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Dirac operators, heat kernels and microlocal analysis
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Riassunto: Sia X una varietà Riemanniana chiusa e sia H ↪→ X una ipersuper-
ficie immersa. Sia X = X+ ∪H X− una decomposizione di X in due varietà con bordo,
con X+ ∩ X− = H. In questo articolo vengono presentate formule di decomposizione
per alcuni invarianti geometrici e spettrali associati a ðX , un operatore di tipo Dirac
su X. Vengono considerati in dettaglio l’indice di ðX , il fibrato indice ed il fibrato
determinante associati ad una famiglia di tali operatori, l’invariante eta e la torsione
analitica. Insieme ai risultati vengono illustrate le differenti tecniche impiegate per
dimostarli.

Abstract: Let X be a closed Riemannian manifold and let H ↪→ X be an embed-
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for several geometric and spectral invariants associated to a Dirac-type operator ðX on
X are presented. Considered in detail are: the index of ðX , the index bundle and the
determinant bundle associated to a family of such operators, the eta invariant and the
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1 – Introduction

The behaviour of global invariants for Dirac operators and Laplacians

with respect to decompositions of their underlying compact Riemannian

manifolds has become a topic of much interest over the past several years.

We are thinking here of geometric invariants such as index and determi-

nant bundles, as well as spectral invariants such as the eta invariant and

analytic torsion. So-called ‘gluing theorems’ for these invariants pro-

vide new insights into their nature and have facilitated their use in other

areas. One technique to study these problems was developed by the first

author and Melrose [34], and McDonald [35], and is called analytic

surgery. In this paper we give a brief introduction to this method and

to a few of the problems for which it has proved useful, and also to

survey a few other methods developed by other authors to study gluing

problems.

In the most general terms, suppose that we are given a decomposi-

tion of the compact manifold X into two pieces, X = X+ ∪ X−, where

X± are submanifolds with boundary. Any geometric datum, such as a

Riemannian metric g, a bundle E, or a spin structure and its associated

Dirac operator ð, restricts to give the corresponding structures on each of

these pieces. In the next section we shall give precise definitions of some

of the global invariants in which we are interested; for the sake of being

concrete, and referring to that section for its definition, let us consider

the eta invariant of a Dirac operator, η(ð). Setting aside, for the moment,

the issue of boundary conditions, the simplest formulation of one of the

problems we wish to discuss is whether there is a reasonable formula for

η(ðX) in terms of η(ðX±); here, for any manifold Z, possibly with bound-

ary, ðZ denotes its Dirac operator relative to some fixed spin structure

and metric. Amongst the various considerations we shall need to address,

even just to formulate a reasonable conjecture more precisely, is the issue

of boundary conditions, and also such matters as the dependence of the

eta invariant on the underlying metric. Upon doing this, it will become

apparent that it is very natural, or at least very convenient, to study

families of degenerating metrics, or families of boundary conditions, and

that the defect between η(ðX) and η(ðX±) is reasonably gauged by some

measure of the variation in these families. The problem then will be to

express this defect in some explicit way.
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The structure of this paper will be somewhat informal, inasmuch as

we consider these various problems in successively greater degrees of pre-

cision. In the rest of this introduction we formulate the surgery problem

somewhat more carefully; the reader should note that different authors

describe it in seemingly quite different ways, depending on their precise

contexts and the applications they have in mind. We are trying here to

present these approaches from a more uniform perspective. After this

‘first-level’ formulation, we proceed to discuss two competing points of

view related to the issue of boundary conditions: namely, is it more natu-

ral to consider various geometric structures on a manifold with boundary

Z as smooth up to the boundary (and possibly having some product

structure near the boundary Y = ∂Z), or else as defined relative to an

infinite cylindrical geometry near the ends. As was recognized already

in [1], these two points of view are essentially equivalent, but choosing

one or the other as primary tends to inform our intuitions in different

ways. (Of course, there are many other geometries on a manifold with

boundary, but these two have, up until now at least, played the most

prominent rôles in the sorts of problems we consider.) We include here

a brief overview of the calculus of b-pseudodifferential operators, as a

preamble to the surgery calculus discussed later. We conclude the intro-

duction by discussing the three principle methods used to study gluing

theorems: those developed by Bunke, Vishik, and that of the first author,

Melrose and Hassell.

In the remainder of the paper we shall, as promised, give more careful

explanations of many of these issues. In §2, we discuss some of the dif-

ferent settings and invariants for which each of these methods has proved

useful, or at least has been applied. In the three succeeding sections we

give more careful discussions of these three methods, concentrating, it

must be admitted, on the final one. Unfortunately, we do not have the

time or space to go too deeply into any of the analytic subtleties in any

of these approaches, but instead wish to present them side by side, in-

dicating some of their relative strengths and weaknesses in hopes that

this will be useful for future applications. In the final sections we give a

more extended discussion of two further applications of the surgery cal-

culus: the first is to the signature formula on manifolds with corners as

in [26], while the second is to gluing formulæ for determinant bundles

as in [54].
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1.1 – The surgery problem

We start, as above, with the decomposition

(1) X = X+ ∪ X−, where X+ ∩ X− = H

is a smooth, oriented hypersurface in X and the pieces X± are smooth

manifolds with boundary. (We are implicitly assuming that H discon-

nects X; this is not necessary, but we consider only this case so as to

minimize notation.) A Riemannian metric g on X induces metrics g± on

X±, and if ∆Z denotes the (scalar) Laplacians on any one of these mani-

folds, Z = X, X±, then a primitive form of the analytic surgery problem

is to determine the relationship between spec (∆X) and spec (∆X±). (To

define the latter quantities, we use, for example, Dirichlet conditions on

H.) While precise relationships between individual eigenvalues are gener-

ally impossible to establish, it is easier to find relationships between some

aggregate invariants of these spectra, such as the determinants det(∆),

or even between their resolvents (∆ − λ)−1 or heat kernels, exp(−t∆).

