to the Ricci tensor: R̃ic(g)(u, v) = Ric(g)(Ju, v)). Yau

proved (Calabi conjecture, [7]) that, given a compact complex manifold

X of kähler type, every closed real 2-form of type (1, 1) in the De Rham

cohomology class of c1(X) is equal to 1
2π

R̃ic(g), for some kähler metric g

on X; moreover, for each fixed kähler metric g0 on X, every (1, 1)-form

in c1(X) is equal to 1
2π

R̃ic(g) for a unique kähler metric g such that ωg is

cohomologous to ωg0
. As a consequence we have

Theorem 2.5.1 (S.T. Yau). A compact complex manifold X of kähler

type has a Ricci flat Kähler-Einstein metric if and only if c1(X)=0.
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For instance, hypersurfaces of degree n + 1 of CP n have zero first

Chern class (see [5]), so they admit a Ricci flat Kähler-Einstein metric

(which never is the metric induced by the Fubini-Study kähler metric

of CP n, whose restriction is not Einstein [15]).

The first Chern class of a complex manifold X is said to be negative

(resp. positive) if it can be represented by a real form γ of type (1,1)

that is negative definite (resp. positive definite). (This means that the

corresponding symmetric bilinear form γ(u, Jv) is negative or positive

definite). We see that a necessary condition for a compact kähler manifold

to have a Kähler-Einstein metric is that its first Chern class has a sign

or is zero: this follows simply from the fact that, if g is a Kähler-Einstein

metric on X, then 1
2π

R̃ic(g) = 1
2π

λg̃ represents c1(X).

The same techniques used by Yau to prove the Calabi conjecture

also give

Theorem 2.5.2 [7]. A compact complex manifold X of kähler

type has a Kähler-Einstein metric of negative sign if and only if c1(X) is

negative definite.

The analogue of 2.5.3 in the case where c1(X) is positive is false.

Actually, there are other obstructions to the existence of Kähler-Einstein

metrics on compact complex manifolds, which are not always trivial when

c1(X) > 0 (see [4], [9]).

For instance, the identity component Aut0(X) of the group of bi-

holomorphic transformations of a compact Kähler-Einstein manifold X

must be reductive (i.e. the Lie algebra of Aut0(X) is the direct sum of its

center and its commutator Lie subalgebra). This shows that CP 2*CP 2,

which is a compact kähler surface with positive first Chern class (see [31]),

admits no Kähler-Einstein metric because Aut(CP 2*CP 2) is not reduc-

tive (p. 331, [4]). (Watch out that the Einstein metric mentioned in 2.4,

constructed by D. Page on CP 2*CP 2, is not kähler!).

Some sufficient conditions for the existence of Kähler-Einstein met-

rics on compact complex manifolds with positive first Chern class are

discussed in [1], [29] and, recently, in [22].

From now on, we shall be concerned only about compact manifolds.
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3 – Moduli space of Einstein structures

3.1 We have seen in 1.1 that, in dimension greater than 2, the set of

metrics of constant sectional curvature on a given manifold is “generally”

empty, while the set of metrics of constant scalar curvature is too big,

actually infinite dimensional. Another cause of considerable interest in

studying Einstein metrics is the fact that the metrics of constant Ricci

curvature on a given manifold give rise to a reasonable space.

Namely, the Moduli Space E(X) of Einstein structures on a compact

manifold X is defined by the set of equivalence classes of Einstein metrics

on X, where two metrics g, g′ are considered equivalent (i.e. they define

the same Einstein structure) if g is isometric to λ · g′ for some positive

constant λ (such an isometry is called a homothety between g and g′).

A theorem due to N. Koiso [16] says that, in a neighbourhood of

an Einstein structure [g], E(X) is a real analytic subset of a smooth real

analytic manifold of finite dimension.

3.2 The only examples where the moduli space E(X) is known are

in dimension 4 (apart from real surfaces).

We have for instance the case of the torus T 4 (and his quotients).

