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A guide to L-operators

P. MÖSENEDER FRAJRIA

Riassunto: In questo articolo intendiamo evidenziare la connessione tra una co-
struzione di algebre inviluppanti quantizzate data in [4] e la teoria di dette algebre
come è stata sviluppata più recentemente ad esempio in [1] o [2]. In [4] si realizza
l’algebra inviluppante quantizzata individuandone un insieme di generatori, i cosiddetti
operatori L. Una costruzione simile è stata descritta in [2, Cap. 9]; in questo articolo
rendiamo esplicita la connessione tra [4] e [2]. Come applicazione dimostriamo che
gli elementi centrali descritti in [4, Teorema 14] sono gli stessi costruiti in [3] nella
costruzione dell’inverso dell’omomorfismo di Harish-Chandra.

Abstract: Our aim with this work is to prove that the construction of a quantized
enveloping algebra U given in [4] by means of L-operators is the same described in
Chapter 9 of [2]. An interesting application is the realization of the inverse of the
Harish-Chandra homomorphism through the central elements described in Theorem 14
of [4].

1 – Introduction

There is little in this paper that is not known. We intend to make

explicit the connection between a construction of quantized enveloping

algebras given in [4] and the general theory of such algebras as developed

for example in [2] or [1]. More precisely, in [4] a quantized enveloping

algebra Uq is recovered from its algebra of matrix coefficients Rq[G] real-

izing Uq as the subalgebra of Rq[G]∗ generated by certain elements, the

so called L-operators.
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A similar construction is described in [2 Ch. 9] and in this paper

we show that the two constructions are indeed the same. This fact is

probably known but, since in [2] no reference to [4] is made, we feel

that making the connection between the two constructions explicit can

be useful.

Once the connection is made, we translate and reprove in the general

setting of the theory of quantized algebras some of the formulas described

in [4]. In particular we show that equation (2.3) of [4] is equivalent to

the quantum double construction, another interesting application is the

realization of the inverse of the Harish-Chandra homomorphism as done

in [3] through the central elements described in Theorem 14 of [4].

In our exposition we draw extensively from [1], Ch. 4–8: our methods

are elementary precisely because they depend on some deeper results that

are described in [1].

The paper is organized as follows: in § 3 we define the L-operators as

described in [2] and realize explicitly the isomorphism between Uq and

the algebra generated by the L-operators. In § 4 we prove that the

L-operators constructed in the previous section are those introduced

in [4], in § 5 we highlight the connection between some of the formu-

las given in [4] and the quantum double construction. Finally, in § 6, we

prove that the central elements of Uq described in [4, Theorem 14] are

those constructed in Theorem 8.6 of [3].

2 – Notations

Let (π, ( , )) be a root system of finite type and let Φ be a set of

simple roots for π. Let ZZΦ denote the root lattice and Λ the weight

lattice of π. We assume that (λ, α) ∈ ZZ for any λ ∈ Λ and α ∈ ZZΦ.

Let IK be a field of characteristic zero and fix a nonzero element

q ∈ IK such that q is not a root of unity. Let U = Uq(π) be the quan-

tized enveloping algebra corresponding to q and π. This is the algebra

generated by elements Eα, Fα, and Kα (α ∈ Φ) subject to the relations

given in [1], § 4.3.

The algebra U when equipped with the comultiplication ∆ defined

in [1, Proposition 4.11] becomes a Hopf algebra whose counit and an-

tipode are denoted respectively by ε and S. We denote by U+ (resp.
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U−) the subalgebra of V generated by the elements Eα (resp. Fα). We

set U≥ (resp. U≤) to be the Hopf subalgebra of U generated by the ele-

ments Eα, Kα (Fα, Kα). The Hopf subalgebra generated by the elements

Kα is denoted by U0.

Since U is a Hopf algebra, then there is a natural action Ad of U on

itself, the so called adjoint action: if X ∈ U and ∆(X) =
∑

X(1) ⊗ X(2)

then Ad(X)(u) =
∑

X(1)uS(X(2)).

If M is a U0-module and λ ∈ Λ then we set Mλ = {m ∈ M | Kα ·m =

q(λ,α)m}, and we call Mλ the weight space of weight λ and its elements

are called weight vectors. We write λ(m) = λ for saying that m ∈ Mλ.

In particular, if x ∈ U, then λ(x) = µ says that Ad(Kλ)(x) = q(λ,µ)x.

We adopt the convention of [1] of calling a U-module M of type 1 if

M = ⊕λ∈ΛMλ. In particular all finite dimensional modules are assumed

to be of type 1 if not otherwise specified.

We denote by Ǔ0 the group algebra of Λ. If A is a Hopf subalgebra

of U containing U0 then we can extend the adjoint action Ad of U0 on

A to Ǔ0: if X ∈ A and λ(X) = µ then we set Ad(Kλ)(X) = q(λ,µ)X.

We denote by Ǎ the Hopf algebra Ǎ = A ⊗U0 Ǔ0 with multiplication

defined by

(X ⊗ Kλ)(Y ⊗ Kµ) = XAd(Kλ)(Y ) ⊗ KλKµ

and comultiplication defined by

∆(X ⊗ Kλ) = τ23(∆(X) ⊗ Kλ ⊗ Kλ).

