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Heat content and mean curvature

A. SAVO

Riassunto: In questo articolo si illustrano dei risultati sulla funzione che misura
la quantità di calore all’interno di un dominio di una varietà riemanniana. In parti-
colare, si dà un algoritmo per il calcolo ricorsivo della serie asintotica di tale funzione
(per tempi piccoli) su un dominio a bordo liscio, e i primi tre termini di tale espansione
per poliedri convessi di dimensione arbitraria. Si dànno inoltre delle stime ottimali del
calore nel caso in cui sia la curvatura di Ricci del dominio che la curvatura media del
bordo sono positive o nulle.

Abstract: We use distance function methods to obtain results on the heat content
of a domain in an arbitrary Riemannian manifold. In particular, we give an algorithm
for the calculation of the complete asymptotic series (for small times) of the heat content
of a domain with smooth boundary, and the first three terms of this expansion for convex
polyhedrons of arbitrary dimensions. We also write optimal upper and lower bounds of
the heat content when the Ricci curvature of the domain and the mean curvature of its
boundary are non-negative.

– Introduction

Let (Mn, g) be a Riemannian manifold, and let Ω be an open domain

in M with piecewise smooth boundary and compact closure. We consider

the following problem of heat diffusion. Assume that Ω has constant
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temperature equal to one at time t = 0, and that the boundary ∂Ω is

kept at zero temperature at all times. The question is:

What is the amount of heat remaining in Ω at time t?

This function of time, which we denote by H(t) and call the heat

content of Ω, can be written as:

(1) H(t) =

∫

Ω

ut(x) dx

where ut(x) is the temperature at time t, at the point x ∈ Ω: ut is the

solution of the heat equation on Ω: ∆u + ∂u
∂t

= 0 with Dirichlet boundary

conditions (which means ut = 0 on ∂Ω for all t), and with unit initial

conditions: u0 = 1Ω. Here ∆ is the Laplace- Beltrami operator of M (it

depends on the Riemannian metric g: if the manifold is the Euclidean

space IRn then ∆ = − ∂2

∂x2
1

− · · · − ∂2

∂x2
n
), and integration in (1) is taken

with respect to the measure dx induced from the Riemannian metric.

This paper is a survey of some of the results contained in [13] and [14],

to which we refer for complete proofs. Some of the results were announced

in [15].

Here is a description of the contents of the paper. In Section 1, which

is standard, we relate the heat content with the spectrum of the domain,

and we observe that the heat content decreases to zero exponentially as

time tends to infinity, with speed given by the first Dirichlet eigenvalue

of the Laplace operator on Ω. In Section 2 we give the main technical

tool, based on distance function methods, which allows to essentially

reduce the study of the heat content from dimension n to dimension 1,

the parameter being the distance from the boundary; as the Laplacian

of this distance is the mean curvature (but considered in a distributional

sense), we are able to relate the heat content with the mean curvature in

a direct way (see formula (9)). Some of the previous results on the heat

content have focused on its asymptotic behavior for small time (see [1]-

[5], [10]) and we will generalize some of them by a uniform method in

Section 3 and 4, while in Section 5 we give optimal bounds which are

valid for all times.

Let us assume that the boundary is smooth. Then van den Berg and

Le Gall showed in [4] that, if Ω is a domain in IRn, then, as t → 0:

(2) H(t) ∼ vol(Ω) − 2√
π

vol(∂Ω)
√

t +
n − 1

2

∫

∂Ω

η · t + O(t3/2)
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where η is the mean curvature. Shortly after, van den Berg and Gilkey

observed in [3] that the heat content of a domain in a arbitrary manifold

admits, as t → 0, an asymptotic series in powers of
√

t:

(3) H(t) ∼ vol(Ω) −
∞∑

k=1

βkt
k/2

and then proceeded to compute the coefficients βk up to k = 4.

In Section 3 we sketch the argument which, using distance function

methods, will lead to the recursive calculation of the entire series (3). We

show that for each k, there exists a differential operator D̃k belonging to

an algebra with only two generators, such that βk =
∫

∂Ω D̃kρ, where ρ

is the distance function to the boundary, and we give an algorithm for

the determination of D̃k knowing all D̃i, i < k. The algorithm is proved

in [14].

Polyhedral boundaries are considered in Section 4, where we com-

pute the third term β2t of the expansion of the heat content of a convex

polyhedron in IRn for small times:

β2 = 4
∑

E

voln−2(E)

∫ ∞

0

(
1 − tanh(γx)

tanh(πx)

)
dx

The sum is extended over all (n − 2)−dimensional faces of Ω (the

edges if n = 3), and γ is the interior angle at E. This generalizes to any

dimension, in the convex case, the calculation done in [5] for polygonal

regions in the plane.

Finally, in Section 5, we give an optimal upper and lower bound of

the heat content, in terms of the volume of the parallel domains Ω(r) =

{x ∈ Ω : d(x, ∂Ω) > r}:

4√
πt

∫ ∞

0

e−r2/tvol(Ω(r))dr−vol(Ω) ≤ H(t) ≤ 1√
πt

∫ ∞

0

e−r2/4tvol(Ω(r))dr.

