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Curvature properties of solvable

extensions of H-type groups

I. DOTTI – J. LAURET

Riassunto: Si studiano alcune proprietà geometriche di estensioni solubili unidi-
mensionali di gruppi di tipo H e di tipo H modificato.

Abstract: We study various geometric properties of one dimensional solvable
extensions of H-type and modified H-type groups.

Let M be a rank one symmetric space of non-compact type. If K

denotes its sectional curvature, R its curvature tensor and ∇ the rieman-

nian connection, it is well known that K < 0 and ∇R = 0. We can

represent M as M = G/H where G is the identity component of the

isometry group of M and H is the isotropy subgroup at some fixed point

p ∈ M . The Iwasawa decomposition G = HAN gives a diffeomorphism

between M and S = AN so that M may be viewed as a solvable Lie

group with a left invariant metric such that K < 0 and ∇R = 0.
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Sapienza”, Roma, 11-14 Giugno 1996.
Key Words and Phrases: Curvature – Solvable Lie groups – H-type groups
A.M.S. Classification: 22E25 – 53C30



168 I. DOTTI – J. LAURET [2]

In [12] E. Heintze characterized the corresponding solvable Lie al-

gebras as follows.

Let s denote the Lie algebra of S and let 〈 , 〉 denote the inner product

on s induced by the symmetric metric on M . Then,

(1) s admits an orthogonal decomposition s=RA⊕n1⊕n2 with 〈A, A〉=1,

s′ = n1 ⊕ n2, [s′, s′] = n2, [s′, n2] = 0 and adA|ni
= i

2
I, i = 1, 2;

(2) the endomorphisms JZ of n1 defined by

〈JZU, V 〉 = 〈Z, [U, V ]〉 ∀U, V ∈ n1

satisfy J2
Z = −〈Z, Z〉I for every Z ∈ n2;

(3) for every V ∈ n1, the subspace of n1 spanned by {V, JZ′V : Z ′ ∈ n2}
is stable by JZ , for every Z ∈ n2.

By imitating the above construction of rank one symmetric spaces of

non compact type, as solvable Lie groups, one can obtain a larger class of

homogeneous manifolds. It is the purpose of this note to consider some

possible generalizations of the previous construction and analyze various

geometric properties.

In the first section we survey some results on two step nilpotent met-

ric Lie algebras satisfying condition (2) above. This class of nilpotent

algebras, known as H-type algebras, was introduced by Kaplan in [13]

in connection with the study of hypoelliptic differential equations. The

geometry of the nilpotent associated groups is well understood and had

provided an interesting source of examples. Among all the possible solv-

able extensions there is one of particular interest. It is obtained by requir-

ing properties (1) and (2) above, at the Lie algebra level. In the second

section we review some known results on this special solvable extensions

of H-type groups, known as Damek-Ricci spaces.

Weakening condition (2) above, a larger class of homogeneous nilman-

ifolds appear. They correspond to new metrics on the same underlying

nilpotent groups, but with some remarkable differences. We consider in

the third section this generalization, consisting on modifying the H-type

metric on the center and we study some curvature properties of their

corresponding solvable extension. In particular we discuss the Einstein

condition and the moduli space QP∗(s) of isometry classes of left-invariant

metrics that satisfy −4 ≤ K ≤ −1.
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1 – H-type algebras

Let n be a two-step real nilpotent Lie algebra endowed with an inner

product 〈 , 〉. Assume n has an orthogonal decomposition n = z ⊕ v,

where z is a subspace of the center of n and [v, v] ⊂ z. Define a linear

mapping J : z → End(v) by

(1) 〈JZX, Y 〉 = 〈Z, [X, Y ]〉

(note that JZ is skew-symmetric). Now n is said to be an H-type algebra

if for any Z ∈ z

(2) J2
Z = −〈Z, Z 〉I .

The corresponding H-type group is the simply connected Lie group N

with Lie algebra n endowed with the left invariant metric induced by the

inner product 〈 , 〉 in n.

It is easily seen that if n is H-type and z 1= 0 then z is the center of n.