Here, every Einstein metric is easily seen to be flat, from the Gauss-

Bonnet formula, since the Euler characteristic of T 4 is zero (compare

with 4.2). Then, one can show that E(T 4) is the quotient, by a discrete

group, of a convex, open subset of a vector space of dimension 9.

3.3 Another relevant case is that of the K3-surfaces. These are

simply connected complex manifolds of kähler type, such that the first

Chern class vanishes. So, by 2.5.1, they are Ricci flat Kähler-Einstein

manifolds. The K3-surfaces are known to be each diffeomorphic to the

other (but they are different as complex manifolds), so let X denote the

unique underlying differentiable manifold. N. Hitchin [13], (compare

with 4.2.1) proved that any Einstein metric on X is kähler with respect

to some complex structure of X. Starting from this result, it has been

shown ([30], [4]) that E(X) is the quotient, by a discrete group, of an

open set of the symmetric space SO(3, 19)/SO(3)×SO(19) (which has

dimension 57).

3.4 There are two very interesting cases, which we shall be concerned

about later on, of rigidity of Einstein metrics, where E(X) is reduced to

a point. In 1994, G. Besson, G. Courtois, S. Gallot [6] proved:



[9] Einstein manifolds and obstructions etc. 139

Theorem 3.4.1. The only Einstein metric on a compact real hy-

perbolic 4-manifold (X, g0) is the real hyperbolic metric g0 (up to homo-

theties).

In the same year C. LeBrun [18] obtained also the complex analogue:

Theorem 3.4.2. The only Einstein metric on a compact complex

hyperbolic surface (complex dimension 2) (X, g0) is the complex hyperbolic

metric g0 (up to homotheties).

These are the only known cases of uniqueness of Einstein structures

on a manifold, and both of them are connected with the rigidity properties

of the locally symmetric manifolds (i.e. smooth quotients of symmetric

manifolds).

Actually, G. Besson, G. Courtois, S. Gallot [6] proved the fol-

lowing stronger rigidity property of Einstein metrics: if (Y, g) is a com-

pact Einstein 4-manifold homotopy equivalent to a compact real hyper-

bolic 4-manifold (X, g0), then there exists an isometry between (Y, g) and

(X, λ · g0), for some λ > 0.

In contrast with this, the result of uniqueness 3.4.2 only holds for

manifolds diffeomorphic to a complex hyperbolic surface, since LeBrun’s

argument involves differential invariants, namely the Seiberg Witten in-

variants. The question whether there exist, on some complex hyperbolic

surface, smooth structures non-diffeomorphic to the canonical one, and

Einstein metrics compatible with such structures, remains unsettled.

In the next section we are going to take care of the particular case

where E(X) = ∅.

4 – Obstructions

4.1 We have seen in 2.5 that there exist some obstructions to the

existence of Kähler-Einstein metrics on kähler manifolds. There are

also some well known obstructions to the existence of Einstein-metrics of

positive sign on a given manifold: for instance, one knows that a compact

manifold with positive Ricci curvature has compact universal covering,

hence finite fundamental group. What we are going to discuss now are the

obstructions to the existence of any Einstein metric on a given manifold
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(that is, not only Kähler-Einstein metrics or Einstein metrics of a specified

sign). Actually, it will be about topological obstructions, that is conditions

in terms of the topological invariants.

Somewhat surprisingly, no obstruction is known in dimension greater

than 4. Even worst, we cannot answer to the following natural

Question: Does every compact manifold of dimension greater than 4 have

an Einstein metric?

The answer to the above question is probably negative, but, so far,

no example is known of a compact manifold of dimension greater than 4

which admits no Einstein metric.

We remarked, in 1.2, that in dimensions 2 and 3 the notion of Ein-

stein metric is nothing more than that of metric of constant sectional

curvature. So, if on the one hand, in dimension 2, every manifold has

an “Einstein” metric, on the other hand we definitely know some exam-

ples of 3-manifolds which admits no “Einstein” metric, such as S2 × S1

(whose fundamental covering is not diffeomorphic either to IR3 or to S3).