Let r be the smallest positive integer such that r · (λ, µ) ∈ ZZ for all

λ, µ ∈ Λ. We set IKe = IK[q1/r] to be the extension of the field IK by a

r-th root of q. If V is a IK vector space, we set Ve = IKe ⊗IK V.

3 – L-operators according to [2]

We use as a starting point the bilinear pairing between U≤ and U≥

given in [1, Proposition 6.12].

Let ( , ) denote the unique bilinear pairing between U≤ and U≥ such
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that, for all y, y′ ∈ U≤, all x, x′ ∈ U≥ and all µ, λ ∈ ZZΦ,

(y, xx′) = (∆(y), x′ ⊗ x) (yy′, x) = (y ⊗ y′,∆(x))(3.1)

(Kµ, Kν) = q−(µ,ν) (Fα, Eα) = −δαβ(qα − q−1
α )−1(3.2)

(3.3) (Kµ, Eα) = (Fα, Kµ) = 0.

It follows immediately from the definition that

(1, x) = ε(x)(3.4)

(y, 1) = ε(y)(3.5)

(Ad(Kµ)(y),Ad(Kµ)(x)) = (y, x).(3.6)

Hence, by (3.6), we obtain that, if y ∈ U≤
µ and x ∈ U≥

ν with ν 1= −µ,

then (y, x) = 0.

More difficult to prove is the following lemma:

Lemma 3.1. If y ∈ U−, x ∈ U+, and µ, λ ∈ ZZΦ, then

(yKλ, xKµ) = q−(λ,µ)(y, x).

Proof. Let 〈 , 〉 be the pairing between U≤ and U≥ defined by

〈yKλ, xKµ〉 = q−(λ,µ)(y, x)

for y ∈ U−, x ∈ U+, and µ, ν ∈ ZZΦ. Clearly this pairing satisfies (3.2)

and (3.3), so we are done if we prove that it satisfies also (3.1).

Suppose then that y ∈ U−, x, x′ ∈ U+, and λ, µ, µ′ ∈ ZZΦ. We

have that

〈yKλ, xKµx′Kµ′〉 = 〈yKλ, xAd(Kµ)(x′)Kµ+µ′〉 =

= q−(λ,µ+µ′)(y, xAd(Kµ)(x′)) =

= q−(λ,µ+µ′)(∆(y),Ad(Kµ)(x′) ⊗ x).
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Without loss of generality we can assume that y ∈ U−
−σ, x ∈ U+

ω ,

and x′ ∈ U+
τ with τ + ω = σ. Hence

∆(y) =
∑

ν+η=σ

y−η ⊗ y−νK−η.

It follows that

〈yKλ, xKµx′Kµ′〉 = q−(λ,µ+µ′)q(µ,τ)
∑

ν+η=σ

(y−η, x
′)(y−νK−η, x).

By (3.6), we get that

〈yKλ, xKµx′Kµ′〉 = q−(λ,µ+µ′)q(µ,τ)(y−τ , x
′)(y−ωK−τ , x) =

= q−(λ,µ+µ′)q(µ,τ)(y−τ , x
′)(y−ω ⊗ K−τ ,∆(x)) =

= q−(λ,µ+µ′)q(µ,τ)(y−τ , x
′)

∑

η+ν=ω

(y−ω, xηKν)(K−τ , xν) =

= q−(λ,µ+µ′)q(µ,τ)(y−τ , x
′)(y−ω, x) =

= 〈yτKλ, x′Kµ′〉〈y−ωK−τKλ, xKµ >〉 =

= 〈∆(yKλ), x′Kµ′ ⊗ xKµ〉

This ends the proof of the first part of (3.1). The second part of (3.1) is

proved similarly.

A consequence of this lemma is the fact that one can extend ( , ) to

a pairing with values in IKe between Ǔ≤ and Ǔ≥. We now show that this

pairing is nondegenerate.

If IF is a field, z a nonzero element of IF, and N ∈ ZZh, then, if

N = (n1, . . . , nh), we set zN = (zn1 , . . . , znh). We have the following

lemma:

Lemma 3.2. Fix z ∈ IF, z 1= 0, such that z is not a root of

unity. Suppose that F ∈ IF[x1, . . . , xh, x
−1
1 , . . . , x−1

h ] has the property that

F (zN) = 0 for each N ∈ ZZh.

Then F = 0.
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Proof. The proof is by induction on h. The case h = 1 is simply the

assertion that a Laurent polynomial can not have infinite roots. Assume

that h > 0. Suppose that there is F as in the statement and write

F (x1, . . . , xh) =
∑

I

cIx
I .

In particular we can write

F (x1, . . . , xh) =
∑

k

ck(x2, . . . , xh)xk
1

where ck(x2, . . . , xh) =
∑

i1=k cIx
i2
2 . . . x

ih
h . For each N ′ = (n2, . . . , nh)

the Laurent polynomial FN ′(x) =
∑

k ck(z
N ′

)xk has infinite roots, namely

zn for all n ∈ ZZ. Hence ck(z
N ′

) = 0 for all N ′. Now apply the induction

hypothesis.