If z = 0 then n = v is abelian.

Main examples. The H-type algebras with dim z = 0, 1, 3, 7 are

constructed as follows (see [13] or [16]). This family contains the Lie

algebras of the Iwasawa N groups associated to real rank one simple Lie

groups.

Let F = R, C, H or o, the Cayley numbers. Take z = ImF (z = 0 if

F = R), v = Fp × Fq.

Define

[X, Y ] =
p∑

l=1

Im x̄lyl +
q∑

l=p+1

Im ylx̄l

where X, Y ∈ v, X =
∑n

l=1 xlEl, Y =
∑n

l=1 ylEl, xl, yl ∈ F, n = p + q

and El denotes the element of Fn with 1 in the l-th position and zero

elsewhere.

The inner product on z ⊕ v is given by

〈z + X, u + Y 〉 = Re z̄u +
n∑

l=1

Re x̄lyl

for z, u ∈ z and X, Y ∈ v.
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Finally, it follows from the above definitions, that if z ∈ z, Jz is

given by

Jz

n∑

l=1

xlEl =
p∑

l=1

xl z El +
n∑

l=p+1

z xl El

and the resulting algebra, n(F, p, q), is an H-type algebra.

In [4], Cowling et al., defined and studied the J2-condition on an

H-type algebra (see condition (3) in the Introduction). We now recall its

definition.

Given X ∈ v, let JzX = {JZX : Z ∈ z}. Clearly (1) implies

(JzX)⊥ = ker(adX)|v), thus we may consider, for every X ∈ v, the or-

thogonal decomposition

(3) v = JzX ⊕ RX ⊕ wX

where wX is the orthogonal complement of RX in ker(adX |v).
An H-type algebra n satisfies the J2 condition if for every X ∈ v

the subspace RX ⊕ JzX is JZ-invariant, for all Z ∈ z. In particular, if

X ∈ v and Z1, Z2 ∈ z with 〈Z1, Z2〉 = 0, then there exists Z3 ∈ z such

that JZ1
JZ2

X = JZ3
X.

The above property characterizes, among the H-type algebras, the

two step nilpotent algebras which are the nilpotent part of the Iwasawa

decomposition of a real rank one simple Lie group.

Theorem 1.1 ([4], [16]). The H-type algebras satisfying the J2-

condition are n(F, p, 0) if F = R, C, H and p ∈ N or n(o, 1, 0).

We now recall the NC-condition (which was introduced in [7]) mo-

tivated by the geometry of a solvable extension (see section 2). We will

give a characterization of H-type Lie algebras which satisfy it.

An H-type algebra n satisfies the NC-condition if [X, JZ1
JZ2

X] 1= 0

for every non zero X ∈ v and any linearly independent Z1, Z2 in z. Or,

equivalently, if the projection PJzX(JZ1
JZ2

X) onto JzX, with respect to

the decomposition given by (3), is non zero.

It is clear that H-type algebras which verify the J2-condition also

satisfy the NC-condition. The fact that these conditions are actually

equivalent is proved in [7].
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Theorem 1.2. The H-type algebras satisfying the NC-condition

are n(F, p, 0) if F = R, C, H and p ∈ N or n(o, 1, 0).

In particular

Corollary 1.3. In an H-type algebra n the following conditions

are equivalent

(i) n satisfies the NC-condition

(ii) n satisfies the J2-condition.

(iii) n is the nilpotent part (in the Iwasawa decomposition) of a real

rank one simple Lie algebra.

2 – Damek-Ricci extensions

The class of solvable extensions of H-type groups which we will con-

sider in this section are constructed as follows. They are modelled on

generalizing (1) and (2) in the Introduction.

Let n be an H-type algebra with corresponding simply connected Lie

group N . If A = R+ acts on N by the dilations (z, x) → (tz, t
1
2 x), we let

S be the semidirect product AN . Let s be the Lie algebra of S. If D is

the derivation of n given by D|v = 1
2
I and D|z = I and a = RA, then s

is the semi-direct product s = a ⊕ n where a acts on n via adA|n = D. We

endow s with the only inner product extending the given one in n and such

that |A| = 1, 〈A, n〉 = 0. Finally, we give to S the riemannian structure

obtained by left translating the inner product on s. The riemannian

manifold obtained will be called a Damek-Ricci space.