These bounds apply when the Ricci curvature of the domain and

the mean curvature of its boundary are both non-negative. Estimating

the function r (→ vol(Ω(r)) first for domains with smooth boundary, and

then for arbitrary convex domains, we obtain explicit bounds of the heat

content in those cases.
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1 – Heat content and the spectrum

To illustrate the link with the spectrum, let us introduce the Dirichlet

heat kernel of Ω (also called the fundamental solution of the heat equation

on Ω). This is the function k(t, x, y) which is smooth on (0, ∞) × Ω × Ω,

and which represents the temperature at time t, at the point x, assuming

that one unit of heat is placed at y at time t = 0, and that the boundary is

kept at temperature zero at all times. It is called “fundamental” because

the solution φt(x) of the heat equation with initial data φ(x) and Dirichlet

boundary conditions is then given by convolution with the heat kernel:

φt(x) =
∫
Ω k(t, x, y)φ(y) dy. Taking φ = 1Ω and inserting in (1), we

observe that the heat content can be written as:

(4) H(t) =

∫

Ω×Ω

k(t, x, y) dx dy

Next, the eigenvalues of the Dirichlet problem on Ω (∆φ = λφ, φ = 0

on ∂Ω) form a non-decreasing sequence going to infinity:

0 < λ1 < λ2 ≤ λ3 ≤ . . .

(each eigenvalue is repeated here according to its multiplicity; the first

eigenvalue is easily shown to be simple). Let {φk} be a corresponding

orthonormal basis of L2(Ω) consisting of eigenfunctions. One proves that:

k(t, x, y) =
∑∞

k=1 e−λktφk(x)φk(y) (in fact the series converges to a smooth

function satysfying the properties of the heat kernel). One then gets the

following Fourier series representation of the heat content:

(5) H(t) =
∞∑

k=1

{ ∫

Ω

φk

}2

e−λkt

1.1 – Large time behavior of the heat content

It is determined by the lowest eigenvalue λ1 of the domain Ω. First

note that, expanding the constant function 1Ω in a Fourier series, we

obtain vol(Ω) =
∑∞

k=1

{ ∫
Ω φk

}2
. Therefore, for all t:

(6)
{ ∫

Ω

φ1

}2

e−λ1t ≤ H(t) ≤ vol(Ω)e−λ1t
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As t → ∞ the lower bound is sharp, because, from (5):

(7) eλ1tH(t) =
{ ∫

Ω

φ1

}2

+ O(e−(λ2−λ1)t)

Finally, note that:

e−λ1 = lim
t→∞

H(t)1/t

2 – Reduction to a one dimensional heat problem

2.1 – The distance function and the mean-value lemma

Let Ω be an open domain with compact closure and piecewise-smooth

boundary ∂Ω. For x ∈ Ω, denote by ρ(x) the minimum distance of x from

∂Ω. This defines the distance function ρ : Ω → (0,∞). How regular is it?

Since |ρ(x)−ρ(y)| ≤ d(x, y) (triangle inequality) we see that ρ is Lipschitz

regular , hence continuous, on Ω. However, ρ is not differentiable all over

Ω. This can be seen as follows. Denote by Cut(∂Ω) (the cut-locus of ∂Ω)

the closure (in Ω̄) of the set A of all points of Ω which are equidistant

from at least two different points of the boundary. A moment’s thought

shows that ρ has a jump at any point of A. It turns out, however, that

the distance function is actually C∞−smooth on the set of its regular

points Ω \ Cut(∂Ω) (which follows from the smoothness of the normal

exponential map), and that the singular set Cut(∂Ω) has always zero-

measure in Ω (this fact is classical for the cut-locus of a point; see [13,

App.D] for a detailed proof in our case).

At any regular point x we have ‖∇ρ(x)‖ = 1, hence the level set

(parallel submanifold) ρ−1(ρ(x)) is locally a smooth submanifold near x.

A straightforward calculation shows that, if x is a regular point:

∆ρ(x)=trace of the second fundamental form of the level set through x

If the boundary is smooth, then the cut-locus is at positive distance

from the boundary; this distance, called the injectivity radius and denoted

by Inj, is not greater than the minimum distance of ∂Ω from its focal set

(the set of critical values of the normal exponential map). We conclude

that if r is less than the injectivity radius, then the level set ρ−1(r) is a
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C∞−smooth hypersurface, and ∆ρ, restricted to it, is (n − 1) times the

mean curvature function of this level set.

As the distance function is globally only Lipschitz, its Laplacian must

be taken in the sense of distributions. The distributional Laplacian of ρ

is by definition the element of the dual of C∞
c (Ω) (the space of smooth,

compactly supported functions on Ω), which takes the test function φ to

the number
∫
Ω ρ∆φ.

It turns out (see [13, lemma 1.3]) that ∆ρ splits as a sum ∆regρ+∆cutρ

where ∆regρ is the Laplacian of the restriction of ρ to the set of its regular

points (hence this regular part gives the mean curvature of the level sets),

and where ∆cutρ is a positive Dirac measure supported on the cut-locus.

As ∆regρ is summable on Ω, we then conclude that ∆ρ itself is a measure

on Ω.

We now state the fundamental technical lemma, to be extensively

used in the sequel. This lemma holds more generally for the distance

function to any piecewise-smooth submanifold of M , and has been used

in [13] to obtain sharp estimates of eigenvalues.

In what follows, Ω(r) will denote the set of points of Ω which are at

distance greater than r from the boundary of Ω.