It is known that the form ( , ), when restricted to U−
−µ × U+

µ , is

nondegenerate (see [1, Corollary 8.30]). For each ν ∈ ZZΦ we fix a basis

{uν
i } of U+

ν and let {vν
i } be the corresponding dual basis of U−

ν .

Corollary 3.3. The pairing ( , ) between Ǔ≤ and Ǔ≥ is nondegene-

rate.

Proof. Suppose that y ∈ Ǔ≤ is such that (y, x) = 0 for all x ∈ Ǔ≥.

We can write y =
∑

ν,i vν
i pν,i(K) where pν,i(K) =

∑
cλKλ. If µ ∈ ZZΦ,

then, for all η ∈ Λ,

(3.7) 0 = (y, vµ
j Kη) = pµ,j(q

−η),

where pµ,j(q
−η) =

∑
cλq−(η,λ).

Let ω1, . . . , ωr be the fundamental weights of Λ. If I ∈ INr, then we

set KI =
∏

j K
ij
ωj . Clearly, if we write λ =

∑
ijωj, then Kλ = KI . Hence

pµ,j(K) =
∑

cIK
I . Set di = (αi, αi)/2, d = l.c.m.(di) and let ki = d/di.

If N = (n1, . . . , nr), then choosing η =
∑ −kiniαi and setting z = qd, we

find that

pµ,j(q
−η) =

∑

I

cI

∏

s

qksnsdsis =
∑

I

cI

∏

s

znsis = pµ,j(z
N).

By (3.7) and Lemma 3.2 we deduce that pµ,j = 0, henceforth y = 0. If

(y, x) = 0 for all y ∈ Ǔ≤, then the same proof yields x = 0.
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The same argument gives the following result:

Corollary 3.4. The pairing ( , ) between Ǔ≤ ⊗ Ǔ≤ and Ǔ≥ ⊗ Ǔ≥

defined by (y ⊗ y′, x ⊗ x′) = (y, x)(y′, x′) is nondegenerate.

We can now introduce the L-operators. If M is a finite dimensional

U-module, we extend the action of U to an action of Ǔ on Me as follows:

if m ∈ Mµ then we set Kλ · m = (q1/r)r(λ,µ)m. Fix v ∈ M , if f ∈ M∗,

then we can extend f linearly to Me. We can therefore define cf,v ∈
(Ǔ∗)e by setting cf,v(X) = f(Xv). We call the functional cf,v a matrix

coefficient of the module M . We define an action of U on M∗ by setting

(X · f)(m) = f(S(X) · m). With this definition it follows that, if we

identify M and M∗∗ in the usual way, then cf,v(S(X)) = cv,f (X).

Theorem 3.5. Fix v ∈ M and f ∈ M∗. Then

1. There is a unique element 5+
f,v ∈ Ǔ≥ such that

cf,v(y) = (y, 5+
f,v)

for all y ∈ Ǔ≤.

2. There is a unique element 5−
f,v ∈ Ǔ≥ such that

cf,v(S(x)) = (5−
f,v, x)

for all x ∈ Ǔ≥.

Proof. If y ∈ Ǔ≤ we can assume that y = y0Kλ with y0 ∈ U−
µ and

λ ∈ Λ. We can also assume that λ(v) = η.

Define Θν =
∑

i vν
i ⊗ uν

i as in [1, 7.1 (1)] and let

(3.8) 5+
f,v =

∑

ν,i

cf,v(v
ν
i )uν

i K−η.
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We have that

(y, 5+
f,v) =

∑

ν,i

cf,v(v
ν
i )(y, uν

i K−η) =

= q(λ,η)
∑

ν,i

cf,v(v
ν
i )(y0, u

ν
i ) =

= q(λ,η)cf,v

( ∑

i

vµ
i (y0, u

µ
i )

)
=

= cf,v(y0q
(λ,η)) = cf,v(y).

The proof of 2 is identical: if λ(f) = η we define

(3.9) 5−
f,v =

∑

ν,i

cf,v(S(uν
i ))v

ν
i K−η.

Then, if x = x0Kλ with x0 ∈ U+
µ and λ ∈ Λ,

(5−
f,v, x) =

∑

ν,i

cf,v(S(uν
i ))(v

ν
i K−η, x) =

= q(λ,η)
∑

ν,i

cf,v(S(uν
i ))(v

ν
i , x0) =

= q(λ,η)cf,v

( ∑

i

S(uµ
i )(vµ

i , x0)
)

=

= q(λ,η)cf,v

( ∑

i

S(uµ
i )(S(vµ

i ), S(x0))
)

=

= q(λ,η)cf,v(S(x0)) =

= cf,v(S(Kλ)S(x0)) = cf,v(S(x)).

Here we used the fact that (S(y), S(x)) = (y, x) (see [1, exercise 6.16] or

use the uniqueness of the form). The uniqueness of 5±
f,v follows immedia-

tely from Corollary 3.3.