At a slightly higher level of complexity, suppose that ðX is the Dirac

operator on X with respect to some fixed spin structure and the metric g,

or even simply a generalized Dirac-type operator (which does not require a

spin structure per se). The issue of boundary conditions for the restricted

Dirac operators ðX± on X± is now more subtle, and it is well-known

that one must use global boundary conditions, of the sort introduced by

Atiyah, Patodi and Singer, to obtain an elliptic boundary problem. We

discuss this in the next subsection. At any rate, having done this, once

again we ask for relationships between the spectra of these operators or

between the resolvents or heat kernels associated to their squares, ð2.

The most common global spectral invariants in this context are the eta

invariant η(ð), which is of particular interest only when dimX is odd,

and the analytic torsion, τ(X). Again referring to the eta invariant for

concreteness, it is not quite true in general that the eta invariant for ðX is

simply the sum of the eta invariants for ðX± . So, as indicated earlier, the

problem reduces to finding a good formula for the defect between these

two expressions (just as the eta invariant is the defect between the two

sides of the index formula). From this point of view, the defect arises

because the boundary conditions which the ðX± inherit by restriction

from ðX do not match the natural global APS boundary conditions on



[5] Dirac operators, heat kernels and microlocal analysis etc. 225

X±. One may change perspective, though, and consider instead the eta

invariant of ðX relative to a family of metrics gε on X which degenerate

along the hypersurface H. Denoting this family of operators by ðX,ε,

then η(ðX,ε) depends on this family of metrics, but in an understandable

way, at least for ε > 0 (here ε = 0 corresponds to some sort of degenerate

limit). Now the problem becomes to determine the defect between the eta

invariant of the limiting operator and the limit of the eta invariants. One

may pose a similar problem for the log of the analytic torsion, log τ(X).

The types of metric degenerations we shall discuss, and shall call

surgery degenerations, arise when gε elongates transversally to H, but

stays bounded (and converges smoothly to a limit) away from H in such

a way that in the limit as ε → 0, the interiors of the components X±
inherit complete metrics with asymptotically cylindrical end structures.

It may indeed be reasonable, and even better in some circumstances, to

study other sorts of degenerations. For example, there is an enormous lit-

erature concerning degenerations of compact Riemann surfaces endowed

with their hyperbolic metrics into limits with hyperbolic cusp ends —

indeed, a dense set of points on the boundary of Teichmüller space of a

surface may be ‘reached’ in this way — and Arakelov degenerations have

also received considerable attention, cf. [62], [24]. Whether these other

geometries are more favourable for some of our spectral questions is not

known.

Beyond the questions concerning these numerical invariants are some

others, particularly when one studies families of degenerating metrics and

their associated Laplacians or Dirac operators. For the cylindrical degen-

erations we shall study, the spectrum of ∆gε or ðgε is discrete when ε > 0,

but is continuous when ε = 0 (with possibly some additional discrete

spectrum). It is natural to enquire how the transition between these

two states takes place; in particular, how accurately may one describe

the convergence of the discrete spectrum to continuous spectrum. This

sort of question seems relevant in light of the extensive recent work on

Novikov-Shubin invariants, which are some sort of measure of the ‘germ’

of continuous spectrum at 0 for the Hodge Laplacian on differential forms

on universal covers of compact manifolds. This sort of geometry is quite

different from cylindrical end geometry, but it is clear that there is much

to be learned about the fine structure of the continuous spectrum of ge-

ometric operators on complete manifolds.
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1.2 – APS vs. L2 boundary conditions

Obviously there is a substantial geometric difference between com-

plete metrics (with cylindrical ends) on X± and the restrictions of the

metric g to these components, and just as obviously there are substantial

analytic differences between the Laplacians or Dirac operators for these

metrics. Whether to approach the surgery problem via restriction or de-

generation of metrics is a moot point: as we shall see, each point of view

has its strengths and weaknesses. But at heart is the purely qualitative

and subjective question concerning which classes of functions or metrics

or differential operators on a compact manifold with boundary one should

consider to be the most natural.

