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Spectral comparison between Dirac

and Schrödinger operators

M. BORDONI

Riassunto: Si dimostra un teorema generale di confronto fra gli autovalori di due
operatori autoaggiunti e semilimitati agenti su due diversi spazi di Hilbert fra i quali
sia data un’opportuna applicazione. Come caso particolare, si trovano stime degli auto-
valori dell’operatore di Dirac classico agente sugli spinori tramite quelli dell’operatore
di Laplace-Beltrami. Le stime sono ottimali, nel senso che per il primo autovalore si
ritrova la diseguaglianza di Friedrich.

Abstract: We show a general comparison theorem for the eigenvalues of two self-
adjoint semibounded operators acting on two different Hilbert spaces, which are related
by a suitable mapping. As a particular case, we get estimates of the eigenvalues of the
classical Dirac operator acting on spinors in terms of the eigenvalues of the Laplace-
Beltrami operator. These estimates are sharp, in the sense that they give Friedrich’s
inequality for the minimal eigenvalue.

1 – Introduction

One of the most important results on the classical Dirac operator

acting on spinors is the Lichnerowicz formula which gives, as a simple

consequence, a lower bound for the squares of its eigenvalues. Precisely,
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let (M, g, γ) be a n-dimensional boundaryless compact Riemannian spin

manifold (g and γ denote the Riemannian metric and the spin structure

respectively). For basic facts concerning spin geometry, we refer to [8]. As

M admits a spin structure, there exists a bundle of spinors, i.e. a vector

bundle S −→ M on whose fiber Sx the Clifford algebra of (TxM, gx) acts

via a representation in End(Sx); this representation will be denoted by

“·”, as the Clifford multiplication. The fiber Sx is endowed with a Spinn-

invariant metric 〈 , 〉 satisfying for any X ∈ TM and for any spinor

section ϕ ∈ Γ(S):

〈X · ϕ, X · ϕ〉 = g(X, X)〈ϕ, ϕ〉.

As the Spinn-principal bundle is a 2-sheeted covering of the Riemannian

principal bundle, the Levi-Civita connection induces a connection, de-

noted ∇, on the bundle of spinors which is compatible with the metric.

The classical Dirac operator D acting on the space Γ(S) of sections of

the spinor bundle is the firts order elliptic self-adjoint operator defined

as the composition of the connection ∇ with the Clifford multiplication.

Locally, with respect to any g-orthonormal tangent frame {e1, . . . , en},

one has:

(1.1) Dϕ =
n∑

i=1

ei · ∇ei
ϕ.

The Lichnerowicz formula ([9], 1963) gives the relation between D and

the so called rough Laplacian ∇∗∇:

(1.2) D2 = ∇∗∇ +
s

4
Id

where ∇∗ is the formal adjoint of the connection ∇ with respect to the

natural integral product on the spinor bundle, and where s is the scalar

curvature of (M, g). Applying (1.2) to a spinor field ϕ, taking the in-

ner product with ϕ and integrating on M with respect to the canonical

measure vg induced by g, give:

∫

M

|Dϕ|2dvg =

∫

M

|∇ϕ|2dvg +

∫

M

s

4
|ϕ|2dvg ≥ s0

4

∫

M

|ϕ|2dvg
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where s0 = minx∈M s(x). It follows that if λ is an eigenvalue of D, then

(Lichnerowicz inequality):

(1.3) λ2 ≥ s0

4
.

Clearly, this inequality is interesting only for manifolds with positive

scalar curvature. It is a fact that, for such manifolds, the minimal value s0
4

cannot be attained. Indeed, if equality holds in (1.3) for some eigen-

value λ of D, then ∇ϕ ≡ 0 and thus, by definition (1.1), Dϕ = 0 and

λ = 0; moreover, the scalar curvature is a constant, s = s0 = 0.