The problem to find which 3-manifolds admit a metric of constant sec-

tional curvature is a deep problem (see [27], [28]) but we shall not be

concerned about.

Therefore, in all this section and the following one, we shall restrict

our attention to (compact) 4-manifolds.

4.2 In dimension 4, the Gauss-Bonnet formula for the Euler char-

acteristic χ(X) of a Riemannian manifold (X, g) takes the following ex-

pression:

χ(X) =
1

8π2

∫

X

(‖ Ug ‖2 − ‖ Zg ‖2 + ‖ Wg ‖2)dνg

where Ug, Zg and Wg are the irreducible components of the curvature

tensor, discussed in 1.3. Since Zg = 0 for an Einstein metric g, we see

that the Euler characteristic of an Einstein 4-manifold is always non-

negative, and it is equal to zero if and only if g is a flat metric. This fact

was pointed out in 1961 by M. Berger [3].

If X is an oriented manifold, the Weyl tensor W splits again in a sum

of two terms W+ and W − corresponding to the further decomposition

in irreducible subspaces of the vector space of the algebraic curvature
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tensors, under the action of SO(4). The signature τ(X) of X can be

then expressed, by the Hirzebruch formula, as

τ(X) =
1

12π2

∫

X

(‖ W+
g ‖2 − ‖ W −

g ‖2)dνg .

So, more generally, combining the Gauss-Bonnet formula with the

Hirzebruch formula one obtains:

Theorem 4.2.1 (J. Thorpe [26] - N. Hitchin [13]).

Let X be a compact oriented manifold of dimension 4.

If χ(X) < 3
2

|τ(X) | then X doesn’t admit any Einstein metric.

Moreover, if χ(X) = 3
2

|τ(X) | then X admits no Einstein metric unless

it is either flat or a K3 surface or an Enriques surface or the quotient of

an Enriques surface by a free antiholomorphic involution.

The equality case was studied by N. Hitchin. An Enriques surface E
is a holomorphic quotient of a K3 surface such that π1(E) = ZZ2, and, as

a K3 surface, it actually admits Ricci flat Kähler-Einstein metrics, from

the Aubin and Yau solution of the Calabi conjecture, since its real first

Chern class vanishes (Theorem 2.5.1).

The above theorem enabled to exhibit some examples of 4-manifolds

(even simply connected) which don’t admit any Einstein metric, with

positive, arbitrarily high, Euler characteristic . For instance, it shows

that the connected sum nCP 2 of n ≥ 4 copies of the complex projective

plane or the blow-up CP 2*nCP 2 of the complex projective plane at n > 8

points admit no Einstein metric.

Let us use the following suitable convention: for a non-orientable

manifold X, τ(X) = 0 by definition. Then, for a non-orientable mani-

fold X, it is easily seen that Thorpe’s theorem remains valid, but it is

reduced to the result of Berger.

4.3 In 1982, M. Gromov [11] showed that the Thorpe obstruction

condition was not the only obstruction to the existence of Einstein metrics

in dimension 4. In order to study the minimal volume problem on a

manifold X, he introduced a homotopy invariant, the simplicial volume

‖X ‖, which, for closed manifolds, can be defined by

‖X ‖= inf
σ=Σiriσi

∑

i

|ri |,
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where σ runs over all real singular cycles representing the fundamental

class of X.

He proved that, if a compact Riemannian manifold (X, g) satisfies

Ric(g) ≥ 1
n−1

g, then Vol(X, g) ≥ cn· ‖ X ‖, where cn is a constant only

depending on the dimension n of X. A consequence of this result is:

Theorem 4.3.1 (M. Gromov [11]). Let X be a compact manifold

of dimension 4.

If χ(Y ) < 1
2592π2 ‖Y ‖ then Y doesn’t admit any Einstein metric.