Mean-value lemma ([13, thm. 1.9]). Let u ∈ C2(Ω), and for r >

0, let F (r) =
∫
Ω(r) u dvn. Then the following equality holds as measures

on (0,∞):

F ′′(r) = −
∫

Ω(r)

∆u + ρ∗(u∆ρ)(r)

where ρ∗(u∆ρ) is the push-forward measure of u∆ρ by ρ, naturally defined

by the formula:
∫ ∞
0 ψρ∗(u∆ρ) =

∫
Ω u(ψ ◦ ρ)∆ρ.

Remark. For example, if Ω is a rectangle with sides a and b, with

a ≥ b, and if u = 1Ω, so that F (r) = vol(Ω(r)), then

F ′′(r) = 8 + 2(a − b)δb/2(r)

where δb/2 is the Dirac measure supported at b/2. (This can be checked

directly by an elementary calculation).

Next, we give a local version of the mean-value lemma (used in Sec-

tion 3). Assume that the boundary is smooth, so that Inj > 0. Then
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ρ−1(r) is a smooth hypersurface for r ∈ (0, Inj), and F (r) will be smooth

on that interval.

Mean-value lemma (local version). If ∂Ω is smooth, and if r <

Inj(∂Ω):

F ′′(r) = −
∫

Ω(r)

∆u dvn +

∫

ρ−1(r)

u∆ρ dvn−1

We give the proof of this result. In what follows, we make use of the

co-area formula, which states that:

(8)

∫

Ω

u dvn =

∫ ∞

0

∫

ρ−1(r)

u(y) dHn−1(y) dr

where Hn−1 is the (n − 1)−dimensional Hausdorff measure on ρ−1(r).

When the level sets are regular submanifolds, the Hausdorff measure on

them does coincide with the induced Riemannian measure, which we

denote by dvn−1, or which we simply omit denoting at all.

Then let r < Inj. From the co-area formula we obtain immediately

F ′(r) = − ∫
ρ−1(r) u dvn−1. Next, the gradient ∇ρ is of course orthogonal

to the level sets and has unit length. Therefore, by Green’s and co-area

formulas:

∫

ρ−1(r+ε)

u dvn−1 −
∫

ρ−1(r)

u dvn−1 =

∫

Ω(r)\Ω(r+ε)

(∇u · ∇ρ − u∆ρ) dvn

=

∫ r+ε

r

∫

ρ−1(s)

(∇u · ∇ρ − u∆ρ) dvn−1 ds

Dividing by ε, passing to the limit as ε → 0 and applying Green’s

formula again, we obtain the assertion.

Remark. Why the name “mean-value lemma”? Let Ω be a ball

in a Euclidean space, and let u be harmonic. Let M(r) be the mean

value of u on the sphere ρ−1(r); as the mean curvature (hence ∆ρ) is

constant on each sphere we easily conclude by applying the local formula

that the derivative of M(r) vanishes identically. Hence the mean value

of a harmonic function on each sphere equals the value of the function

at its center: this is the classical mean-value lemma. The same proof in

fact shows that, if the mean curvature is constant on each level set of a
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distance function, the mean value of a harmonic function is the same on

all level sets.

Remark. The global formula follows from the local one with the

push-forward operator replacing the operator of integration on level sets

(which does not make sense for distributions). In fact, if T = T (x) is a

genuine function on Ω then ρ∗(T ) is the function (regular distribution)

given by integration on the level sets:

ρ∗(T )(r) =

∫

ρ−1(r)

T (x) dHn−1(x)

which follows immediately from the co-area formula.

All applications to heat diffusion stem from the following consequence

of the mean-value lemma:

Corollary: reduction to dimension one. Let φt(x) be any

solution of the heat equation on Ω, and let F (t, r) =
∫
Ω(r) φt(x) dx be

the corresponding heat content. Then F (t, r) satisfies the following heat

equation on the half-line:

−∂2F

∂r2
+

∂F

∂t
= −ρ∗(φt∆ρ)

The advantage of dealing with one-dimensional heat equations (even

with a potential, like the above), lies in the fact that their solutions can be

explicitly written down in terms of usual exponentials, by using Duhamel

principle (see [9]). Taking wt = 1 − ut in the corollary, one gets the

following representation of the heat content:

(9)

H(t) = vol(Ω) − 2√
π

vol(∂Ω)
√

t+

+

∫ t

0

1√
π(t − τ)

∫ ∞

0

e−r2/4(t−τ)ρ∗((1 − uτ )∆ρ) dr dτ

We stress the fact that (9) holds for any domain with piecewise-

smooth boundary.
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3 – Small-time asymptotics of the heat content:

smooth boundaries

3.1 – The principle of not feeling the boundary

While the heat content of Ω, when time is very large, depends on the

global invariant λ1, we should expect that when time is very small only

the geometry of Ω near its boundary will affect the heat distribution. The

reason is clear: for small times, a point far from the boundary can’t feel

the cooling effect of ∂Ω. This is basically the “principle of not feeling the

boundary” formulated in this language by Kac in [12], and, when Ω is a

domain in Euclidean space, formally expressed by the inequality, due to

Paul Levy:

(10)
1 − ut(x) ≤ 2

(4πt)n/2

∫

‖y‖≥d(x,∂Ω)

e−‖y‖2/4t dy

≤ 2ne−d(x,∂Ω)2/4nt

(for domains in arbitrary Riemannian manifolds, see [14, App.B]).