To improve Lichnerowicz inequality in a sharp inequality, one must

wait for the year 1980, when T. Friedrich [3] showed that:

(1.4) λ2 ≥ n

4(n − 1)
s0

and that manifolds which admit the minimal eigenvalue are Einstein man-

ifolds (but not Kähler, see O. Hijazi [7]). A simple proof of Friedrich’s

inequality (1.4) comes by considering the modified Riemannian connec-

tion ∇λ acting on spinors:

(1.5) ∇λ
Xϕ = ∇Xϕ +

λ

n
X · ϕ

where λ is a real constant (this connection was introduced by T. Frie-

drich [3] and generalized by O. Hijazi [7]). As a direct calculation

gives:

(1.6) |∇λϕ|2 = |∇ϕ|2 − 2
λ

n
〈Dϕ, ϕ〉 +

λ2

n
|ϕ|2 ,

one gets, by Lichnerowicz formula:

0 ≤
∫

M

|∇λϕ|2dvg =

∫

M

(
|Dϕ|2 − 2

λ

n
〈Dϕ, ϕ〉 +

λ2

n
|ϕ|2 − s

4
|ϕ|2

)
dvg

which gives, when Dϕ = λϕ, the required inequality.

Spinors which are parallel for ∇λ are called real Killing spinors (be-

cause the 1-form ξϕ defined by ξϕ(X) = 〈X · ϕ, ϕ〉 is dual of a Killing
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vector field when ∇λϕ = 0). They first appeared in mathematical physics

in the context of supergravity and recently in superstring theories. Here,

real Killing spinors are related to eigenspinors of the Dirac operator in

the sense that ∇λϕ = 0 implies Dϕ = λϕ. Conversely, Dϕ = λ0ϕ with

λ2
0 = n

4(n−1)
s0 implies ∇λ0ϕ = 0 and s = s0 = constant: eigenspinors

related to the minimal eigenvalue λ0 are ∇λ0-parallel and manifolds with

minimal eigenvalue have constant scalar curvature.

Friedrich’s and Lichnerowicz’s inequalities concern only the minimal

eigenvalue of the Dirac operator. The following theorem, due to the

Author (see [1], 1994), gives a “spectral comparison” between the Dirac

operator and the Laplace-Beltrami operator ∆ acting on functions, in

the sense that it gives, for any squared eigenvalue of D, a lower bound in

terms of a corresponding eigenvalue of ∆ and of the scalar curvature s;

moreover, it gives a comparison between averages of eigenvalues.

Theorem 1.7. Let (M, g, γ) be a n-dimensional compact Rie-

mannian spin manifold whitout boundary and let us consider the bundle

S −→ M of spinors with its Dirac operator D. Then, for any finite set

{λi(D)}i∈I of eigenvalues of D, one has:

(i) sup
i∈I

λi(D)2 ≥ n

n − 1

(s0

4
+ Cλk+1(∆)

)

and

(ii)
1

#I

∑

i∈I

λi(D)2 ≥ n

n − 1

(s0

4
+

1

2#I

k∑

j=1

λj(∆) + Cλk+1(∆)
)

where s0 is the minimum of the scalar curvature of (M, g), and where k =

integer part of #I

2[n/2]+1
, and C = 1

8(2[n/2]+1)2
.

Warning. As we quote the spectrum of ∆ from 1 to +∞ and not

(as usual) from 0 to +∞, the first eigenvalue different from zero is λ2(∆).

The remaining sections of this paper are devoted to prove Theo-

rem 1.7 as a particular case of a general theorem of spectral comparison.

Before doing this, let us notice that the estimates (i) and (ii) are sharp

not only beacuse they give Friedrich’s inequality when applied to the
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minimal eigenvalue of D, but also in the following sense. Inequalities (i)

and (ii) imply that there exist at most 2[n/2] eigenvalues of D2 in the

interval [ ns0
4(n−1)

, ns0
4(n−1)

+ nC
n−1

λ2(∆)[. This is sharp in the case of the flat

torus, which has exactly 2[n/2] eigenvalues of D2 equal to n
4(n−1)

s0 = 0.