Some geometric features of these spaces are given in

Theorem 2.1. (i) S is an Einstein manifold with non positive

sectional curvature ([1], [5]).

(ii) S has negative curvature if and only if n satisfy the NC-condi-

tion ([6]).

(iii) S has negative sectional curvature if and only if S is symmetric

([7], [14]).

(iv) S is a harmonic manifold ([6]).
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The NC-condition can also be formulated in terms of the opera-

tor KY , Y ∈ n studied by Szabo in [17]. For every Y ∈ n, Y = Z+X and

〈Z ′, Z〉 = 0 we set KY (Z ′) = [X, JZJZ′X] where X = X/|X|, Z = Z/|Z|.
It is clear that KY is skew symmetric and that n satisfies the NC-

condition if and only if KY is an isomorphism, for every Y = Z + X,

Z 1= 0, X 1= 0. Moreover, in Theorem 1.11 of [17] and also in section 4.2

of [3], the eigenvalues and the corresponding eigenspaces of the curva-

ture operator in S are computed. It is shown that they depend on the

eigenvalues of KY
2.

As a consequence one can deduce (see [3], end of section 4.2 ) that S

has negative sectional curvature if and only if 0 is not an eigenvalue of

KY
2, for every Y = Z + X, Z 1= 0, X 1= 0. Furthermore, as observed

in [3], this characterization implies that when z is even dimensional there

exist planes of zero curvature, thus obtaining (iii) above for an H-type

group N with even dimensional center.

3 – Solvable extensions endowed with modified H-type metrics

In the study of the geometry of a 2-step nilpotent Lie group endowed

with a left-invariant metric (N, 〈 , 〉) , the maps {JZ}Z∈z defined in (1)

play a very important role. The Levi-Civita conexion, curvature and

Ricci tensor and geodesics, for example, are described in terms of the

maps {JZ}Z∈z (see [8]) for any 2-step nilpotent Lie group (N, 〈 , 〉) . Fur-

thermore, the expression of the geodesic γ of (N, 〈 , 〉) with γ(0) = e and

γ′(0) = X + Z (X ∈ v and Z ∈ z) is given essentially in terms of the

distinct nonzero eigenvalues of J2
Z . Thus, it will be simpler depending on

the number of distinct eigenvalues of J2
Z .

We are thus led to study the following class of metrics, obtained by

weakening the H-type condition on 2-step nilpotent Lie groups.

Definition. A 2-step nilpotent Lie group (N, 〈 , 〉) is said to be a

modified H-type group if for any nonzero Z ∈ z, J2
Z = λ(Z)I for some

λ(Z) < 0.

Note that if λ(Z) = −〈Z, Z〉 for all Z ∈ z then (N, 〈 , 〉) is an H-

type group, and if for some c > 0, λ(Z) = −c〈Z, Z〉 for all Z ∈ z then

(N, 〈 , 〉) is an H-type group in the sense of [9].
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Theorem 3.1 [15]. (1) If (N, (, )) is a modified H-type group, then

there exists an H-type metric 〈 , 〉 on n and a symmetric positive definite

transformation P on (z, 〈 , 〉) such that (X+Z, Y +Z ′) = 〈X, Y 〉+〈PZ, Z ′〉
for all X, Y ∈ v, Z, Z ′ ∈ z (we denote this inner product by 〈 , 〉P ).

Let (N, 〈 , 〉) be an H-type group.

(2) If P and P ′ are symmetric positive transformations on (z, 〈 , 〉) then

(N, 〈 , 〉P ) is isometric to (N, 〈 , 〉P ′) if and only if P and P ′ are con-

jugate on z.

(3) If P is a symmetric positive definite transformation of (z, 〈 , 〉) then

the isotropy group HP of (N, 〈 , 〉P ) is

HP = {ϕ ∈ H : ϕ|zP = Pϕ|z},

where H is the isotropy group of (N, 〈 , 〉).