We assume in this section that ∂Ω is smooth, and we consider the

asymptotic series (3). From the principle of not feeling the boundary we

derive the following:

Fact. The coefficients βk of the asymptotic series (3) of the heat

content depend only on the geometry of Ω near ∂Ω.

In particular, domains which are locally isometric near the respective

boundaries will give rise to the same sequence of coefficients βk. To see

how this follows from (10), let A be a proper, open subset of our domain

Ω, and let φ be a smooth function which is zero on A and which is

identically equal to one on some neighborhood of ∂Ω in Ω. Then:

∞∑

k=1

βkt
k/2 ∼ vol(Ω)−H(t) =

∫

Ω

(1−ut) =

∫

Ω

(1−ut)φ+

∫

Ω

(1−ut)(1−φ)

By (10), the second integral on the right is bounded above by a

constant times the exponentially decreasing function e−α/t where α =
1
4n

d(A, ∂Ω)2 > 0; therefore the second integral decreases to zero faster

than any power of t, and does not contribute to the asymptotics on the

left. As the open set A fills Ω, the first integral is supported arbitrarily

near ∂Ω, thus proving the assertion.
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3.2 – The calculation of the series

We now allow arbitrary initial conditions φ ∈ C∞(Ω̄), and sketch how

to obtain the complete asymptotics for small time of the more general

integral:

(11) Hφ(t) =

∫

Ω

φt(x) dx

where φt is the solution of the heat equation on Ω satysfying Dirichlet

conditions on the boundary, and having initial conditions φ. The corre-

sponding asymptotic series will be written:

(12) Hφ(t) ∼
∫

Ω

φ −
∞∑

k=1

βk(φ)tk/2

and we observe that the coefficients βk of the series (3) are obtained by

setting φ = 1Ω: βk = βk(1).

We iterate the Corollary of Section 2 to the integral F (t, r) =
∫
Ω(r)(1−

ut(x)φ(x) dx, because then
∑∞

k=1 βk(φ)tk/2 = F (t, 0). Thanks to the prin-

ciple of not feeling the boundary, the asymptotics of F (t, 0) are unchanged

if we replace the initial data φ by a function φ̃ which agrees with φ near

∂Ω, and is identically zero outside a small neighborhood U of ∂Ω which

does not meet the cut-locus; and so we can assume from the start that

φ is actually supported on U . We do so because then F (t, r) will be

C∞−smooth on (0,∞) × [0,∞), and we have an elementary method of

writing the asymptotics of F (t, 0) in that case. In what follows, L will

denote the operator − ∂2

∂r2
+

∂

∂t
.

Lemma 4.5 (Iterated Duhamel principle) (see [14, lemma 4.5]). Let

F (t, r) be smooth on (0, ∞) × [0,∞) → IR, and assume that:

(i) LkF (0, r) = limt→0 LkF (t, r) exists in the sense of distributions for

each k ≥ 0;

(ii) As t → 0, all LkF (t, 0) and
∂

∂r
LkF (t, 0) converge to a finite limit.
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Then, for all m ∈ IN, and t > 0:

F (t, 0) =
m∑

k=0

tk

k!

∫ ∞

0

e(t, r, 0)LkF (0, r) dr−

+
1√
π

m∑

k=0

1

k!

∫ t

0

∂

∂r
LkF (τ, 0)(t − τ)k−1/2 dτ+

+
1

m!

∫ t

0

∫ ∞

0

e(t − τ, r, 0)Lm+1F (τ, r)(t − τ)m dr dτ.

One then shows that in our case the integral
∫ t

0

∫ ∞
0 e(t−τ, r, 0)Lm+1F (τ, r)(t−

τ)mdr dτ is small of order t
m+1

2 as t → 0. It follows that:

(13)

∞∑

k=1

βk(φ)tk/2 ∼
m∑

k=0

tk

k!

∫ ∞

0

e(t, r, 0)LkF (0, r) dr−

+
1√
π

m∑

k=0

1

k!

∫ t

0

∂

∂r
LkF (τ, 0)(t − τ)k−1/2 dτ

It then remains to calculate the distributions LkF (0, r) and the functions
∂

∂r
LkF (t, 0). By the local mean-value lemma and Green’s formula:

LF (t, r) =

∫

ρ−1(r)

(1 − u(t, x))Nφ(t, x) dx +

∫

Ω(r)

(1 − u(t, x))∆φ(x) dx

where N is the first order differential operator acting on C∞(U), and

defined by Nφ = 2∇φ · ∇ρ − φ∆ρ, and ∆ is the Laplacian of the am-

bient manifold. It is now clear why LkF (0, r) and
∂

∂r
LkF (t, 0) can be

expressed in terms of the algebra A generated by the operators N and ∆.

Substituting in (13) we obtain, after a good amount of technical work,

the complete asymptotics of F (t, 0).

3.3 – The recursive algorithm

Let us define the operators Rkj and Skj, for k ≥ 1 and j ≥ 0, induc-

tively by: {
Rkj = −(N 2 + ∆)Rk−1,j + NSk−1,j

Skj = NRk−1,j−1 + ∆NRk−1,j − ∆Sk−1,j
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and set R00 = Id, S00 = 0, and Rkj = Skj = 0 whenever k or j is a

negative integer. Then set: {a, b} = Γ(a+b+1/2)

(a+b)!Γ(a+1/2)
, and define the op-

erators Zn, αn ∈ A by: Zn+1 =
∑n

j=0{n + 1, j − 1}Rn+j,j, and αn =∑n+1
j=0 {n, j}Sn+j,j.