Another remark concerns the Â-genus Â(M) of M , a topological

invariant, not to define here, which is actually the index of the Dirac

operator. As the Â-genus is bounded by the dimension of the kernel

of D, it follows from Theorem 1.7 that:

Corollary 1.8. Let (M, g) be any compact Riemannian n-manifold

whose Â-genus is not trivial. Then the eigenvalues of the Laplace-Beltrami

operator ∆ of (M, g) satisfy

1

2

k∑

j=1

λj(∆) + Â(M)Cλk+1(∆) ≤ −Â(M)

4
s0

where k = [ Â(M)

2[n/2]+1
] and C is given in Theorem 1.7.

This result may be read also as 1
k

∑k
j=1 λj(∆) ≤ − s0

4
, where k is of

the order of Â(M)

2[n/2]+1
: in other terms, Corollary 1.8 states that a manifold

with non trivial topology cannot have too many small eigenvalues.

2 – Spectral comparison theorems

a) settling the problem. For any given Riemannian n-manifold

(M, g), denote vg the canonical measure induced by g and 〈〈u, v〉〉L2(M) =∫
M u(x)v(x)dvg(x) the integral inner product, defined for every couple of

continuous functions u, v on M ; we shall also write briefly 〈〈u, v〉〉L2 or

〈〈u, v〉〉 when no ambiguity is possible. We denote by L2(M) the comple-

tion of C∞(M) with respect to the norm ‖ ‖L2 associated to the inte-

gral inner product, and by H1(M) the first Sobolev space of M , i.e. the

completion of C∞(M) with respect to the norm associated to the inner

product 〈〈u, v〉〉H1 =
∫

M u(x)v(x)dvg(x) +
∫

M g(gradu, grad v)(x)dvg(x).

We shall consider the spectrum of a quadratic form q or, equivalen-

tely, of the corresponding self-adjoint operator T . Precisely, a quadratic

form q, closed on the domain H1(M), is semibounded if there exists a
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real constant c such that q(v) ≥ c‖v‖L2 for any v ∈ H1(M) (we may

assume c = 0 by a shift). Such a form is the quadratic form of a unique

self-adjoint operator T which is a Friedrichs extension (see [10], [I], The-

orem VIII.15), and the spectrum of q, defined by max-min principle,

coincides with the discrete part of the spectrum of T , i.e. with the part

lying under the essential spectrum of T (see [10], [IV], Theorem XIII.2).

An example is the quadratic form ‖ grad v‖2
L2 and the Laplace-Beltrami

operator ∆M or, more generally, the quadratic form ‖ grad v‖2
L2+‖V

1
2 v‖2

L2

and the corresponding Schrödinger operator ∆M + V , with V a bounded

potential function.

Let us consider two Riemannian manifolds (M ′, g′) and (M, g) and

suppose that a mapping < : H1(M ′) −→ H1(M) is given. Our aim is to

compare via < the spectra of two semibounded quadratic forms q′ and q

closed on the domains H1(M ′) and H1(M) respectively, or equivalentely

the spectra of the corresponding self-adjoint operators T ′ and T . When

the manifolds are compact, these spectra are discrete; otherwise, we shall

compare their discrete parts, i.e. the parts lying under the essential spec-

tra.

In order to get comparison theorems, we shall assume that < pre-

serves the L2-norm:

(2.1) ‖<u‖L2(M) = ‖u‖L2(M ′)

for any u ∈ L2(M ′) (Fubini’s property), and that < does not increase the

energy of the operators:

(2.2) q(<u) = 〈〈T (<u), <u〉〉L2(M) ≤ 〈〈T ′u, u〉〉L2(M ′) = q′(u)

for any u ∈ H1(M ′) (then we say that the quadratic forms q′ and q, or

also the operators T ′ and T , obey Kato’s inequality with respect to <).

b) the linear case. When the mapping < is linear, it is very easy

to obtain a spectral comparison between T ′ and T . Let E ⊂ H1(M ′), resp.

K ⊂ H1(M), be the subspace spanned by the first N eigenfunctions of T ′,

resp. by the first k eigenfunctions of T .