Let Rq[G] denote the algebra of matrix coefficients of finite dimen-

sional (type 1) U-modules. Note that Rq[G] is a IK-Hopf algebra. The

algebra structure on Rq[G] is given by cf,vcg,w = cf⊗g,v⊗w, while the coal-

gebra structure is given by the following formula: fix a basis {mi} of M

and let {fi} be the dual basis in M∗, then

(3.10) ∆(cf,m) =
∑

i

cf,mi
⊗ cfi,m.
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Let Ǔopp be the bialgebra given by Ǔ with opposite multiplication

and the same comultiplication. Let L± : Rq[G] → Ǔopp be defined by

L±(cf,v) = 5±
f,v.

Theorem 3.6. L± are bialgebra homomorphisms.

Proof. We need to prove that

1. (a)

5+
f,v5

+
f ′,v′ = 5+

f ′⊗f,v′⊗v.

(b)

L+ ⊗ L+(∆(cf,v)) = ∆(L+(cf,v)).

2. (a)

5−
f,v5

−
f ′,v′ = 5−

f ′⊗f,v′⊗v.

(b)

L− ⊗ L−(∆(cf,v)) = ∆(L−(cf,v)).

Proof of 1. (a): if y ∈ Ǔ≤ then,

(y, 5+
f,v5

+
f ′,v′) = (∆(y), 5+

f ′,v′ ⊗ 5+
f,v).

If we write ∆(y) =
∑

y(1) ⊗ y(2) then

(y, 5+
f,v5

+
f ′,v′) =

∑
(y(1), 5

+
f ′,v′)(y(2), 5

+
f,v) =

=
∑

cf ′,v′(y(1))cf,v(y(2)) =

= cf ′⊗f,v′⊗v(y) =

= (y, 5+
f ′⊗f,v′⊗v)

The result now follows from Corollary 3.3.

Proof of 1. (b): if y1, y2 ∈ Ǔ≤, then

(y1 ⊗ y2,∆(L+(cf,v))) = (y1y2, 5
+
f,v) =

= cf,v(y1y2) =

= ∆(cf,v)(y1 ⊗ y2) =

= (y1 ⊗ y2, L
+ ⊗ L+(∆(cf,v))).

The result now follows from Corollary 3.4.

The proofs of 2. (a) and 2. (b) are similar.
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Theorem 3.7.

L+(Rq[G]) = Ǔ≥(3.11)

L−(Rq[G]) = Ǔ≤.(3.12)

In particular, Ǔ = L−(Rq[G])L+(Rq[G]).

Proof. We prove only (3.11).

By (3.8) and Theorem 3.6 it is clear that L+(Rq[G]) is a subalgebra

of Ǔ≥, so it remains only to check that L+(Rq[G]) contains the generators

of Ǔ≥.

If v ∈ M , λ(v) = λ and λ(f) = −λ, then, by (3.8), 5+
f,v = K−λ.

Moreover, if α ∈ Π, and Fαv 1= 0 then we can choose g ∈ M∗ such that

λ(g) = −λ + α and g(Fαv) = 1. By (3.8) we find that

5+
g,v = −(qα − q−1

α )EαK−λ

so Eα ∈ L+(Rq[G]).

Using (3.9) one proves in the same way that Fα ∈ L−(Rq[G]).

Remark. we could have avoided the hassle of using Ǔ instead of just

plain U: let Fint denote the category of all finite dimensional U-modules

whose weights are in ZZΦ and let Rq[G]int denote the corresponding al-

gebra of matrix coefficients. Rq[G]int is a sub-bialgebra of Rq[G] and L±

map Rq[G]int in U.

4 – L-operators according to [4]

We now show that with an appropriate definition of the R-matrix

our L-operators satisfy formula (2.1) of [4].

Consider the pairing 〈 , 〉 with values in IKe between Rq[G] and Ǔe

defined by

〈F, kX〉 = kF (X).

where F ∈ Rq[G], X ∈ Ǔ and k ∈ IKe. The proof of [1, Proposition 5.11]

applies to Ǔe, therefore this pairing is nondegenerate. Moreover, it is
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easy to check that

〈F ⊗ G, ∆(X)〉 = 〈FG, X〉 〈∆(F ), X ⊗ Y 〉 = 〈F, XY 〉

for all X, Y ∈ Ǔ and F, G ∈ Rq[G].

Let M,N be type 1 finite dimensional U-modules and define R± :

Me ⊗ Ne → Me ⊗ Ne as follows: if m ∈ M , n ∈ N , f ∈ M∗, and g ∈ N∗

we set

(4.1) f ⊗ g(R+(m ⊗ n)) = cg,n(5+
f,m)

and

(4.2) f ⊗ g(R−(m ⊗ n)) = cg,n(5−
f,m)

Moreover, we define R : Me ⊗ Ne → Me ⊗ Ne by setting

(4.3) f ⊗ g(R(m ⊗ n)) = cf,m(5+
g,n)

Recall that, if ∆(X) =
∑

X(1) ⊗ X(2) then the opposite comultiplication

∆opp is defined by ∆opp(X) =
∑

X(2) ⊗ X(1).