Theorem. Let βk(φ) be the coefficient of tk/2 in the asymptotic

series of the heat content with initial data φ. Then, for each k ≥ 1, we

have βk(φ) =
∫

∂Ω Dkφ, where Dk is a homogeneous polynomial of degree

k−1 in the operators N and ∆. The Dk’s are determined by the following

recursive formulas:

D1 =
2√
π

Id

D2n =
1√
π

n∑

i=1

Γ(i + 1
2
)Γ(n − i + 1

2
)

n!
D2i−1αn−i

D2n+1 =
1√
π

Zn+1 +
1√
π

n∑

i=1

i!Γ(n − i + 1
2
)

Γ(n + 3
2
)

D2iαn−i

where Γ is the gamma function.

The operators D1, . . . , D8 have been explicited in [14, Table 1.4]. Set-

ting φ = 1 we obtain the following expression of the coefficients β1, . . . , β8

of (3):

β1 =
2√
π

vol(∂Ω); β2 = −1

2

∫

∂Ω

∆ρ; β3 = − 1

6
√

π

∫

∂Ω

N∆ρ;

β4 =
1

16

∫

∂Ω

∆2ρ; β5 =
1

240
√

π

∫

∂Ω

(N 3 + 8N∆)∆ρ;

β6 = − 1

768

∫

∂Ω

(∆N 2 + N∆N − N 2∆ + 8∆2)∆ρ;

β7 = − 1

6720
√

π

∫

∂Ω

(N 5 + 4N 3∆ + 4N 2∆N + 4N∆N 2 + 40N∆2+

+ 8∆N∆ − 8∆2N)∆ρ;

β8 =
1

24576

∫

∂Ω

(40∆3 + 8N∆2N − 8N 2∆2 + 4∆2N 2 + 4∆N∆N+

+ 4∆N 2∆ + N∆N 3 + ∆N 4 − N 4∆)∆ρ.

In general βk, for k ≥ 2, is given by integration on ∂Ω of D̃k∆ρ,

where D̃k is a differential operator of order k − 2 in N and ∆.
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The above expressions of βk can be converted into expressions involv-

ing the classical invariants (curvature and second fundamental form). For

example:

β3 = − 1

6
√

π

∫

∂Ω

(
2‖S‖2 + Ric(∇ρ, ∇ρ) − (trS)2

)

where S is the second fundamental form.

Special calculations. Let Ω be a domain in IR3. We can then

write the coefficients β3, β4 and β5 in terms of the mean curvature η and

the Gaussian curvature K of ∂Ω. Actually, the coefficients are better

expressed in terms of η and the function W = η2 − K; let ∇̃ denote the

gradient in ∂Ω. Then:

β3 = − 2

3
√

π

∫

∂Ω

W

β4 = −1

2

∫

∂Ω

ηW

β5 = − 1

3
√

π

∫

∂Ω

(4η2 + W )W +
2

15
√

π

∫

∂Ω

‖∇̃η‖2

We show how to derive these expressions.

Let U be a small neighborhood of ∂Ω so that ρ is smooth on U . Then,

for r small, the level surface ρ−1(r) will be smooth. For x ∈ U , we define

η(x) to be the mean curvature at x of the level surface passing through

x, and we extend K and W in a similar way. Note that ∆ρ = 2η. For a

smooth function f on U we denote by f ′ the normal derivative of f (that

is f ′ = ∇f ·∇ρ). Then we saw that
d

dr

∫
ρ−1(r) f =

∫
ρ−1(r)(f

′ − f∆ρ). One

has, classically: η′
i = η2

i for the principal curvatures of the level surfaces.

Using this, one can write any derivative of η and any power Nk∆ρ in

terms of η and W ; for example, N∆ρ = 4W , and we immediately get β3.

For f ∈ C∞(U), we can split the Laplacian ∆f into its radial part

∆rf = −f ′′ +f ′∆ρ and its tangential part ∆̃f which is just the Laplacian

on the level surfaces. As the tangential Laplacian integrates to zero on

∂Ω (and on each level surface), a straightforward calculation of ∆r∆ρ

now gives β4. As for β5, for any function f we have
∫

∂Ω N∆̃f = 2
∫

∂Ω ∇̃η ·
∇̃f , which can be verified by differentiating the identity

∫
ρ−1(r) ∆̃f =
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0 with respect to r, and applying Green’ formula. This formula and

straightforward work give the required coefficient.

On the 2-sphere the function W is identically zero, and η is constant.

Hence, for a ball in IR3, β3 = β4 = β5 = 0. We have in fact in that case

βk = 0 for all k ≥ 3 (this fact has already been observed in [3] and [8]).

More generally, for balls in a 3-dim. space form, our algorithm simplifies

drastically, and we can write the asymptotics in closed form:

Proposition (see [14, prop. 4.21]). Let Ω be a ball (or an annulus)

in the simply connected 3−dim. manifold of constant curvature K. Then

β2 =
∫

∂Ω η, β2n = 0 for all n ≥ 2, and:

β2n+1 = −2vol(∂Ω)√
π

· Kn

n!(4n2 − 1)

for all n ≥ 0.

The three dimensional case is simpler because in that case the oper-

ators N and ∆ commute, when applied to functions which depend only

on the distance from the boundary (radial functions).