At first, it seems odd to say anything other than that the classes of

objects, e.g. functions, metrics, etc., which are smooth up to the bound-

ary in the usual sense are the most natural ones. However, there is a good

argument to be made that this is not necessarily the case. At the very

least, the class of metrics with asymptotically cylindrical ends, the geo-

metric elliptic operators corresponding to these metrics, and finally, the

class of b-pseudodifferential operators which generalize these, have proven

to be essential in a number of recent geometric investigations. Amongst

these we wish to mention the recent ‘direct’ proof of the index theorem

of Atiyah, Patodi and Singer on manifolds with boundary obtained by

Melrose [36]. Although in many ways equivalent to the original ap-

proach to this theorem, its slightly different perspective and the use of

b-pseudodifferential operators led the way to previously unknown results,

such as the proper generalization of the index theorem for families of

Dirac operators on manifolds with boundary by the second author and

Melrose [44], [45], following partial results by Bismut and Cheeger [5]

using an older approach. The predecessor to this paper [52] surveys these

results. In addition, the long exact sequence in analytic K-homology for

manifolds with boundary, or even with corners, had proved somewhat

difficult to even formulate correctly in more traditional terms because of

the necessity for keeping track of boundary conditions, but when recast

in the language of b-pseudodifferential operators, it became much more

transparent and amenable to proof, [43]. There are other, more recent,

index-theoretic applications of the b-calculus, such as the higher Atiyah-

Patodi-Singer index theorem on Galois coverings by Leichtnam and the

second author, see [30], [31].
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Beyond these essentially index-theoretic applications, manifolds with

cylindrical ends, or degenerations to them, have also played important

rôles in many other sorts of problems, and by many other authors; we

mention only the important recent work [60], [46], [28], [47] in Donaldson

theory and Seiberg-Witten theory.

The two points of view are closely related, and it is by playing them

off against one another that one may obtain the best insights. To illus-

trate this, we describe in detail a very elementary fact, requisite to much

of what follows, namely, the equivalence between the global Atiyah-

Patodi-Singer (henceforth APS) boundary conditions for the Dirac-

type operator ð on manifolds with boundary Z, assuming that all struc-

tures are of product-type near the ends, and the natural L2 boundary

condition on the prolongation Ẑ of Z to a manifold with infinite cylin-

drical ends. This equivalence was already noted and used in the original

paper [1].

We begin with a Dirac-type operator ð over Z. To say that ð is of

Dirac type means that it acts between sections of two different bundles

E and F , and that there is a parallel bundle map

γ : Cl (TZ) −→ End (E, F )

which is a fibrewise homomorphism from the Clifford bundle over Z to

the bundle of endomorphisms from E to F , in terms of which, locally,

ð =
n∑

j=1

γ(ej)∇ej
+ R,

where {e1, . . . , en} is an orthonormal frame and R ∈ C∞(Z; End (E, F )).

Requirements of self-adjointness impose compatibility conditions on γ

and R.

Next, suppose that t is a smooth defining function for Y = ∂Z, so

that t vanishes simply on Y and is everywhere positive in the interior of

Z. A metric g which is a product near Y takes the form

g = dt2 + h

where h is a smooth metric on Y which is independent of t for t ≤ ε. The

operator ð is product type near Y if in some collar neighbourhood of the
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boundary, the bundles E and F are lifted from Y ,

E = π∗EY , F = π∗FY , where π : Y × [0, t0) −→ Y,

and in terms of these partial trivializations, ð takes the form

ð = γ(∂t) (∂t + A) + R.

Here A is some t-independent first order elliptic operator on Y , acting

on sections of E and R is is also t-independent for t ≤ t0. In the cases of

interest to us, A is self-adjoint, and we shall also assume that R ≡ 0 for

simplicity. More detailed descriptions of generalized Dirac-type operators

are given in [36] and [49].

Since A is self-adjoint, elliptic and first order, its spectrum is a dis-

crete sequence of real numbers {λj} which is unbounded both above and

below. The corresponding eigensections of E will be denoted φj. There is

no natural local elliptic boundary condition for this operator. The ‘cor-

rect’ global boundary condition was one of the very important discoveries

in [1]. To state it, we first define the orthogonal projection

Π+
0 : L2(Y ; E) −→ L2(Y ; E)

onto the sum of eigenspaces for A with nonnegative eigenvalues. Thus

Π+
0 (φj) = 0 whenever λj < 0 and Π+

0 (φj) = φj whenever λj ≥ 0. The

APS boundary conditions involve letting the operator ð act on the domain

(2)
{
u ∈ C∞(X; E) ; Π+

0 (uY ) = 0
}
.

This boundary projection has a classical analogue: if X is the disc in C

and ð is the Cauchy-Riemann operator, then it is elementary that the

restriction of holomorphic functions to S1 are precisely those with only

nonnegative Fourier coefficients. (Although neither the metric nor the

operator are of product type here, it is not hard to transform them to be

of this form.)

To explain this boundary projection better, we consider elements u

of the nullspace of ð. Solutions of ðu = 0 may be analyzed near Y by

introducing the eigendecomposition

u(t, y)=
∑

j

uj(t)φj(y), so that ðu(t, y)=γ(∂t)
∑

j

(
u′

j(t)+λjuj(t)
)

φj(y),
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valid in the collar neighbourhood U = [0, t0) × Y . Thus if ðu = 0, then

uj(t) = aje
−λjt for some constants aj and for all j. Extend the variable

t, the bundles E and F and the operator ð to the manifold

Ẑ = Z ∪Y (Y × (−∞, 0]) ,

obtained by adjoining the half-cylinder IR− × Y to Z along the common

boundary Y . Then the solution u automatically extends to a solution of

this equation on Ẑ. More importantly, Π+(u(0, ·)) = 0 if and only if this

extension decays exponentially. In particular, elements of the nullspace

of the elliptic boundary problem (ð,Π+
0 ) on Z are in one-to-one corre-

spondence with the L2 nullspace of ð on Ẑ.