The simplicial volume of manifolds with amenable fundamental group

(for instance abelian groups, or groups of subexponential growth) van-

ishes, so Gromov’s theorem says something new only in the case of mani-

folds with “large” fundamental group. (However, remark that, not every

manifold with large fundamental group has non-trivial simplicial volume:

for instance, Σk ×S2, where Σk is a surface of genus k ≥ 2, has fundamen-

tal group of exponential growth but trivial simplicial volume (see [11] )

so that Gromov’s obstruction theorem cannot be invoked; nevertheless,

Σk × S2 admits no Einstein metric by Thorpe’s theorem.)

4.4 In the sequel, we shall consider compact 4-manifolds Y which

admit a map of non-zero degree onto some compact real or complex hy-

perbolic 4-manifold. To treat also non-orientable manifolds, it is worth

to consider the absolute degree of a map, rather than the usual de-

gree (see [8]).

Given any map f : Y → X, the absolute degree can be defined

by Adeg(f) = inf{G(g) , for all g homotopic to f}, where G(g) is the

geometric degree of g, i.e. the smallest number of connected components

of g−1(D), when D runs over all disks D in X such that g−1(D) −→ D

is a (generally non-connected) topological covering (if such disks don’t

exist, G(g) is set equal to ∞). The absolute degree of a map between

oriented manifolds coincides with the absolute value of the usual degree.

With the convention fixed in 4.2 for the signature of a non-orientable

manifold, the following results have been recently proved in [23]:

Theorem 4.4.1. Let Y be a compact 4-manifold which has a

map f of absolute degree Adeg(f) = d > 0 onto a real hyperbolic compact
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4-manifold (X, g0). If

χ(Y ) − 3

2
|τ(Y ) |< d ·

(
χ(X) − 3

2
|τ(X) |

)

then Y doesn’t admit any Einstein metric.

In addition, if the equality χ(Y ) − 3
2

|τ(Y ) |= d · (
χ(X) − 3

2
|τ(X) |)

occurs, then Y admits no Einstein metric unless f is homotopic to a

| d |-sheeted smooth covering of X (in this case, Y has a real hyperbolic

metric, which is the unique Einstein metric on Y up to homotheties, by

the result 3.4.1).

Theorem 4.4.2. Let Y be a compact 4-manifold which admits

a map f of absolute degree Adeg (f) = d > 0 onto a compact complex

hyperbolic surface (X, g0). If

χ(Y ) − 3

2
|τ(Y ) |≤ 43

34
· d ·

(
χ(X) − 3

2
|τ(X) |

)

then Y doesn’t admit any Einstein metric.

Both results come from the Gauss-Bonnet and the Hirzebruch for-

mulas, combined with an estimate of the minimal volume of a compact

Riemannian n-manifold (Y, g) which admits a degree d > 0 map f onto

a compact real or complex hyperbolic n-manifold (X, g0). The minimal

volume estimate is due to G. Besson, G. Courtois, S. Gallot [6],

and it is extended to non-orientable manifolds in [24].

The above Theorems 4.4.1 and 4.4.2 improve the Thorpe-Hitchin

theorem, under the additional topological hypothesis of the existence of a

map f above described.

Notice that, when Y is a covering of a real hyperbolic manifold X,

the inequality of Theorem 4.4.1 is an equality and Y actually admits an

(Einstein) real hyperbolic metric, which shows that the result 4.4.1 is

optimal. (Remark also that the signature of a hyperbolic 4-manifold is

always zero, by the Hirzebruch formula)

On the contrary, Theorem 4.4.2 seems to miss the sharpness because

of the constant 43/34, in the right hand side, which is smaller than 1.
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We shall see in 5.4 that the Theorem 4.4.1 also gives in some cases

an improvement of Gromov’s inequality (Theorem 4.3.1).

5 – Examples of 4-manifolds without Einstein metrics

5.1 We shall now see how the Theorems 4.4.1 and 4.4.2 provide new

examples of 4-manifolds without Einstein metrics.

Recall that the connected sum X*M of two n-dimensional mani-

folds X and M is obtained by removing from X and M two n-cells BX and

BM and then pasting together the resulting boundaries ∂BX and ∂BM

(see, for instance, [17] for more details).