4 – Asymptotics of the heat content on a convex polyhedron

What happens to the asymptotic expansion of the heat content when

the boundary is no longer smooth, but only piecewise-smooth? Let us

first observe that the coefficient β2 of the term in t is not continuous

under smooth approximations of domain: for example, if Ω is the unit

square in the plane, and if we round off the corners a little bit, any

approximating domain will have β2 = π, while the exact value of β2 is 16
π

.

This phenomenon may be explained by observing that, if the boundary

is piecewise-smooth, the cut-locus hits the boundary and therefore the

singular part of the Laplacian of the distance function (which we called

∆cutρ), contributes with a non-neglectable term to the double integral

in (9).

In this section, it is exactly the contribution of this singular part

∆cutρ which we want to evaluate. We restrict ourselves to the case where

Ω is a convex polyhedral body in IRn, in which case ∆regρ = 0 identi-

cally. This leads to the following theorem, which generalizes the result
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of [5] referred to in the Introduction. The rough scheme of the proof is

carried below; the main points are the explicit description of the measure

ρ∗(ut∆ρ), and the fact that, on the cut-locus near an (n − 2)−face, ut is

suitably approximated by the temperature on the infinite wedge bounded

by the two hyperplanes which meet at the given face: this temperature

can be explicited by special functions.

Theorem (see [13, thm. 3.3]). If Ω is a convex polyhedral body in

IRn, then:

∫

Ω

ut(x) dx = vol(Ω) − 2√
π

vol(∂Ω)
√

t + β2t + l(t)

with:

β2 = 4
∑

E

voln−2(E) ·
∫ ∞

0

(
1 − tanh(γ(E)x)

tanh(πx)

)
dx

where E runs through the set of all (n − 2)−dimensional faces of Ω (the

“edges”f if n = 3), and γ(E) is the interior angle of the two (n−1)−faces

whose intersection is E. The remainder l(t) is bounded, in absolute value,

for all t, by Ct3/2 + h(t) for a constant C, and for a function h(t) which

is exponentially decreasing as t → 0 (see [14] for an explicit expression of

C and h(t)).

We sketch the proof of the theorem.

Let us first fix some notation. The closure of Ω is a polytope, i.e. is

the intersection of a finite family I = {1, . . . m} of closed half-spaces Hi,

where Hi = {x ∈ IRn : ρπi
(x) ≥ 0} and where ρπi

denotes the distance,

taken with sign, from the oriented affine hyperplane πi of IRn. The (n−1)-

dimensional faces of Ω̄ are the subsets of ∂Ω defined by: Fi = πi ∩ Ω̄ for

i ∈ I. By vold(P ) we denote the Lebesgue measure in IRd, and by γij we

denote the interior angle at Fi ∩ Fj. Note that, if Fi and Fj are incident

faces, then 0 < γij < π. Our aim is then to prove that the expansion in

Theorem 4 holds with:

(14) β2 = 2
∑

i *=j

voln−2(Fi ∩ Fj) ·
∫ ∞

0

(
1 − tanh(γijx)

tanh(πx)

)
dx

For the proof, we let ρ denote the distance from ∂Ω, and we will

use representation (9) of the heat content; so we need to determine the
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behavior of the integral:

∫ t

0

1√
π(t − τ)

∫ ∞

0

e−r2/4(t−τ)ρ∗ ((1 − uτ )∆ρ) (r) dr dτ

as t → 0, and show that in fact this behavior is given by β2t + O(t3/2).

Description of the cut-locus. The first thing to observe is that,

since each level set ρ−1(r) is piecewise-linear (because of the convexity

of the polyhedron), we have that ∆regρ = 0; hence ∆ρ = ∆cutρ is purely

singular. The cut-locus is the closure of the set of all points of Ω which

can be joined to ∂Ω by at least two minimizing line segments. Therefore:

Cut(∂Ω)= ∪
i *=j

Cutij where Cutij ={x ∈ Ω̄ : ρ(x)=ρπi
(x)=ρπj

(x)}

Then it is not difficult to show that for each i 1= j, Cutij is a poly-

tope in the hyperplane πij = {x ∈ Ω : ρπi
(x) = ρπj

(x)} (the “bisecting

hyperplane” of πi and πj). The next proposition shows that ∆ρ is indeed

a Dirac measure supported on the cut-locus.

Proposition (see [13], Prop. 3.4]). Let φ ∈ C0(Ω̄), and ψ ∈
C0([0,∞)). Then:

∫

Ω

φ∆ρ =
∑

i *=j

cos(
γij

2
)

∫

Cutij

φ(x) dx;

∫ ∞

0

ψρ∗(u∆ρ) =
∑

i *=j

cos(
γij

2
)

∫

Cutij

u(x) ψ(ρ(x)) dx.

dx denoting Lebesgue measure on the hyperplane πij of IRn.

By the Proposition and formula (9):

(15)

∫ t

0

1√
π(t − τ)

∫ ∞

0

e−r2/4(t−τ)ρ∗ ((1 − uτ )∆ρ) (r) dr dτ =

=
∑

i *=j

cos(
γij

2
)

∫ t

0

1√
π(t − τ)

∫

Cutij

e−ρ(x)2/4(t−τ)(1 − uτ (x)) dx dτ

One reduces the right-hand side to β2t + O(t3/2) in four steps.
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Step 1. It is clear that a pair (i, j) for which Cutij is at positive dis-

tance ε from ∂Ω will contribute to the sum in (15) with a term (depending

on ε) which is exponentially decreasing as t → 0. For the computation

of β2 we can then restrict the sum in (15) to the pairs (i, j) for which Fi

and Fj are intersecting faces.