Thus, the modified H-type groups do not provide new Lie algebras

other than the H-type algebras. Moreover, the modified H-type groups

are nothing but pairs (N, 〈 , 〉P ) where (N, 〈 , 〉) is an H-type group and P

a symmetric positive definite transformation on (z, 〈 , 〉). However, ge-

ometrically, these Riemannian manifolds have some different properties.

As an example, according to [2], an H-type group is a commutative space

if and only if it is a weakly symmetric space. On the other hand, modified

H-type groups (N, 〈 , 〉P ) with dim z = 3 and such that the eigenvalues

of P are pairwise distinct yield examples of commutative spaces which

are not weakly symmetric (see [15]).

We now consider the same class of solvable extensions of H-type

groups S = AN as in section 2, but we will endow S with extensions of

modified H-type metrics 〈 , 〉P .

We fix in s the Damek-Ricci metric 〈 , 〉, i.e. 〈 , 〉|n×n is an H-type

metric, 〈A, n〉 = 0, and |A| = 1, with adA|v = 1
2
I, adA|z = I. For each

positive definite symmetric transformation P on (z, 〈 , 〉), we take the inner

product 〈 , 〉P on s defined by |A|P = 1
2
, 〈A, n〉P = 0 and 〈X+Z, Y +Z ′〉P =

〈X, Y 〉 + 〈PZ, Z ′〉 for all X, Y ∈ v, Z, Z ′ ∈ z. Finally, we give to S the

Riemannian structure obtained by left translating the inner product 〈 , 〉P .

The Riemannian manifold obtained is denoted by (S, 〈 , 〉P ) . Note that

(N, 〈 , 〉P |n×n) is a modified H-type group.
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It is easy to prove that (S, 4〈 , 〉4I) is isometric to the Damek-Ricci

space, i.e. the space (S, 〈 , 〉4I) is conformally equivalent to the Damek-

Ricci space.

The reason for considering the above extensions with |A|P = 1
2

rests

on the fact that, we will make use, in what follows, of results obtained

in [10] where different normalizing constants are stablished.

Definition [10]. Let S be a simply connected, solvable Lie group

with Lie algebra s, endowed with a left-invariant metric 〈 , 〉. We say that

(S, 〈 , 〉) is a 3-step Carnot solvmanifold if n = [s, s] is 2-step nilpotent

with codimension one and if s = IRA⊕v⊕z is an orthogonal decomposition

with |A| = 1 then adA|v = I, adA|z = 2I.

The spaces (S, 〈 , 〉P ) are 3-step Carnot solvmanifolds. Actually,

s = IRA′⊕v⊕z with A′ = 2A and thus |A′|P = 1, adA′|v = I, adA′|z = 2I.

We now compute the Ricci transformation Ric of the spaces (S, 〈 , 〉P )

given by Ric(X) =
∑

R(X, A′)A′ +
∑

R(X, Xi)Xi +
∑

R(X, Zi)Zi, where

X ∈ s = TeS and {Xi}, {Zi} are orthonormal bases of v and z respec-

tively. Furthermore choose {Zi} to be eigenvectors of P with eigenval-

ues {λi}.

Proposition 3.2. The matrix of the Ricci transformation Ric of

(S, 〈 , 〉P ) in terms of the basis {A′, X1, ..., Xn, Z1, ..., Zm} is

Ric=




−(n+4m) 0 0

0

(
−(n+2m) − 1

2

∑
λi

)
In×n 0

0 0 −(2n+4m)Im×m+
n

4
P


 .

Therefore (S, 〈 , 〉P ) is an Einstein manifold if and only if P = 4I.