Theorem 2.3. Let < : H1(M ′) −→ H1(M) be a linear mapping

verifying Fubini’s property (2.1), and let T ′ and T be two self-adjoint
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semibounded operators, whose quadratic forms are closed on H1(M ′) and

H1(M) respectively, which obey Kato’s inequality (2.2) with respect to <.

Suppose that dim<(E) > dimK, where E and K are the subspaces defined

above. Then we have:

λN(T ′) ≥ λk+1(T ).

Proof. As dim <(E) > dimK, there exists at least one u ∈ E\{0}
such that <u is L2-orthonormal to K.

K

!(E)

!u

Fig. 1

For such u, one has:

λN(T ′)‖u‖2
L2(M ′) ≥ 〈〈T ′u, u〉〉L2(M ′) by min-max principle, ≥

≥ 〈〈T (<u), <u〉〉L2(M) by Kato’s inequality, ≥
≥ λk+1(T )‖<u‖2

L2(M) by max-min, =

= λk+1(T )‖u‖2
L2(M ′) by Fubini’s property.

Notice that, even if the proof is trivial in the linear case, the inequal-

ity stated in Theorem 2.3 is the basis for a lot of spectral comparison

theorems (see for instance the results of S.Y. Cheng, S. Gallot, M. Gro-

mov, P. Li and S.T. Yau).

Example 2.4. Let Ω be a regular domain with smooth boundary in

a compact boundaryless Riemannian manifold (M,g). The operators to

compare are T ′ = ∆Ω with Dirichlet conditions on the boundary of Ω,

and T = ∆M . For any function u ∈ C∞
0 (Ω) compactly supported in



188 M. BORDONI [8]

the interior of Ω, define <u ∈ C∞(M) to be the natural extension of

u on M by <u = 0 on M\Ω. This gives a linear injective mapping

< : H1
0 (Ω) −→ H1(M), where H1

0 (Ω) is the completion of C∞
0 (Ω) with

respect to the H1-norm. Since Fubini’s property and Kato’s inequality

are automatically satisfied, we get λD
N(Ω) ≥ λN(M) (trivial!).

c) the non linear case. When < is not linear, we can try to mimic

the proof done in the linear case (Theorem 2.3). For u ∈ E , denote (<u)K

and (<u)⊥ the orthogonal projection of <u on K and the component

orthogonal to K respectively. The decomposition <u = (<u)K + (<u)⊥

is at the same time L2-orthogonal and orthogonal for the quadratic form

associated to the operator T . Then, the same sequence of inequalities

used for < linear (i.e. min-max, Kato’s inequality, max-min and min-

max, Fubini’s property) gives:

(2.5)

λN(T ′)‖u‖2 ≥ 〈〈T ′u, u〉〉 ≥
≥ 〈〈T (<u), <u〉〉 =

= 〈〈T (<u)⊥, (<u)⊥〉〉 + 〈〈T (<u)K, (<u)K〉〉 ≥
≥ λk+1(T )‖(<u)⊥‖2 + λ1(T )‖(<u)K‖2 =

= (λ1(T ) + (λk+1(T ) − λ1(T ))
‖(<u)⊥‖2

‖<u‖2
)‖u‖2.

Now, if the image <(E) is too concentrated around K, the ratio ‖(5u)⊥‖2

‖5u‖2

is very small. To get a lower bound ‖(5u)⊥‖2

‖5u‖2 ≥ C > 0, one must have the

possibility to go enough away from K. This is not possible in general,

but it is when < is induced by a mapping on manifolds in the following

sense.

Let f : (M ′, g′) −→ (M, g) be any mapping. For any function u on

M ′ for which it makes sense, we set, at x ∈ M :

(2.6) (<u)(x) =
( ∫

f−1(x)

(u|f−1(x)(y))2dvg′
x
(y)

)1/2

where g′
x is the metric induced by restriction of g′ on the fiber f−1(x).