Step 2. Approximation of u(t, x). One can show that, modulo terms

of order t3/2 and higher, we can replace 1 − u(τ, x) on Cutij in (13) by

the function 1 − uij(τ, x), where uij is the temperature function relative

to the infinite open wedge in IRn bounded by the oriented hyperplanes πi

and πj. This is in fact the most delicate step in the proof.

Step 3. We observe that, when restricted to Cutij ⊆ πij, the temper-

ature function uij(τ, x) depends only on ρij(x) = distance of x from πi∩πj,

so that it can be written as ũij(τ, ρij(x)) for a function ũij = ũij(τ, r).

By the formula of co-area, applied to the function ρij : Cutij → IR, and

by straightforward work, this implies that, modulo terms of order t3/2 or

higher, the right-hand side of (15) is given by:

(16)

∑

(i,j)

voln−2(Fi ∩ Fj) cos(γij/2)·

·
∫ t

0

1√
π(t − τ)

∫ ∞

0

e−r2 sin2(γij/2)/4(t−τ)(1 − ũij(τ, r)) dr dτ

Step 4. Take the Laplace transform (with respect to time) of (16).

Evaluated at s > 0, this is equal to:

1√
s

∑

(i,j)∈I2

voln−2(Fi ∩ Fj) cos(γij/2)

∫ ∞

0

e−√
sr sin(γij/2)

(
1

s
− Ũij(s, r)

)
dr

where Ũij(s, r) is the Laplace transform, at s > 0, of ũij(·, r). This

function is computable: in fact, using Kontorovich-Lebedev’s explicit ex-

pression of the Green’s function of an infinite open wedge in the plane

(already used in [5]), one has:

1

s
− Ũij(s, r) =

2

πs

∫ ∞

0

Kix(
√

sr)
cosh(πx/2)

cosh(γijx/2)
dx
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Substituting, and using integral tables, one obtains the quantity
β2

s2
; tak-

ing inverse Laplace transform, one obtains the theorem.

We remark that, if dim(Ω) = 2, the proof simplifies considerably

(steps 2 and 3 are in fact immediate), and we can easily extend it to cover

the (not necessarily convex) polygonal case (see [13]), thus re-obtaining

van den Berg-Srisatkunarajah’s calculation.

Remarks. (i) for a convex polyhedron in IRn one should have:

H(t) = vol(Ω) +
n∑

k=1

βkt
k/2 + exponentially decreasing terms

and βk is supported on the (n − k)−dimensional skeleton of Ω. We have

no expression of the coefficients βk for k ≥ 3.

(ii) As for the arbitrary, piecewise-smooth case, the following fact

should be true: let γ(y) denote the interior angle of the tangent spaces

of the two smooth pieces of ∂Ω meeting at the singular point y, and

assume that γ(y) > 0 (that is, the intersections are transversal). Then

the coefficient of the term in t in the asymptotics of the heat content

should be given by:

4

∫

Skn−2

∫ ∞

0

(
1 − tanh(γ(y)x)

tanh(πx)

)
dx dvn−2(y) +

1

2

∫

∂regΩ

η(y) dvn−1(y)

where Skn−2 is the union of all pieces of dimension n − 2 in the cellular

decomposition of ∂Ω. This should follow naturally from the splitting of

∆ρ into its regular and singular parts, by a process similar to the one

carried above.

5 – Uniform estimates

We assume in this section that Ω is an open set with piecewise-

smooth boundary which satisfies the condition that the measure ∆ρ is

non-negative on Ω, where ρ is as usual the distance function from the

boundary. As ∆ρ = ∆regρ + ∆cutρ, and as ∆cutρ is always non-negative,

we see that:
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Fact. ∆ρ ≥ 0 if and only if the mean curvature of (the regular part

of) each level set is non-negative.

Sufficient condition. If ∂Ω is smooth, and if both the mean cur-

vature of ∂Ω and the Ricci curvature of Ω are non-negative, then so is

∆ρ.

If ∂Ω is merely piecewise-smooth, we add the condition that the foot

of any geodesic segment which minimizes the distance from the boundary

is a regular point of ∂Ω.

The sufficient condition is an immediate consequence of Bochner for-

mula:

∇(∆ρ) · ∇ρ = ‖Hessian(ρ)‖2 + Ric(∇ρ, ∇ρ)

which implies that the mean curvature of the level hypersurfaces does not

decrease in the normal direction ∇ρ.

As ut ≤ 1, we immediately have from (9) the following inequality:

∫

Ω

ut(x) dx ≥ vol(Ω) − 2√
π

vol(∂Ω)
√

t

We actually have a sharper estimate. First, we note the following

upper bound of the temperature function:

ut(x) ≤ 1√
πt

∫ ρ(x)

0

e−r2/4t dr

Using this bound, the non-negativity of ut and formula (9), one proves

the main estimate:

Theorem ([14, thm. 3.2]). If ∆ρ ≥ 0, then:

4√
πt

∫ ∞

0

e−r2/tvol(Ω(r)) dr − vol(Ω) ≤
∫

Ω

u(t, x) dx ≤

≤ 1√
πt

∫ ∞

0

e−r2/4tvol(Ω(r)) dr.