Theorem 4.1.

1. R is a R-matrix i.e.

(4.4) ∆opp(X)R(m ⊗ n) = R∆(X)(m ⊗ n).

2. R− = R−1.

Proof. The first statement is Theorem 7.3 of [1].

We now prove that R− = R−1. Indeed, let {mi} (resp. {ni}) be

a basis of M (resp. N) and set {fi}, {gi} to be their respective dual

bases. Then

R−(m ⊗ n) =
∑

fi ⊗ gj(R
−(m ⊗ n))mi ⊗ nj
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so

f ⊗ g(R ◦ R−(m ⊗ n)) =
∑

i,j

fi ⊗ gj(R
−(m ⊗ n))f ⊗ g(R(mi ⊗ nj)) =

=
∑

i,j

cgj ,n(5−
fi,m

)cf,mi
(5+

g,nj
) =

=
∑

i,j

(5−
fi,m

, 5+
gj ,n)(S(5−

f,mi
), 5+

g,nj
) =

=
∑

i

(S(5−
f,mi

) ⊗ 5−
fi,m

,∆(5+
g,n)) =

=
∑

i

(S(5−
f,mi

)5−
fi,m

, 5+
g,n) =

= (ε(5−
f,m), 5+

g,n).

Now

ε(5−
f,m) = (5−

f,m, 1) = cf,m(S(1)) = cf,m(1) = f(m)

so

(ε(5−
f,m), 5+

g,n) = f(m)(1, 5+
g,n) = f(m)cg,n(1) = f(m)g(n)

hence

f ⊗ g(R ◦ R−(m ⊗ n) = f(m)g(n) = f ⊗ g(m ⊗ n)

as we wished to prove.

Suppose now that M = N . Fix a basis {mi} of M and set {fi}
to be its dual basis. If we set tij = cfi,mj

, then (4.4) is equivalent to

equation (1.1) of [4]. In particular, if the matrix coefficients tij generate

Rq[G], then there is a homomorphism of bialgebras π from the bialgebra

AR defined in [4,§ 1.1] onto Rq[G]e. This implies that π∗ is an embedding

of (Rq[G]e)
′ into A′

R (here V ′ denotes the IKe dual). On the other hand

the fact that 〈 , 〉 is nondegenerate implies that there is an injective map

i : Ǔ → (Rq[G]e)
′ defined by i(X)(k ⊗ F ) = k < F,X >. We set

(4.5) 5±
i,j = π∗(i(5±

fi,mj
)).

We now show that this definition of 5±
i,j agrees with the definition of

the L-operators given by [4, (2.1)]. Set

R±
ij,hk = fi ⊗ fj(R

±(mh ⊗ mk)),
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and let P : Me⊗Me → Me⊗Me be the map defined by P (m⊗n) = n⊗m.

It is obvious that (4.1) and (4.3) say that R+ = P ◦R◦P . This observation

together with 2. of Theorem 4.1 imply that our matrices (R±
ij,hk) coincide

with the matrices R(±) of [4, § 2.1]. It follows that, in order to to check

that 5±
i,j satisfy the equation in § 2.1 of [4], we need only to check that

〈th1k1
th2k2

. . . thnkn , 5±
fi,mj

〉 = R±
1 R±

2 . . . R±
n

i.e., that

(4.6) 〈th1k1
th2k2

. . . thnkn , 5±
fi,mj

〉=
∑

r1,... ,rn

R±
h0h1,r1k1

R±
r1h2,r2k2

. . .R±
rn−1hn,k0kn

for all n.

If n = 1 then (4.6) reduces to

〈thk, 5
±
fi,mj

〉 = R±
ih,jk.

which are precisely formulas (4.1) and (4.2). If n > 1, then it follows

from Theorem 3.6 that

∆(5±
fi,mj

) =
∑

r

5±
fi,mr

⊗ 5±
fr,mj

so, using induction on n, we see that

〈th1k1
th2k2

. . . thnkn , 5±
fi,mj

〉 = 〈th1k1
⊗ th2k2

. . . thnkn ,∆(5±
fi,mj

)〉 =

=
∑

r

〈th1k1
, 5±

fi,mr
〉〈th2k2

. . . thnkn , 5±
fr,mj

〉 =

=
∑

r1,... ,rn−1

R±
ih1,r1k1

R±
r1h2,r2k2

. . . R±
rn−1hn,jkn

.

which is precisely (4.6).
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5 – The quantum double

In this section we wish to prove Theorem 9 of [4]. The first equation

in [4, (2.3)] is derived as in [1, § 7.12] using Theorem 3.6.

The second equation of [4, (2.3)] is more intricate and says that Ue

is the quotient of a quantum double. If M,N are finite dimensional

U-modules then we set

Φ± : (M ⊗ N) ⊗ (M∗ ⊗ N∗) → Ǔ

by setting

(5.1) Φ+(m ⊗ n ⊗ f ⊗ g) = 5+
f,m5−

g,n

and

(5.2) Φ−(m ⊗ n ⊗ f ⊗ g) = 5−
g,n5+

f,m

We extend linearly the maps Φ± to maps from (Me⊗Ne)⊗((M∗)e⊗(N∗)e)

to Ǔe that we still denote by Φ±.