For instance, when f is a Morse function, <u is a function defined almost

everywhere on M . The mapping < : u (−→ <u is not linear, but it is

positively homogeneous of degree 1.
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Fubini’s property (2.1) is verified when f is a Lipschitz mapping

whose horizontal Jacobian JHf satisfies |JHf | = 1 a.e. In fact, in this

case, the differential df(x′) exists for a.e. x′ ∈ M ′ and one can define

the horizontal Jacobian JHf(x′) as the determinant of the restriction of

df(x′) to the orthogonal subspace of Tx′(f−1(f(x′))) in Tx′M ′. The coarea

formula (see [2], Theorem 13.4.2 and Corollary 13.4.6) then gives:

∫

M ′
(u(x′))2|JHf(x′)|dvg′(x′) =

∫

M

( ∫

f−1(x)

(u|f−1(x)(y))2dvg′
x
(y)

)
dvg(x).

Definition 2.7. Let E ⊂ L2(M ′) be a vector subspace of enough

regular functions and let Ex be its image in L2(f−1(x)) by the restriction

u (−→ u|f−1(x), which is defined for a.e. x ∈ M ; we assume Ex = {0} when

u is not defined on f−1(x). We define the rank of E to be the essential

supremum of the dimensions of Ex, i.e.

rank E = inf
A∈A

(
sup

x∈M\A

(dim Ex)
)

where A is the class of all subsets in M of measure equal to zero.

Notice that this is not the usual definition of the rank, and that

the rank of E may be much smaller than the dimension of E . For in-

stance, a symmetric tensor S of type (0,q) on M induces a function uS

on the total space M ′ = U(M) of the unit tangent bundle by setting

uS(v) = S(v, . . . , v). The space E of such functions is infinite dimen-

sional, but Ex is the space of symmetric homogeneous polynomials of

degree q on TxM ∼= IRn, so the rank of E is equal to
(n+q−1

q

)
.

We then have the following technical lemma (cf. [5], [1]):

Hilbertian Lemma 2.8. Let < be the mapping defined by (2.6).

For any couple of vector subspaces E ⊂ H1(M ′) and K ⊂ H1(M) such

that dimK< dim E
rank E , there exists a universal constant C =C(dim E ,dimK),

0 < C < 1, such that

averageu∈E,‖u‖=1‖(<u)⊥‖2 ≥ C averageu∈E,‖u‖=1‖u‖2.

The value of the constant C is explicitely calculated in the papers [5], [1].

We can now state the main theorem of spectral comparison:
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Theorem 2.9. Let f : (M ′, g′) −→ (M, g) be a smooth map-

ping. Suppose that the mapping < defined by (2.6) verifies Fubini’s prop-

erty (2.1) and Kato’s inequality (2.2) with respect to two given self-adjoint

semibounded operators T ′ and T , whose quadratic forms are closed on

H1(M ′) and H1(M) respectively. For any positive integer N , the eigen-

values of T ′ and T satisfy the inequalities:

λN(T ′) ≥ (1 − C(r))λ1(T ) + C(r)λk+1(T ) ;(i)

N∑

i=1

λi(T
′) ≥ (N − k)λ1(T ) +

1

2

k∑

j=1

λj(T ) + NC(r)λk+1(T ) ,(ii)

where r is the rank of the subspace spanned by the first N eigenfunctions

of T ′, and where k = [ N
r+1

] , C(r) = 1
8(r+1)2

. When the operators have non

discrete spectra, the inequalities (i) and (ii) reduce to the discrete parts of

spectra (i.e. the parts lying under the essential spectra).

Proof of (i). In the present case, <(E) is a half cone which goes

enough away from K: as a consequence of Lemma 2.8, there exists at

least a function u ∈ E\{0} such that ‖(5u)⊥‖2

‖5u‖2 ≥ C. One achieves the

proof of (i) by inserting this last inequality in (2.5).

K

!(E)

(!u)K

(!u)⊥

!u

Fig. 2

The proof of (ii) is more technical and we refer the reader to [1] for it.