If Y = X*M , there exists a map Y → X, of absolute degree 1, which

maps X \ BX and M \ BM (considered as subsets of Y ) respectively onto

X \ {x0} and {x0}, for some x0 ∈ BX . When Y = kX (seen as the gluing

of k copies of X \ BX on S4 \ ⋃k
i=1 Bi by identifying each ∂BX with one

of the ∂Bi’s), there exists a map Y → X, of absolute degree k, which

maps each copy of X \ BX and S4 \ ⋃k
i=1 Bi, considered as subsets of Y,

respectively onto X \ {x0} and x0.

The invariants χ(Y ), τ(Y ), ‖Y ‖ are easily computed from those of X

and M (the signature and the simplicial volume are additive with respect

to connected sums, while χ(X*M) = χ(X)+χ(M)−2 when the dimension

is even, see [5], [11]).

Then, as a consequence of the Theorem 4.4.1, one finds:

Corollary 5.1.1 [23]. Let X and M be 4-dimensional, compact

manifolds and suppose X real hyperbolic:

(i) if χ(M) < 2, or if χ(M) = 2 and M is not homeomorphic to S4, then

X*M admits no Einstein metric;

(ii) if X and M are oriented (M not homeomorphic to S4) and

χ(M) − 3
2

|τ(M) |≤ 2, then X*M admits no Einstein metric;

(iii) the connected sum kX of k copies of X admits no Einstein metric,

if k > 1.

5.2 For every real hyperbolic manifold X, the manifold Y = X*IRP 4

admits no Einstein metrics, by 5.1.1 (i), since χ(IRP 4) = 1. Nevertheless,

if χ(X) ≥ 2 (for instance, if X is oriented), then χ(Y ) ≥ 1, so this
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result cannot be obtained from Thorpe’s obstruction 4.2.1. On the other

hand, ‖Y ‖=‖X‖ since IRP 4 has trivial simplicial volume (being finitely

covered by S4); then, one verifies that Gromov’s obstruction condition is

not satisfied by Y if χ(X) ≥ 2.

5.3 Let M1 = S1 × N and M2 = S2 × Σg, where N is any compact

3-manifold and Σg is a compact oriented surface of genus g ≥ 2. We have

χ(Mi) < 2 so, by Corollary 5.1.1(i), for every real hyperbolic manifold

X, X*Mi admits no Einstein metric.

For X*M1, it is straightforward to check, with the formulas quoted

in 5.1, that this result cannot be obtained neither from Thorpe’s nor from

Gromov’s obstruction, if χ(X) ≥ 3. Analogously, one finds that neither

Thorpe’s obstruction condition nor Gromov’s one hold for X*M2, as soon

as χ(X) ≥ 2
1−(1/1944·T4)

(2g − 1).

Similar examples can be obtained by taking X*M , with M = S2×Uh,

where Uh is the non-orientable compact surface with h crosscaps, or M =

IRP 2 × Σ or M = U2 × Σ, where Σ is any compact surface.

5.4 Let us check on a particular case the non-optimality of the con-

stant 1
2592π2 in Gromov’s Theorem 4.3.1.

Take a compact real hyperbolic 4-manifold X and a compact 4-

manifold M of trivial simplicial volume (for instance, simply connected),

and consider Y = X*M . Since ‖ M ‖= 0, Gromov’s theorem then says

that:

if χ(Y ) <
1

2592π2
‖X ‖, then Y admits no Einstein metric.

Now, let T4 be the volume of the regular 4-dimensional ideal geodesic

simplex in the real hyperbolic 4-dimensional space: it is explicitly com-

putable and its value is (see [12]) T4 = 10π
3

arcsin 1
3
− π2

3
≈ 0.26889. In [11]

M. Gromov computed the simplicial volume of any real hyperbolic man-

ifold, e.g. ‖X ‖= 1
T4

· Vol(X) = 1
T4

· 4π2

3
· χ(X).