The associated inhomogeneous elliptic boundary problem is

ðu = f in X, Π+
0 (u|Y ) = φ,

for f and φ in some appropriate spaces of sections. Assuming that ð is

symmetric, the adjoint boundary problem is given by the pair (ð,Π+),

where Π+ is the spectral projection onto the positive part of the spec-

trum of A. Notice that ran (Π+
0 ) , ran (Π+) = kerA. Elements of the

nullspace of (ð,Π+) are in one-to-one correspondence with the extended

L2 nullspace of ð on Ẑ, which contains all temperate solutions of ðu = 0.

To obtain a self-adjoint boundary problem, we see that we must restrict

the domain for this operator to be intermediate between the domains for

the two boundary problems (ð,Π+
0 ) and (ð,Π+). It turns out that the self-

adjoint extensions of (ð,Π+) are in one-to-one correspondence with the

Lagrangian subspaces of kerA. The symplectic structure with respect to

which these subspaces are Lagrangian is the one induced on kerA from the

L2 inner product and the almost complex structure induced from Clifford

multiplication by ∂t. (We are using that γ(∂t) anticommutes with A, but

in particular preserves kerA, and that the Clifford relations imply that

γ(∂t)
2 = −I.) If Λ ⊂ ker A is any Lagrangian subspace, then we define the

augmented projection Π+
Λ by demanding that ran (Π+

Λ) , ran (Π+) = Λ.

The corresponding self-adjoint elliptic boundary problem is then given

by the pair (ð,Π+
Λ).

To conclude this discussion, we observe that there is a natural La-

grangian subspace Λsc ⊂ ker A which provides the connection between
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the ‘finite’ elliptic boundary problem and the operator on the manifold

Ẑ. It is the subspace of asymptotic limits of solutions of ðu = 0:

Λsc ≡{ lim
t→−∞

u(t, y) : u a bounded solution of ðu =0 defined on all of Ẑ},

and is called the scattering Lagrangian associated to the operator. The

fact that the solution u must be globally defined is very important in this

definition. It is not immediately clear why this Λ should even have the

correct dimension, let alone be Lagrangian, but these follow from Green’s

formula and adjointness considerations, cf. [49], [36].

1.3 – The calculus of b-pseudodifferential operators

The simple observations of the last subsection indicate that it is at

least as fruitful to work in the category of manifolds with cylindrical ends

as of manifolds with boundary, and thus we have reconnected with our

earlier question about the most natural classes of functions, operators,

etc., on a manifold with boundary. The preceding discussion points out

one advantage to studying geometric elliptic operators on complete man-

ifolds: there is no need to choose boundary conditions explicitly, because

the L2 requirement imposes a natural set of such conditions.

There are other advantages too. For example, one often underap-

preciated fact is that there is a lack of naturality inherent in the usual

spaces of smooth functions and pseudodifferential operators on a mani-

fold with boundary Z: general pseudodifferential operator do not map the

space C∞(Z) to itself. This prompted Boutet de Monvel’s introduction

of the transmission condition for symbols, and his pseudodifferential cal-

culus adapted to boundary problems in the mid 1970’s [8]. Several years

later a quite different approach was initiated by Melrose, resulting in

the so-called b-calculus, or calculus of b-pseudodifferential operators on a

manifold with boundary Z. In fact, this b-calculus is the first step toward

a rather general microlocal approach for studying a hierarchy of spaces of

degenerate differential pseudodifferential operators. The surgery calculus

we discuss later is one amongst many in this hierarchy, and as can be seen

from the geometric and analytic problems motivating it, is some sort of

extension of the b-calculus. Because of this relationship, we include a very

brief introduction to the b-calculus here. This will be continued, and the

surgery calculus itself will be discussed, later in the paper.
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In defining this ‘calculus’ (by which we mean a set of pseudodifferen-

tial operators which are essentially closed under composition, up to some

elementary and computable obstructions having to do with integrability

of certain functions) it is customary to start by introducing the space of

b-vector fields on Z (although one might easily regard one of the other

objects we introduce below as the ‘primary’ object of the theory). This

class of vector fields is defined by

Vb(Z) = {V ∈ C∞(Z;TZ) : V tangent to ∂Z = Y },

and this condition is obviously closed under Lie bracket, so that Vb(Z) is

a Lie algebra. In terms of a smooth boundary defining function x, and

any choice of local coordinates y on Y , Vb is generated over C∞(Z) by

x∂x, ∂y1
, . . . , ∂yk

, k = dimY.

Alternately, we can also define

Vb = {V ∈ C∞(Z;TZ) : V x = xf for some f ∈ C∞(Z)}.

Next, a metric g is said to be a b-metric if g(V,W ) ∈ C∞(Z), g(V, V ) ≥ 0

for every V, W ∈ Vb. In terms of the same local coordinates near Y , any

such g is a positive smooth symmetric two-tensor in the 1-forms dx/x and

dyj. A slightly more tractable, and just as useful subclass of these are

the exact b-metrics. g is called exact if there exists a boundary defining

function x ∈ C∞(Z) and some smooth (in the ordinary sense) symmetric

two-tensor h such that

g =
dx2

x2
+ h.

If we introduce t = − log x, and if h is independent of x in some neigh-

bourhood of Y , then an exact b-metric is nothing more than a metric

with an infinite product cylindrical end, and a general exact b-metric de-

creases at an exponential rate to a product cylindrical metric in these

coordinates.