If {mi} is a basis of M , {ni} is a basis of N , and {fi}, {gi} are their

respective dual bases, then

Φ−(R+(mi ⊗ nj) ⊗ fh ⊗ gk) = Φ−
(( ∑

r,s

R+
rs,ijmr ⊗ ns

)
⊗ fh ⊗ gk

)
=

=
∑

r,s

R+
rs,ij5

−
gk,ns

5+
fh,mr

while

Φ+(mi ⊗ nj ⊗ (R+)t(fh ⊗ gk)) = Φ+
(
mi ⊗ nj ⊗

( ∑

r,s

R+
hk,rsfr ⊗ gs

))
=

=
∑

r,s

R+
hk,rs5

+
fr,mi

5−
gs,nj

.

Since the map π∗ : Rq[G]′e → A′
R is injective, these formulas and the

definition of 5±
i,j given in (4.5) imply that we can prove the second equation

of [4, (2.3)] by showing that

(5.3) Φ−(R+(m ⊗ n) ⊗ f ⊗ g) = Φ+(m ⊗ n ⊗ (R+)t(f ⊗ g)).
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We now check (5.3). We can write

R+(m ⊗ n) =
∑

i,j

fi ⊗ gj(R
+(m ⊗ n))mi ⊗ nj

so

Φ−(R+(m ⊗ n) ⊗ f ⊗ g)=
∑

i,j

Φ−(fi ⊗ gj(R
+(m ⊗ n))mi ⊗ nj ⊗ f ⊗ g)

=
∑

i,j

fi ⊗ gj(R
+(m ⊗ n))5−

g,nj
5+
f,mi

=
∑

i,j

cgj ,n(5+
fi,m

)5−
g,nj

5+
f,mi

.

Analogously, since

(R+)t(f ⊗ g) =
∑

i,j

f ⊗ g(R+(mi ⊗ nj))fi ⊗ gj,

we obtain that

Φ+(m ⊗ n ⊗ (R+)t(f ⊗ g)) =
∑

i,j

cg,nj
(5+

f,mi
)5+

fi,m
5−
gj ,n.

In order to prove (5.3), using the fact that 〈 , 〉 is nondegenerate, we need

only to check that for any matrix coefficient ch,x we have that

(5.4) 〈ch,x,
∑

i,j

cgj ,n(5+
fi,m

)5−
g,nj

5+
f,mi

〉 = 〈ch,x,
∑

i,j

cg,nj
(5+

f,mi
)5+

fi,m
5−
gj ,n〉.

By writing ∆(ch,x) =
∑

r ch,xr ⊗chr,x we can write the l.h.s. of (5.4) as

∑

i,j,r

cgj ,n(5+
fi,m

)ch,xr(5
−
g,nj

)chr,x(5
+
f,mi

) =

=
∑

j,r

g ⊗ h(R−(nj ⊗ xr))chr,x ⊗ cgj ,n(∆(5+
f,m)) =

=
∑

j,r

g ⊗ h(R−(nj ⊗ xr))hr ⊗ gj(∆(5+
f,m)(x ⊗ n)) =

=
∑

j,r

g ⊗ h(R−(nj ⊗ xr))gj ⊗ hr(∆
opp(5+

f,m)(n ⊗ x)) =

= g ⊗ h(R− ◦ ∆opp(5+
f,m)(n ⊗ x)) =

= g ⊗ h(∆(5+
f,m) ◦ R−(n ⊗ x)).
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On the other hand, the r.h.s. of (5.4) becomes

∑

i,j,r

cg,nj
(5+

f,mi
)ch,xr(5

+
fi,m

)chr,x(5
−
gj ,n) =

=
∑

j,r

gj ⊗ hr(R
−(n ⊗ x))cg,nj

⊗ ch,xr(∆(5+
f,m)) =

=
∑

j,r

gj ⊗ hr(R
−(n ⊗ x))g ⊗ h(∆(5+

f,m)(nj ⊗ xr)) =

= g ⊗ h(∆(5+
f,m) ◦ R−(n ⊗ x)).

This concludes the proof of (5.3).

Equation (5.3) can be rewritten as

(5.5) Φ− = Φ+ ◦ ((R+)−1 ⊗ (R+)t).