Remark 2.10. The assumption on the dimension in the Hilbertian

Lemma 2.8 and hence in the main Theorem 2.9 is sharp, as the following
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example proves. Let K be the space spanned by the L2-orthonormal

functions
χ

Ui

Vol Ui , i = 1, . . . , k, where U i are disjoint subsets of M of finite

volume different from zero and χUi are their characteristic functions.

Choose L2-orthonormal functions h1, . . . , hr on a manifold (F, gF ) and

let E be the subspace of L2(M × F ) spanned by the products
χ

Ui

Vol Ui hj. A

direct calculation shows that for any u ∈ E one has (<u)K = <u. Hence,

in this example we have rank E = dim E
dim K and (<u)⊥ = 0 for every u ∈ E .

We end this section with some examples of geometrical interest of

manifolds, mappings and operators verifying the assumptions of Theo-

rem 2.9.

Example 2.11. Let f : (M̃, g̃) −→ (M, g) be a regular 5-sheeted

Riemannian covering of compact boundaryless Riemannian manifolds,

and let us consider the operators T ′ = ∆M̃ + V ′ and T = ∆M + V ,

where V ′ is a continuous function on M̃ and where, at x ∈ M, V (x) =

infx′∈f−1(x) V ′(x′). For any u ∈ C∞(M̃), the mapping < : u (→ <u ∈
C∞(M) defined by (<u)(x) = (

∑
x′∈f−1(x) u(x′)2)

1
2 , verifies Fubini’s prop-

erty and Kato’s inequality with respect to T ′ and T . The rank of any

subspace E ⊂ H1(M̃) is in this case boundel by the degree 5 of the cov-

ering.

Example 2.12. Let f : (M ′, g′) −→ (M, g) be a Riemannian sub-

mersion of compact boundaryless Riemannian manifolds, and let us con-

sider again the operators T ′ = ∆M ′ +V ′ and T = ∆M +V . The mapping

< defined by (2.6) verifies Fubini’s property. To satisfy Kato’s inequality

with respect to T ′ and T , we must assume that the fibers are minimal

submanifolds of M ′. The rank of E is in this case bounded by a function

of the dimension of the eigenspaces of the fibers (see [1]).

3 – Application to vector bundles

Let us consider a compact Riemannian manifold without boundary

(M, g) and a real vector bundle E of rank r on M ; f : E −→ M is the

bundle projection. Suppose that E is a Riemannian bundle, i.e. that E

is endowed with an inner product 〈 , 〉x on each fiber Ex = f−1(x) which

varies continuously when x ranges over M .

For any smooth section s ∈ Γ(M,E) of the bundle, define on M the

pointwise norm function |s| by |s|(x) = 〈s(x), s(x)〉
1
2
x . Denote L2(M,E)
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the Hilbert space of sections s such that |s| ∈ L2(M), i.e. such that |s|
is measurable on M and ‖s‖L2(M,E) = (

∫
M |s|(x)2dvg(x))

1
2 < +∞. The

mapping defined on smooth sections by s (→ |s|, extends to a mapping

L2(M, E) −→ L2(M) and Fubini’s property (2.1) is automatically satis-

fied.

Theorem 3.1. Let (E, 〈 , 〉) be any metric vector bundle on a

compact boundaryless Riemannian manifold (M, g). Let T ′ and T be two

self-adjoint semibounded operators, acting respectively on sections and on

functions, which obey Kato’s inequality (2.2) with respect to the mapping

s (→ |s|. Then for any positive integer N , the eigenvalues of T ′ and T

satisfy the inequalities:

λN(T ′) ≥ (1 − C(r))λ1(T ) + C(r)λk+1(T ) ;(i)

N∑

i=1

λi(T
′) ≥ (N − k)λ1(T ) +

1

2

k∑

j=1

λj(T ) + NC(r)λk+1(T ) ,(ii)

where r is the dimension of the fibers of E, k = [ N
r+1

], and C(r) = 1
8(r+1)2

.