These estimates can be extended, by polyhedral approximation, to any

bounded, convex subset of IRn.
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Both bounds are optimal. Let in fact CR be a flat cylinder: CR =

N × (0, 2R) where N is a closed manifold and the metric is given by the

product. Then vol(Ω(r)) = vol(Ω) − rvol(∂Ω) for r < R, and is zero for

r > R. Then as t is fixed, both the upper and the lower bound approach

the common value vol(Ω) − 2√
π
vol(∂Ω)

√
t, as R → ∞ (the optimality for

semi-infinite flat cylinders comes from the fact that ∆ρ = 0 in that case).

But perhaps the main virtue of the above bounds is that they are

much sharper than those in (6) when time is small. We say something

about that.

Assume first that ∂Ω is smooth. Then r (→ vol(Ω(r)) is smooth on

the interval (0, Inj) and can be expanded in a Taylor series around 0:

vol(Ω(r)) = vol(Ω) − rvol(∂Ω) +
n − 1

2

∫

∂Ω

η · r2 + O(r3)

where O(r3) can be estimated from both sides in terms of the curvature

of M near ∂Ω. From the theorem, one gets:

Corollary. Let ∂Ω be smooth, and fix 0 < a < Inj. Then, for all

t > 0:

vol(Ω) − 2√
π

vol(∂Ω)
√

t +
n − 1

2

∫

∂Ω

η · t + c3t
3/2 − g(t) ≤ H(t) ≤

≤ vol(Ω) − 2√
π

vol(∂Ω)
√

t(1 − e−a2/4t) + (n − 1)

∫

∂Ω

η · t + 4C3 · t3/2

where c3 = min{infr∈(0,a) C(r), 0}, C3 = max{supr∈(0,a) C(r), 0},
C(r) = 1

3
√

π

∫
ρ−1(r)

(
scalM − Ricci(∇ρ, ∇ρ) − scalρ−1(r)

)
dvn−1 and

g(t) = n−1
a
√

π
(
∫

∂Ω η)(2a2t1/2 + 2t3/2)e−a2/t.

Remark. We see from (3) that the lower bound is sharp up and

including the term in t, as t → 0.

Next, assume that Ω is an open convex subset of IRn. As ∂Ω is not

always piecewise-smooth, we see that vol(Ω(r)) is no longer smooth in r,

even near r = 0. What is smooth is instead the function r (→ vol(Ω+(r))
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where Ω+(r) = {x ∈ IRn : d(x,Ω) < r}. The Steiner-Minkowski formula

(see [7]) states that:

vol(Ω+(r)) =
n∑

k=0

Vk(Ω)rk

for certain coefficients Vk(Ω). The geometric significance of the coeffi-

cients is the following: V0(Ω) is the volume of Ω, V1(Ω) is the canonical

(n − 1)−volume of the boundary (all notions of (n − 1)−volume: Haus-

dorff, Minkowski, etc. coincide for convex sets and will be denoted by

vol(∂Ω)), and V2(Ω) is the integral mean curvature indeed reducing to
n−1

2

∫
∂Ω η when the boundary is smooth. In general, Vk(Ω) is computed

by polyhedral approximation: for example V1(Ω) = sup{voln−1(P ) :

P convex polyhedron ⊆ Ω}.

Using the Steiner-Minkowski formula, one can estimate vol(Ω(r)). In

what follows, R is the inner radius of Ω (the radius of the biggest ball

included in Ω), and d = infx∈ρ−1(R) supy∈∂Ω{d(x, y)}. Clearly R ≤ d <

diam(Ω), and d = R if Ω is a ball.

Proposition (see [14, App. A]). Let Ω, d, R be as above. Then, for

all r ≥ 0:

vol(Ω) − rvol(∂Ω) + V2(Ω)r2 − c3r
3 ≤

≤ vol(Ω(r)) ≤ vol(Ω) − rvol(∂Ω) +
d

R
V2(Ω)r2 + C3r

3

where, if m = 2: V2(Ω) = π, C2 = πd
R

, c3 = π
R
, and C3 = 0; if m ≥ 3:

C2 = 2m−3(m−1)vol(Sm−1)dm−1

R
; c3 = 2m−3(m−1)(m−2)vol(Sm−1)dm−2

3R
,

and C3 = d
2R

c3.

The above implies the following estimate of the heat content:

Corollary. Let Ω be a convex subset of IRn. In the above notation

we have, for all t > 0:

vol(Ω) − 2√
π

vol(∂Ω)
√

t + V2(Ω) · t − 2√
π

c3t
3/2 ≤ H(t) ≤

≤ vol(Ω) − 2√
π

vol(∂Ω)
√

t +
2d

R
V2(Ω) · t +

8√
π

C3t
3/2,
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A comparison theorem. Finally we mention a comparison theorem

(proved in [14, Prop. 3.10]) for the quantity FΩ(t) = vol(Ω) − ∫
Ω ut(x)dx,

which is the total heat content of Ω at time t, now assuming zero initial

temperature, and assuming that the boundary is kept at constant unit

temperature at all times. Then, if ∆ρ ≥ 0:

At all times, FΩ(t) is less than or equal to the corresponding quantity

FΩ̄(t), where Ω̄ is a flat cylinder with the same (or bigger) inner radius,

and with boundary having the same (or bigger) volume.
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