Proof. We can use lemma (3.17) in [10] or lemma 1.4 in [18]. Let

{JP
Z }Z∈z denote the transformation defined in (1) for (n, 〈 , 〉P ). It is

easy to see that JP
Z = JPZ , for any Z ∈ z, where {JZ}Z∈z are the maps

corresponding to the H-type metric 〈 , 〉. We have

Ric(A′) = −tr(adA′)2 A′ = −(n + 4m)A′.
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If X ∈ v then

Ric(X) =
1

2

∑
(JP

Zi
)2X − tr(adA′)adA′(X) =

=
1

2

∑
(−〈PZi, PZi〉)X − (n + 2m)X =

= −1

2

∑
〈PZi, Zi〉P X − (n + 2m)X =

=
(

− 1

2

∑
λi − (n + 2m)

)
X.

For all 1 ≤ i, j ≤ m we have

〈Ric(Zi), Zj〉P = −1

4
tr(JP

Zi
JP

Zj
) − tr(adA′)〈adA′(Zi), Zj〉P =

= −1

4
λiλjtr(JZi

JZj
) − (n + 2m)2〈Zi, Zj〉P =

= −1

4
λiλj(−n〈Zi, Zj〉δij) − (2n + 4m)δij =

=
n

4
λi〈Zi, Zi〉P δij − (2n + 4m)δij =

=
(n

4
λi − (2n + 4m)

)
δij =

=
〈(n

4
P − (2 + 4m)I

)
Zi, Zj

〉
P
.

This conclude the computation of Ric. Suppose that (S, 〈 , 〉P ) is Einstein,

thus P = λI and n
4
λ − (2n + 4m) = −(n + 4m), this implies λ = 4.

Conversely, if P = 4I then Ric = −(n + 4m)I, concluding the proof.

In what follows we will give some curvature properties of the solvable

extensions (S, 〈 , 〉P ) considered previously.

Definition [10]. A solvable Lie algebra s is a 3-step Carnot algebra

if n = [s, s] is 2-step nilpotent with codimension one and s admits a

decomposition s = IRA ⊕ v ⊕ z with n = v ⊕ z, z the center of n and

adA|v = I, adA|z = 2I. An inner product 〈 , 〉 on s is admissible if |A| = 1

and IRA, v and z are mutually orthogonal.
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Note that a solvmanifold (S, 〈 , 〉) is a 3-step Carnot solvmanifold if

and only if the Lie algebra s of S is a 3-step Carnot algebra and 〈 , 〉 is

an admissible inner product on s.

Let AM(s) denote the set of admissible inner products on a 3-step

Carnot algebra s with respect to a fixed decomposition s = IRA ⊕ v ⊕ z.

Let QP(s) denote the set of all inner products 〈 , 〉 on s, not necessar-

ily admissible, that satisfy the quarter pinched condition −4 ≤ K ≤ −1,

where K is the sectional curvature of the corresponding Riemannian man-

ifold (S, 〈 , 〉) .

Theorem 3.3 [10]. Let s = IRA ⊕ v ⊕ z be a 3-step Carnot algebra.

(1) For any 〈 , 〉 ∈ QP(s) there exists 〈 , 〉′ ∈ QP(s) ∩ AM(s) such that

(S, 〈 , 〉) is isometric to (S, 〈 , 〉′).

(2) If 〈 , 〉, 〈 , 〉′ ∈ AM(s) then (S, 〈 , 〉) is isometric to (S, 〈 , 〉′) if and only

if there exists ϕ ∈ Aut(s)A = {ψ ∈ Aut(s) : ψA = A} : Aut(n)

such that 〈 , 〉′ = ϕ∗〈 , 〉 (i.e. if and only if (N, 〈 , 〉|n×n) is isometric to

(N, 〈 , 〉′|n×n)).

(3) Let AM∗(s) denote the space of isometry classes of solvmanifolds

(S, 〈 , 〉) , where 〈 , 〉 is admissible. Then AM∗(s) can be identified

with the quotient space Aut(s)A\AM(s) and the double coset space

Aut∗(n)\Gl(v) × Gl(z)/O(v, 〈 , 〉) × O(z, 〈 , 〉),

where 〈 , 〉 is a fixed inner product 〈 , 〉 ∈ AM(s) and Aut∗(n) = {ϕ ∈
Aut(n) : ϕ(v) ⊂ v}.