From Vb(Z) we can define the ring of b-differential operators Diff ∗
b (Z):

this contains all operators which may be written as locally finite sums of

products of elements of Vb. Thus, in the same local coordinates,

Diffm
b (Z) . L =⇒ L =

∑

j+|α|≤m

aj,α(x, y)(x∂x)
j∂α

y .
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Examples of such operators include any geometric operator, such as the

Laplacian on differential forms or Dirac operator, associated to an exact

b-metric.

Although any L ∈ Diff ∗
b (Z) is degenerate in the ordinary sense, it

is still possible to define a meaningful notion of ellipticity: a b-operator

L is said to be elliptic if it may be represented locally as an elliptic

combination of the basic spanning set of b-vector fields listed above. One

is then led to ask the question as to whether such operators have any

‘right’ to be called elliptic, i.e. whether they enjoy any of the properties

familiar from elliptic theory on compact manifolds. Specifically, are these

operators Fredholm on any natural function spaces, and what are the

regularity properties of solutions of Lu = 0 or Lu = f? Note that because

elliptic b-operators are elliptic in the ordinary sense in the interior of Z,

these questions really involve only ‘local’ behaviour at ∂Z.

To investigate these questions, it is natural to use pseudodifferen-

tial methods, and the heart of this technique is to introduce a class of

pseudodifferential operators Ψ∗
b(Z) which contains Diff ∗

b(Z), and which

is also hopefully large enough to include inverses, or at least good para-

metrices, for the elliptic differential b-operators. As a clue to how one

might define these pseudodifferential operators, observe that any element

of Vb(Z), hence any b-differential operator, is approximately invariant un-

der dilations in the variable x (which correspond to translations in the

variable t). Thus one might hope to characterize elements of Ψ∗
b(Z) by

this same property, and indeed this is the case. Actually, it is easiest

to characterize these operators by geometric properties of their Schwartz

kernels, which are distributions on the product Z × Z = Z2. Because

elements of Diff ∗
b(Z) are degenerate at ∂Z, we expect pseudodifferential

operators which represent inverses for the elliptic elements to have some

sort of singularity at (∂Z)2. The main idea is that these singularities can

be characterized geometrically: instead of regarding the Schwartz kernel

of an element B ∈ Ψ∗
b(Z) as a more singular distribution on the rela-

tively simple space Z2, we instead regard it as a simpler distribution on

a geometrically more complicated space Z2
b , the b-stretched product of Z

with itself. This new space is obtained from Z2 by blowing up the corner

(∂Z)2; said differently, introduce polar coordinates around this corner

and include as part of the blow-up the new face where the polar distance

variable r = 0. Z2
b is a manifold with corners. It has three codimension
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one boundary faces, Z × ∂Z, ∂Z × Z, and the new one created from the

blow-up, and away from this final hypersurface it is diffeomorphic to Z2.

The Schwartz kernel of B is required to be smooth in the interior of Z2
b

away from the diagonal, where it is to have an ordinary pseudodifferential

singularity, and at each of the codimension one boundary hypersurfaces it

is required to have complete polyhomogeneous (i.e. classical) expansions.

In fact, it is even required to be smooth up to the front face. Notice,

however, that back on the original manifold Z2, this means that it is

only smooth in polar coordinates around the corner, away from the di-

agonal. When B ∈ Diff ∗
b(Z), then its Schwartz kernel lifts to a δ-section

supported along the lifted diagonal of Z2
b .

Complete and accessible discussions of this space of operators are to

be found in [36], and [33], to which we refer the interested reader for more

details.

To return to the original objective, though, once the space of b-

pseudodifferential operators on Z, Ψ∗
b(Z), has been defined, and certain

basic facts about it, such as its closure under composition and a satisfac-

tory symbol calculus, have been established, then one may proceed with

the investigation of the elliptic differential b-operators. To phrase the

main results, one lets these operators act not just on the ordinary Sobolev

spaces Hs(Z), but rather on weighted b-Sobolev spaces xδHs
b (Z). The

subscript b refers to the fact that the differentiations involved in defining

these spaces should be with respect to the elements of Vb, while the fac-

tor xδ allows for changing the rates of growth or decay at ∂Z. The basic

result is that for all but a discrete set of weight parameters δ, an elliptic

b-operator L is Fredholm on xδHs
b (Z). Furthermore, an arbitrary solu-

tion of Lu = 0 admits a complete polyhomogeneous expansion in powers

of x (and possibly log x) as x → 0. This polyhomogeneity is the natural

replacement for the special case of smoothness up to the boundary (which

is what occurs when all powers in the expansion are nonnegative integers

and no logarithmic factors occur). These results are all consequences of

the fact that one has a very precise description of a good parametrix for

L. In fact, that is really the point of the theory. After the not completely

insignificant effort involved in defining the calculus and constructing the

parametrix, we then have a more or less complete geometric description

of the Schwartz kernel of the generalized inverse for L on any of the ad-

missible weighted Sobolev spaces. From this it is possible to simply ‘read
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off’ any more refined mapping or regularity properties about L one might

wish to know.

This overview of the b-calculus is intended to motivate the similar,

but unfortunately more elaborate, description of the surgery calculus

later.