We claim that this equation is the same of [1, Remark 6.17]. Indeed, if

we fix basis {mi}, {ni} of M and N and their respective dual basis {fi},

{gi} then, by Theorem 3.6,

∆(5+
f,m) =

∑
5+
f,mi

⊗ 5+
fi,m

and

∆(5−
g,m) =

∑
5−
g,ni

⊗ 5−
gi,n

Since

(R+)−1(m ⊗ n) ⊗ (R+)t(f ⊗ g) =

=
∑

h,k

fk ⊗ gh(PR−P (m ⊗ n))mk ⊗ nh) ⊗ (R+)t(f ⊗ g),

we have that

Φ+((R+)−1(m ⊗ n) ⊗ (R+)t(f ⊗ g)) =

=
∑

h,k,i,j

fk ⊗ gh(PR−P (m ⊗ n))cg,nj
(5+

f,mi
)5+

fi,mk
5−
gj ,nh

=

=
∑

h,k,i,j

cfk,m(5−
gh,n)cg,nj

(5+
f,mi

)5+
fi,mk

5−
gj ,nh

=

=
∑

h,k,i,j

(S(5−
g,nj

), 5+
f,mi

)(5−
gh,n, 5+

fk,m)5+
fi,mk

5−
gj ,nh

.
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hence (5.5) reads

(5.6) 5−
g,n5+

f,m =
∑

h,k,i,j

(S(5−
g,nj

), 5+
f,mi

)(5−
gh,n, 5+

fk,m)5+
fi,mk

5−
gj ,nh

which is precisely equation (3) of [1, 6.17].

6 – L-operators and the adjoint action

In this section we want to describe the adjoint action of Ǔ on itself

by means of the L-operators.

We begin by recalling briefly the quantum double construction as it

is described in [2].

There is a Hopf algebra structure on D(Ǔ≥, Ǔ≤) = (Ǔ≥ ⊗ Ǔ≤)e

defined as follows: if u ∈ Ǔ write (∆ ⊗ 1) ◦ ∆(u) =
∑

u(1) ⊗ u(2) ⊗ u(3).

Then the multiplication on D(Ǔ≥, Ǔ≤) is defined by

(X ⊗ Y )(X ′ ⊗ Y ′) =
∑

(S(Y(1)), X
′
(1))(Y(3), X(3))XX ′

(2) ⊗ Y(2)Y
′

while the comultiplication is given by

∆(X ⊗ Y ) = τ23(∆(X) ⊗ ∆(Y )).

Moreover the unit is 1⊗ 1, the counit is defined by ε(X ⊗Y ) = ε(X)ε(Y )

and the antipode is defined by S(X ⊗ Y ) = (1 ⊗ S(Y ))(S(X) ⊗ 1).

Consider the Rosso form on D(Ǔ≥, Ǔ≤); this is the IKe-bilinear map

( , ) such that

(X ⊗ Y, X ′ ⊗ Y ′) = (S(Y ), X ′)(Y ′, S(X)).

Then, as shown in [2, Lemma 3.3.1], this form is Ad-invariant, meaning

by this that, if a ∈ D(Ǔ≥, Ǔ≤), then

(Ad(a)(X ⊗ Y ), X ′ ⊗ Y ′) = (X ⊗ Y,Ad(S(a))(X ′ ⊗ Y ′)).

It can also be proved as in Corollary 3.3 that the form is nondegenerate.
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Let M : D(Ǔ≥, Ǔ≤) → Ǔe denote the multiplication map M(X ⊗
Y ) = XY . It can easily be proved using formula (5.6) that M is a Hopf

algebra map.

If M is a U-module of type 1 then we define a map FM : M∗
e ⊗Me →

D(Ǔ≥, Ǔ≤) by setting

FM(f ⊗ m) = (L+ ⊗ S ◦ L−) ◦ ∆(cf,m)

We have also an action of Ǔ≥ and of Ǔ≤ on M∗
e ⊗ Me.

Theorem 6.1.

1. Set uf,m =FM(f⊗m). Then uf,m is the unique element of D(Ǔ≥, Ǔ≤)

such that

(X ⊗ Y, uf,m) = cf,m(S(XY ))

for all X ∈ Ǔ≥ and Y ∈ Ǔ≤.

2. If X ∈ Ǔ≥, then

FM(X · f ⊗ m) = Ad(X)FM(f ⊗ m)

and, if Y ∈ Ǔ≤,

FM(Y · f ⊗ m) = Ad(Y )FM(f ⊗ m).

Proof. For 1. we write ∆(cf,m) =
∑

i cf,mi
⊗ cfi,m so

(X ⊗ Y, uf,m) =
∑

i

(S(Y ), 5+
f,mi

)(S(5−
fi,m

), S(X)) =

=
∑

i

cf,mi
(S(Y ))cfi,m(S(X)) =

= cf,m(S(XY )).

The uniqueness follows from the fact that the Rosso form ( , ) is nonde-

generate.

For 2. we observe that, since the form ( , ) is Ad-invariant then, if

X ∈ Ǔ≥,

(X ′ ⊗ Y ′,Ad(X)(FM(f ⊗ m)))=(Ad(S−1(X))(X ′ ⊗ Y ′), FM(f ⊗ m)) =

=(Ad(S−1(X))(X ′ ⊗ Y ′), uf,m) =

=cf,m(S(M(Ad(S−1(X))(X ′ ⊗ Y ′)))).
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Using the fact that M is a a Hopf algebra map we deduce that

M(Ad(S−1(X))(X ′ ⊗ Y ′)) = Ad(S−1(X))(X ′Y ′)

so

(X ′ ⊗ Y ′,Ad(X)(FM(f ⊗ m))) = cf,m(S(Ad(S−1(X))(X ′Y ′)))

hence, if we write ∆(X) =
∑

X(1) ⊗ X(2), we get

(X ′ ⊗ Y ′,Ad(X)(FM(f ⊗ m))) =
∑

cf,m(S(X(1))S(X ′Y ′)X(2))) =

=
∑

cX(1)·f,X(2)·m(S(X ′Y ′)) =

= (X ′ ⊗ Y ′,
∑

uX(1)·f,X(2)·m) =

= (X ′ ⊗ Y ′, FM(X · f ⊗ m)).