Proof. As the unitary bundle M ′ = U(E) associated to E is en-

dowed with a canonical Riemannian metric g′, we may consider f as

a mapping f : (U(E), g′) −→ (M, g). Then, the mapping < defined

by (2.6) satisfies automatically Fubini’s property (2.1). One has an iso-

metric injection ψ : L2(M,E) −→ L2(M) which maps a section s on the

function ψs defined by ψs(v) =
√

r〈s(f(v)), v〉 at v ∈ U(E) (r is the rank

of the bundle E). According to the definition (2.6), one has

(<ψs(v))(x) =
( ∫

U(Ex)

r〈v, s(f(v))〉xdv
) 1

2
= |s|(x)

where dv is the canonical Lebesgue probability measure on the sphere

U(Ex).

Let us consider any vector subspace E ⊂ L2(M,E). As ψ is linear and

isometric, the rank of ψ(E) (as defined in 2.7) is the essential supremum

of the dimension of the image of the mapping s (→ s(x) from E to Ex, so

it is always bounded by r. Noticing that ‖ψ(s)‖L2(U(Ex)) = |s(x)| = |s|(x)

and applying Theorem 2.9, we have the claim.
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Theorem 3.1 applies in particular to the case when the vector bun-

dle E is endowed with a connection D acting on sections and compatible

with the metric 〈 , 〉. Denote H1(M,E) the space of L2-sections such

that |Ds| ∈ L2(M). The mapping < : s (→ |s| extends to a mapping

H1(M, E) −→ H1(M).

Definition 3.2. The rough Laplacian is the operator D∗D acting on

sections, where D∗ is the formal adjoint of D with respect to the integral

product of sections. We shall call natural Laplacian, according to J.P.

Bourguignon, the operator T ′ = D∗D+R, where R is a field of symmetric

endomorphisms of the fibers: T ′ is a second order differential operator

with properties similar to the ones of the usual Laplacian; T ′ = D∗D+R
is called Weitzenböck formula. The Dirac operator D associated to T ′ is,

when it exists, a first order self-adjoint operator acting on sections such

that D2 = T ′ = D∗D + R.

The typical example is the bundle of differential p-forms with T ′ =∆p,

the Hodge-de Rham operator acting on p-forms. In this case, the relation

∆p = D∗D+R is the classical Weitzenböck formula, where R is explicitely

expressed in terms of the curvature of the manifold (M, g): for instance,

when p = 1, R is the Ricci curvature (see [4]). The corresponding Dirac

operator acting on forms is D = d + δ, where d is the differential and δ is

the codifferential.

Let us consider a Schrödinger operator T = ∆M + V acting on

functions, where V is a given potential function. If we suppose that

〈Rxs(x), s(x)〉x ≥ V (x)〈s(x), s(x)〉x at any x ∈ M and for any section

s, Kato’s inequality (2.2) follows from the classical Kato’s inequality

|d|s|| ≤ |Ds| (which is natural, because in Ds one has the component

d|s|, which gives the derivative of the length of s, plus the orthogonal

component, which gives the “rotational derivative” of s; for a complete

proof, see [6]). In the sequel, we shall take V (x) = Rmin(x) = smallest

eigenvalue of Rx.

Applying Theorem 3.1 to the operators T ′ = D2 and T = ∆M + V ,

we get:

Corollary 3.3 (spectral comparison between Dirac and Schrödin-

ger operators). Let (E, 〈 , 〉, D) be a vector Riemannian bundle of rank r

on a compact boundaryless Riemannian manifold (M, g), endowed with a
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compatible connection D. Let R be any field of symmetric endomorphisms

of the fibers, and let Rmin(x) be the minimal eigenvalue of Rx at x ∈ M .

Then the estimates (i) and (ii) of Theorem 3.1 hold when applied to the

operators T ′ = D∗D+R and T = ∆M +Rmin. In particular, if there exists

a Dirac operator D such that D2 = D∗D + R, (i) and (ii) are estimates

for the squared eigenvalues of D in terms of the eigenvalues of ∆M .