1.4 – Three different approaches to the problem

In this final section of the introduction we briefly introduce three dif-

ferent methods which have been developed to study the surgery problem.

These were all developed roughly simultaneously and independently, but

each was directed toward, and achieved, somewhat different goals. What

we call the first approach was developed by Bunke [11], the second by

Vishik [61], and later used by Brüning and Lesch [10], while the fi-

nal one was contained in work of the first author with Melrose [34],

and then also with Hassell [25]. To avoid being overly self-referential,

this last approach will be referred to as that of MM/HMM. In later sec-

tions of this paper, we amplify the descriptions of these approaches —

rather cursorily for the first two and in more detail for the third. For the

most part, we shall only discuss Dirac-type operators because they have

provided the main setting for applications.

As we have seen, the main issue is to somehow ‘disconnect’ the op-

erator ðX+
from ðX− , and this may be done either by use of boundary

conditions or by literally disconnecting the two halves geometrically by

placing them at infinite distance from one another. Bunke’s approach is

the least intricate, technically, and essentially uses both of these types

of considerations. Vishik’s ideas involve a variation of boundary condi-

tions along H, while those of MM/HMM rely on the idea of geometric

separation.

The goals of these papers are also quite different. Bunke’s intent is

to find a gluing formula for the eta invariant. Vishik was concerned with

gluing formulæ for determinants of elliptic operators, and particularly

for the analytic torsion. In the somewhat more tractable version of his

ideas developed by Brüning and Lesch, the goal is to find another proof

of the gluing formula for the eta invariant. The techniques of MM/HMM

are directed toward proving uniformity of the resolvent and heat kernel

associated to ð2 in the ‘analytic surgery limit’ as the manifold X stretches

to infinite length along the hypersurface H. Gluing formulæ for the
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eta invariant, and analytic torsion [23], are then consequences of this

uniformity, but far more detailed information is obtained along the way.

The expense, of course, is that the development of this approach is by its

nature the most technically intricate of the three.

We now go into only slightly more detail. Bunke’s setup involves

considering two different manifolds. The first is the disjoint union X+ 0
X−, each endowed with long (but finite) cylindrical ends, while the second

is the disjoint union of X, endowed with a long cylindrical section around

H, and a long cylindrical piece [−T, T ] × H. The goal is to show that

there is some abstract unitary equivalence between the Dirac operators

on these two (sets of) manifolds; since they are unitary invariants, the

eta invariants for these manifolds must also coincide. Three of the four

components are the various terms one expects in the gluing formula for

the eta invariant, and the fourth represents the defect term, and it may

be computed ‘explicitly’. One subtlety here is in determining how the

different boundary conditions at the various ends arise in order that the

unitary isomorphism be valid.

Vishik’s setup, on the other hand, involves the consideration of a

family of boundary conditions along the hypersurface H. Each corre-

sponds to some self-adjoint elliptic boundary problem. At one extreme,

this problem corresponds to the operator ð on the closed manifold X,

where the hypersurface H becomes ‘invisible’; these are the transmission

boundary conditions. At the other extreme, the boundary conditions are

the natural APS ones on each half. The analytic torsion, or eta invariant,

may be computed for each operator in this family, and the problem then

consists of computing the variation of these invariants with respect to the

parameter. The total variation with respect to this parameter represents

the defect.

Finally, as indicated earlier, in MM/HMM the goal is to develop a

‘surgery calculus’ Ψ∗
s(X), that is, a calculus of pseudodifferential opera-

tors on X, depending on a parameter ε, and which incorporates the sorts

of degeneracies seen in the family of Dirac operators or Laplacians with

respect to metrics undergoing degeneration to infinite cylindrical ends.

Thus, for ε > 0, the surgery calculus restricts to the ordinary pseudodif-

ferential calculus, while at ε = 0 it somehow induces the b-calculus. The

point is to show how the transition between these quite different calculi

takes place. Once this calculus is defined, and its basic analytic prop-
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erties established, such as a symbol calculus, closure under composition,

etc., then one may use it to construct parametrices for (ð2
X,gε

− λ), for

example. As with the b-calculus, if one is able to describe the behaviour

of this resolvent, or of the heat kernel, uniformly with respect to ε, and

explicitly, it is then straightforward to examine the behaviour of these

auxiliary numerical invariants. One also obtains more detailed informa-

tion, such as the way in which the discrete spectrum accumulates into

continuous spectrum.

2 – Some applications of the surgery formula – an overview

We now describe in somewhat greater detail four different types of ob-

jects, for the study of which some form of the analytic surgery technique

has proved useful. These are index bundles, the eta invariant, analytic

torsion and determinant bundles.

In each of the following settings we shall, again for simplicity, consider

only the case of a Dirac-type operator ð, acting between sections of the

bundles E and F over the manifold X. We shall describe at least the

general form of the gluing theorems in each context, leaving the more

precise statements until later.