Using the fact that the form is nondegenerate we can conclude the

proof of 2.

We wish to use Theorem 6.1 to prove that the central elements of Ǔ

defined in [4, Theorem 14] are the same constructed in [3], Theorem 8.6.

First of all we need to identify the trivial isotypic component of M∗⊗
M : consider tr : M∗ ⊗ M → IK to be the map defined by tr(f ⊗ m) =

f(m). It is easy to convince ourselves that tr is an intertwining between

M∗ ⊗M and the trivial representation. It follows that IKtr is the isotypic

component for the trivial representation in (M∗ ⊗ M)∗. The map T :

M∗ ⊗ M → (M∗ ⊗ M)∗ defined by T (f ⊗ m)(g ⊗ n) = f(n)g(K−2ρm) is

an injective Ǔ-map. Hence T −1(IKtr) is the trivial isotypic component

in M∗ ⊗ M . Fixing a basis {mi} of M and letting {fi} be the dual basis

one finds, unwinding the definitions, that

(6.1) T −1(tr) =
∑

i

fi ⊗ K2ρmi.

Since M : D(Ǔ≥, Ǔ≤) → Ǔe is a Hopf algebra map, it follows from

Theorem 6.1 that M◦FM(X · (f ⊗m)) = Ad(X)(M◦FM(f ⊗m)), hence

zM = M ◦ FM(T −1(tr)) is a central element of Ǔe. Using (6.1), we find

that

zM =
∑

i,j

5+
fi,mj

S(5−
fj ,K2ρmi

)
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so zM is a central element of Ǔ. If one uses a basis of weight vectors,

then, if λi = λ(mi), it turns out that

(6.2) zM =
∑

i,j

q(2ρ,λi)5+
fi,mj

S(5−
fj ,mi

)

which is (I believe) the central element c1 of [4, Theorem 14].

Suppose now that λ ∈ Λ is a dominant integral weight and sup-

pose furthermore that 2λ is a sum of roots. Let V (λ) be the irreducible

U-module of highest weight λ. We set Fλ = FV (λ) and zλ = zV (λ).

We now prove that zλ is the central element constructed in [3, The-

orem 8.6]. For this we need a technical result:

Lemma 6.2. The map from U ⊗ U≤ ⊗ U≥ to U ⊗ U defined by

u ⊗ Y ⊗ X (→ ∆(u)(Y ⊗ X)

is onto. Here the product is the ordinary product of the algebra U ⊗ U.

Proof. Set V to be the image of our map in U ⊗ U. The result

follows from the following two statements:

1. If u ∈ U is such that u⊗X ∈ V for all X ∈ U≥, then K−αEαu⊗X ∈
V for all X ∈ U≥.

2. If u ∈ U is such that Y ⊗u ∈ V for all Y ∈ U, then Y ⊗FαKαu ∈ V

for all Y ∈ U.

Indeed, by triangular decomposition, 1. implies that U ⊗ U≥ ⊂ V, and

this together with 2. implies that U ⊗ U ⊂ V.

Let us prove the two statements:

K−αEαu ⊗ X = ∆(K−αEα)(u ⊗ KαX) − u ⊗ K−αEαKαX

while

Y ⊗ FαKαu = ∆(FαKα)(K−αY ⊗ u) − FαY ⊗ u.
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Let {v0, . . . , vr} be a basis of weight vectors of V (λ) and assume that

v0 is a highest weight vector. Let {f0, . . . , fr} be the dual basis and set

P0 = f0 ⊗ v0. An immediate consequence of Lemma 6.2 is

Corollary 6.3.

U · P0 = V (λ)∗ ⊗ V (λ).

We now compute M(Fλ(P0)). Since 5−
fi,m0

= δi0Kλ, by the definition

of Fλ we find that

M(Fλ(P0)) =
∑

i

5+
f0,mi

S(5−
fi,m0

) = K−2λ ∈ U.

By Theorem 6.1, it follows that M(Fλ(U ·P0)) = Ad(U)(K−2λ). Because

of Corollary 6.3, we conclude that M(Fλ(V (λ)∗ ⊗V (λ)) = Ad(U)(K−2λ).

In particular zλ ∈ Ad(U)(K−2λ) and IKzλ is the trivial isotypic compo-

nent of Ad(U)(K−2λ), i.e. zλ is precisely the central element constructed

in [3], Theorem 8.6, providing an inverse to the Harish-Chandra isomor-

phism.
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