So, the obstruction Theorem 4.4.1 implies that:

if χ(Y ) <
3T4

4π2
‖X ‖, then Y admits no Einstein metric

which is an optimal result since, for M = S4, Y = X and the above

inequality is an equality.
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Remark that 3T4
4π2 C 1

2592π2 .

Some simple examples can be given by taking the connected sum Y

of a real hyperbolic 4-manifold X with CP 2 or with a K3 surface K

(recall that χ(CIP2) = 3, τ(CIP2) = 1, χ(K) = 24, τ(K) = −16). In both

cases, Y admits no Einstein metric, but Gromov’s obstruction condition

is not satisfied.

5.5 Let us recall that the complex surface obtained by blowing up h

points from a complex surface Y is diffeomorphic to the connected sum

of Y with h copies of CP 2 (i.e., CP 2 endowed with the opposite orienta-

tion to that given by the complex structure).

Corollary 5.5.1 [23]. Let X be a compact complex hyperbolic

surface and let Xk be a k-sheeted covering of X. The complex surface

Xk*hCP 2, obtained by blowing up h points from the surface Xk, admits

no Einstein metric if h ≥ 179
243

k · c2
1(X).

One can verify that Gromov’s obstruction (Theorem 4.3.1) is not

conclusive in this case. Thorpe’s obstruction says that there exist no

Einstein metrics, on Xk*hCP 2, if h
k

≥ c2
1(X); so, every k-sheeted cover-

ing Xk of X and integer h such that 179
243

c2
1(X) ≤ h

k
< c2

1(X) give rise to

a complex surface without Einstein metrics, that we cannot deduce nei-

ther from Gromov’s nor from Thorpe’s obstruction theorems. Notice that

this gives an infinity of new examples of complex surfaces without Einstein

metrics: in fact, compact complex hyperbolic surfaces have coverings of

arbitrarily high degree [23], so that we can choose k and h arbitrarily

high.

This result should be compared to another one, obtained by C. Le-

brun [19] for blow-ups of complex surfaces of general type (more generally,

for blow-ups of symplectic 4-manifolds of general type), by means of the

Seiberg-Witten invariants. He finds the sharper constant 2
3

(< 179
243

), and

he exhibits non-minimal (with respect to the blow-up operation), simply

connected examples of complex surfaces without Einstein metrics, which

don’t come from Thorpe’s obstruction.

Notice that, similarly to the remarks which follow the results 3.4.1

and 3.4.2 in 3.4, the Corollary 5.5.1 excludes the existence of Einstein

metrics on any 4-manifold homotopy equivalent to one of the complex
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surfaces Xk above described, while the result of LeBrun only works for

manifolds diffeomorphic to blow-ups of complex surfaces of general type.

5.6 As an application of Theorems 4.4.1 or 4.4.2, one finds the fol-

lowing result about “genericity” of 4-manifolds which don’t admit any

Einstein metric:

Theorem 5.6.1 [23]. For every compact 4-manifold X, there exists

a compact 4-manifold Y which has the same Euler characteristic and the

same signature as X, and which doesn’t admit any Einstein metric.

Therefore, one can fill also the region D of the ZZ-plane defined by

D= {k> 3
2
| t |} (in which Thorpe’s obstruction condition is not satisfied)

with 4-manifolds without Einstein metrics.

Actually, by taking suitable connected sums with hyperbolic mani-

folds, one can prove that, for each (k, t) such that k − t ∈ ZZ, there exist

infinitely many non-homeomorphic manifolds which have Euler charac-

teristic k and signature t, and which don’t admit any Einstein metric

(see [23]).
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localement triviales des métriques riemanniennes, Proc. Symp. Amer. Math.
Soc., 27 (1973), 3-32.

[3] M. Berger: Sur quelques variétés d’Einstein compactes, Annali di Mat. Pura e
Appl., 53 (1961), 89-96.

[4] A. L. Besse: Einstein manifolds, Ergebnisse der Math. Springer-Verlag, Berlin-
New York, (1987).

[5] A. L. Besse: Geometrie riemannienne en dimension 4 , Seminaire Arthur Besse,
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