2.1 – Index bundles

First we consider the numerical index. We assume that X is even-

dimensional and, for simplicity, spin. We denote by S/ = S/+ ⊕ S/− the

spin bundle and its splitting into the plus and minus spin bundles. The

Dirac operator ð is odd with respect to the natural ZZ2-grading, and so

takes the form (
0 ð−

ð+ 0

)
ð− = (ð+)∗

with ð± : C∞(X, S/
±
)→ C∞(X, S/

∓
). Since the manifold X is closed and

compact the Dirac operator is Fredholm on any Sobolev space ð+ :

Hm(X, S/+) → Hm−1(X, S/−) with index ind (ð) = dim(ker(ð+)) −
dim(ker(ð−)) which is independent of m by elliptic regularity. In this

even-dimensional setting, our primary interest is in ð+ and not in the full

self-adjoint operator ð.
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Suppose now that X = X+ ∪H X−; up to a perturbation not affecting

the index we can assume that the metric near the disconnecting hyper-

surface H is of product type. This means that the Dirac operator on each

piece X± takes the product form introduced in the previous section, with

t now denoting a defining function for H. Notice that the vector field ∂t

will be normal to H, the common boundary of X±, but inward pointing

for one manifold, say X+, and outward pointing for the other. As in §1.2,

we denote by Π+
0 the augmented APS spectral projection for the boundary

operator ðH . Because of the discrepancy in the orientation of the normals

it is easy to check directly that the two APS boundary value problems

can be written as (ð+
X+

,Π+
0 ) and (ð+

X− , Id − Π+). Applying the Atiyah-

Singer index theorem [2] to ðX and the Atiyah-Patodi-Singer index

theorem [1] to the two boundary value problems and observing moreover

that the two eta invariants cancel because of the opposite orientation of

the normals, we obtain the following surgery formula for the index

(3) ind (ðX) = ind (ðX+
,Π+

0 ) + ind (ðX− , Id − Π+) + dim(null ðH).

Notice that dim(null ðH) = dim(Π+
0 − Π+). Suppose now that X is the

typical fibre of a fibration of compact manifolds: φ : M → B. Following

what is now standard notation, we denote the family of metrics on the

fibres by gM/B; we also assume that the fibres carry smoothly varying spin

structures. We denote by M z the fiber over z; thus M z ≡ φ−1(z) ∼= X.

For each z ∈ B we can consider the Dirac operator (ðM)z naturally defined

by the spin structure of M z. We obtain a family ðM = ((ðM)z)z∈B of Dirac

operators.

Let H be a disconnecting hypersurface of the fibration M → B and

assume that H also fibres over B: φ|H : H → B. Thus M = M+ ∪H M−
and each fiber M z is the union along Hz of two manifolds with boundary:

M z
+ ∪Hz M z

−.

We obtain in this way four families of Dirac operators: ðM , ðM+
, ðM−

and ðH . Since the family ðM is defined on a closed manifold, the familiar

construction of an index bundle, as in [3], provides us with an index class

Ind (ðM) ∈ K0(B). The problem is to formulate and prove the analogue

of (3). If the vector spaces ker(ðH)z are of constant rank as z varies in

B, then the APS boundary value problems for M z
+ and M z

− define, as z
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varies, two continuous families of boundary value problem

(ðM+
,Π+

0 ) = (ðMz
+
, (Π+

0 )z)z∈B (ðM− , Id−Π+) = (ðMz
− , Id−(Π+)z)z∈B.

Notice that because of the assumption of constant rank, Ker (ðH) =

∪z∈B ker(ðH)z is a continuous (in fact smooth) vector bundle.

However if the constant rank assumption is not satisfied we know that

the two APS families will not be continuous. In this case, as explained

at length in Part I of this survey [52] we need to fix a spectral section

P for the family ðH (see [43] [44]). Thus P = (Pz)z∈B is a smooth

family of pseudodifferential operators of order zero which are self-adjoint

projections and with the additional property that there exists a positive

constant R ∈ IR such that

(4) (ðHz)u = λu ⇒
{

Pzu = u if λ > R

Pzu = 0 if λ < −R

Since ðH is by construction a boundary family we know from [43] that

there exist an infinite number of spectral sections; moreover two spectral

sections, P1, P2, give rise to a difference element [P1 − P2] ∈ K0(B) (and

in fact it can be proved that these differences exhaust all of K0(B)).

A spectral section P for ðH fixes a smooth family of generalized APS

boundary value problem (ðM+
, P ) and thus an index class Ind (ðM+

, P ).

Simply define (ðM+
, P )z as the operator ðMz

+
with domain

{u ∈ L2(M z
+, Ez); (ðMz

+
)u ∈ L2(M z

+, Ez), P (u|∂Mz
+
) = 0}.

We also obtain an index class for ðM− by considering the family of bound-

ary value problems (ðM− , Id−P ) (recall that the normal to M− is oriented

in the outward direction).

We can now state the decomposition formula for index bundles ([18]).

Theorem 1 (Dai-Zhang). Let P1 and P2 be spectral sections for

ðH . Then the following formula holds

Ind (ðM) = Ind (ðM+
, P1) + Ind (ðM− , Id − P2) + [P1 − P2] in K0(B)
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The corresponding formula for the Chern characters follows directly

from the family index formula of Melrose-Piazza. Notice that if in par-

ticular Ker (ðH) is a smooth vector bundle then we can choose P1 = Π+
0 ,

P2 = Π+; then [null (ðH)] = [P1 − P2] and we obtain the precise analogue

of (3).

The proof of the surgery formula for the index bundle, as given by

Dai-Zhang, follows Bunke’s method. One can also prove it with the

surgery calculus of MM, as in [54].