(4) Let QP∗(s) denote the space of isometry classes of solvmanifolds

(S, 〈 , 〉) , where 〈 , 〉 satisfies −4 ≤ K ≤ −1. Thus QP∗(s) can be

identified with a path connected subset of AM∗(s) (also denoted by

QP∗(s)) whose interior in AM∗(s) is nonempty.

Remark. In all further discussions we give AM∗(s) the double coset

space topology from (3) and QP∗(s) the topology induced from AM∗(s).

We now describe a criteria, following [10], for the inequalities K ≤ −1

and K ≥ −4 to hold in terms of the norm of the map J : z −→ End(v)
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(see (1)), which is defined by

‖JZ‖ = max {|JZX| : |X| = 1},

‖J‖ = max {‖JZ‖ : |Z| = 1}.

Proposition 3.4 [10]. Let (S, 〈 , 〉) be a 3-step Carnot solvmanifold

and let J : z −→ End(v) be the map determined by (n = [s, s] = v⊕ z, 〈 , 〉).
(1) If K ≤ −1 or K ≥ −4 in (S, 〈 , 〉) then ‖J‖ ≤ 2.

(2) If ‖J‖ ≤ 1 then K ≤ −1.

(3) If ‖J‖ ≤
√

2 then K ≥ −4.

The next computations will allow to construct, using the modified

H-type metrics 〈 , 〉P , an IRm inside QP∗(s), where s is the Lie algebra of

a Damek-Ricci space and m = dim z.

We calculate first the norm ‖JP ‖P corresponding to the spaces (S, 〈 , 〉P ) .

If Z ∈ z with |Z|P = 1 then

‖JP
Z ‖2

P = max {|JP
Z X|2P : |X|P = 1} = max {|JPZX|2 : |X| = 1} =

= max {〈PZ, PZ〉〈X, X〉 : |X| = 1} = 〈PZ, PZ〉,
so we have

‖JP ‖2
P = max {〈PZ, PZ〉 : |Z|P = 1} = max {〈PZ, Z〉P : |Z|P = 1} =

= max {λ : λ eigenvalue of P}.

We then obtain ‖JP ‖P = max (P )
1
2 , where max(P ) denotes the great-

est eigenvalue of P . It is clear that 〈 , 〉P ∈ AM(s) for any P , then by

proposition 3.7 we have

P = {〈 , 〉P : max (P ) ≤ 1} ⊂ QP(s) ∩ AM(s).

Let P∗ denote the isometry classes of solvmanifolds (S, 〈, 〉P) with 〈, 〉P ∈P.

Using Theorem 3.2, (2) and Theorem 3.2, (2), we obtain that P∗ can be

identified (homeomorphically) with the set

∆m = {(λ1, . . . , λm) : 1 ≥ λ1 ≥ . . . ≥ λm > 0},

where m = dim z and {λi} are the corresponding eigenvalues.

Thus we have proved the following result.
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Theorem 3.5. Let s be the 3-step Carnot algebra corresponding

to a Damek-Ricci space, i.e. s = IRA ⊕ v ⊕ z with n = v ⊕ z an H-type

algebra. Thus QP∗(s) contain a subset P∗ homeomorphic to ∆m, where

m = dim z.
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[16] F. Ricci: Spherical Functions on Certain Non-symmetric Harmonic manifolds,
Workshop on Representation Theory of Lie groups 1993, I.C.T.P. Trieste.

[17] Z. Szabo: Spectral theory for operator families on riemannian manifolds, Pro-
ceedings of Symposia in Pure Mathematics, 54 (1993), 615-665.

[18] T. Wolter: Einstein metrics on solvable groups, Math. Z., 206 (1991), 457-471.

Lavoro pervenuto alla redazione il 23 aprile 1997
ed accettato per la pubblicazione il 3 dicembre 1997.

Bozze licenziate il 3 marzo 1998

INDIRIZZO DEGLI AUTORI:

I. Dotti – J. Lauret – Universidad Nacional de Córdoba – 5000 Córdoba – Argentina
e-mail:idotti@mate.uncor.edu – lauret@mate.uncor.edu