4 – Application to the classical Dirac operator

We come back now to the situation described in section 1: (M, g, γ)

is a n-dimensional compact Riemannian spin manifold whitout boundary,

S −→ M is the bundle of spinors, endowed with its Spinn-invariant metric

〈 , 〉 and with the compatible connection ∇ induced by the Levi-Civita

connection; the rank of S is 2[ n
2 ]. Let us consider the classical Dirac

operator D acting on spinors: the corresponding Weitzenböck formula is

in this case the Lichnerowicz formula (1.2),

D2 = ∇∗∇ +
s

4
Id ,

where s is the scalar curvature of (M, g).

Applying direcly Theorem 3.1 or Corollary 3.3 to the operators

T ′ = D2 and T = ∆M + s
4
, we get estimates of type (i), (ii), which are

not sharp: they give indeed Lichnerowicz inequality (1.3) for the minimal

eigenvalue of D:

λ1(D)2 ≥ s0

4

where s0 = minx∈M s(x). But we know the best inequality λ1(D)2 ≥
n

4(n−1)
s0 (Friedrich’s inequality (1.4)). To obtain inequalities of type (i),

(ii) which give this sharp result on the minimal eigenvalue, i.e. to get The-

orem 1.7, we must consider another operator, built up with the modified

connection (1.5):

Theorem 4.1. Let (M, g, γ) be a compact boundaryless Riemannian

spin manifold of dimension n. For any set {λi(D)}i∈I of eigenvalues of



[15] Spectral comparison between Dirac etc. 195

the Dirac operator D, one has:

sup
i∈I

λi(D)2 ≥ n

n − 1

(
(1 − C(r))λ1

(
∆M +

s

4

)
+ C(r)λk+1

(
∆M +

s

4

))
;(i)

∑

i∈I

λi(D)2 ≥ n

n − 1

(
(#I − k)λ1

(
∆M +

s

4

)
+(ii)

+
1

2

k∑

j=1

λj

(
∆M +

s

4

)
+ #IC(r)λk+1

(
∆M +

s

4

))
.

where r = 2[ n
2 ], k = [ #I

2[n/2]+1
] and C(r) = 1

8(2[n/2]+1)2
.

Proof. Let us consider the connection (1.5), ∇λ
Xϕ = ∇Xϕ+ λ

n
X ·ϕ,

and recall that the construction of ∇λ is such that any real Killing spinor

(i.e. ∇λ-parallel spinor) is an eigenspinor of D related to the eigenvalue λ.

A direct calculation gives |∇ϕ|2 = |∇λϕ|2+2λ
n
〈Dϕ, ϕ〉− λ2

n
|ϕ|2 (see (1.6)).

Injecting this in Lichnerowicz formula (1.2) and integrating on M , we get

∫

M

(
〈D2ϕ, ϕ〉 − 2

λ

n
〈Dϕ, ϕ〉 +

λ2

n
|ϕ|2

)
=

∫

M

〈(
∇λ∗∇λ +

s

4
Id

)
ϕ, ϕ

〉
.

It follows that the operators D2 − 2λ
n
D + λ2

n
Id and ∇λ∗∇λ + s

4
Id have

same quadratic forms and hence same eigenvalues. One verifies easily

that Dϕ = λϕ implies that n−1
n

λ2 is an eigenvalue for the above operators.

Then it suffices to apply Theorem 3.1 to the operators T ′ = ∇λ∗∇λ + s
4
Id

and T = ∆M + s
4

to achieve the proof.

REFERENCES

[1] M. Bordoni: Spectral estimates for Schrödinger and Dirac-type operators on Rie-
mannian manifolds, Math. Ann., 298 (1994), 693-718.

[2] Yu.D. Burago – V.A. Zalgaller: “Geometric inequalities”, Grundlehren der
math. Wiss., Springer Verlag, vol. 285, 1988.

[3] T. Friedrich: Der erste Eigenwert des Dirac-Operators einer kompakten Rie-
mannschen Mannigfaltigkeit nichtnegativer Skalar-Krummung , Math. Nachr., 97
(1980), 117-146.



196 M. BORDONI [16]
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