2.2 – The eta invariant

The eta invariant η(ð) is a spectral invariant which was discovered

originally in the context of the APS index theorem as the boundary cor-

rection term. Because indices are really even-dimensional phenomena,

eta invariants are therefore of most interest when the dimension of X is

odd – in fact, there are a number of difficult analytic subtleties in even

defining the eta invariant in even dimensions. It was pointed out by

Singer [58] that the eta invariant of Dirac operators in odd dimensions

actually shares many properties with the index of Dirac operators in even

dimensions: it could even be regarded as the odd-dimensional analogue

of the index. This has been made more precise and generalized consid-

erably by Melrose [40]. Other aspects of Singer’s assertions have been

addressed and proved by Wojciechowski [63], [64].

In any case, the basic definition is given as follows. Since ð is elliptic,

and is self-adjoint when n ≡ dimX is odd, its spectrum is discrete, and

we denote it by {λj}. This sequence is unbounded in both directions.

The Weyl asymptotics show that the eta function

η(s) ≡
∑ sgn λj

|λj|s

is defined and holomorphic in the half-plane Re s > n. From the usual

analysis of the short-time asymptotics of the heat kernel associated to

ð2, this function extends meromorphically over the complex plane. This

extension is actually regular at s = 0 (and this is precisely the point that

becomes much more subtle for non-Dirac operators and in even dimen-

sions). This value is defined to be the eta invariant η(ð).
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It is usually easier to work with a different expression for this invari-

ant. First note that for Re s sufficiently large,

η(s) ≡ 1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr

(
ðe−tð2

)
dt.

The integral continues to converge up to s = 0. This is not obvious,

but follows from Getzler’s rescaling technique, which is explained in [4]

and [36]. The factor in front is regular at s = 0 too, and so

η(ð) =
1√
π

∫ ∞

0

t−1/2Tr
(
ðe−tð2

)
dt.

Since we are also interested in the eta invariant on the manifolds with

boundary X±, we must also discuss how to define these. Recall the two

different sorts of metrics we have been considering, those which make

these manifolds compact with boundary, and are of product type near

the boundaries, and those which are complete with infinite cylindrical

ends. In the former case, following our earlier discussion, once we have

introduced Lagrangian subspaces Λ± ⊂ ker ðH , we obtain self-adjoint

elliptic boundary problems (ðX+
,Π+

Λ+
) and (ðX− ,Π+

Λ−). These operators

have discrete spectrum, and at least formally the preceding definitions

make sense. The details of making these plausible definitions rigorous has

been carried by Müller [49]. The invariants we obtain will be denoted

η(ðX± ,Λ±) for simplicity.

We may now state one form of the surgery problem for eta invariants

explicitly: find a tractable expression for the defect

δ(Λ+,Λ−) ≡ η(ðX) − η(ðX+
,Λ+) − η(ðX− ,Λ−).

Notice that we have written this defect as a function of the two La-

grangians Λ±. That these should be the essential variables on which it

depends requires some work. Furthermore, it is also of substantial in-

terest to see whether there is some choice of Lagrangians for which this

formula becomes particularly simple or natural.

The other geometric setup is when X± are endowed with exact b-

metrics, and the degeneration from X to these complete metrics is a

surgery degeneration as defined more precisely later in this paper. The
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biggest obstacle now is that the eta invariant η(ð) ostensibly requires the

operator ð to have discrete spectrum, while in this case we know that the

Dirac operator has continuous spectrum. Thus it is not even clear how

to define the eta function η(s). Starting from the definition in terms of

the heat kernel we see the obstacle in a different way. The heat kernel for

ð2 on either X+ or X− is a smooth function, but it does not decay along

the cylindrical ends, and hence is not integrable. The way out of this

impasse is to use the regularized b-trace defined by Melrose [36]. This

b-trace is an extension of the ordinary trace to the ring of smoothing b-

pseudodifferential operators. For any such operator R, the pointwise trace

along the diagonal of the Schwartz kernel of R, (i.e. just its restriction to

the diagonal, if R acts on functions) has an asymptotic expansion in terms

of nonnegative powers of the boundary defining function x. It therefore

makes sense to define

(5) bTr (R) = lim
ε→0

(∫

x≥ε

KR(x, y)
dxdy

x
+ log ε ·

∫

x=0

KR(0, y) dy

)

Here KR(x, y) is the (pointwise trace of the) Schwartz kernel of R on

the diagonal, using some local coordinate system y on the boundary.

Granting the naturality of this definition, it is then reasonable to define

the regularized b-eta invariant, bη(ð), via the same heat-kernel formula,

but substituting the b-trace for the ordinary trace.

Although this definition may seem ad hoc, it follows from work of

Müller [49] that on a manifold Ẑ with infinite (product) cylindrical

ends, if Λsc is the scattering Lagrangian, i.e. the subspace of ker ðY

obtained as the set of asymptotic limits of ðu = 0 on Ẑ, and if ZT

represents the truncation of Ẑ to any compact piece, where t ≥ T for

some sufficiently negative T , then

η(ðZT
,Π+

Λsc
) = bη(ð

Ẑ
).

In particular, the term on the left does not depend on the length of the

cylindrical ends. This serves as ample evidence that the b-eta invariant

is a natural object.

The easiest case to calculate this defect is when ker ðH = {0}. Then

necessarily both Λ+ and Λ− are also trivial, and so it is hardly surpris-

ing (and is consonant with our notation) that the defect vanishes. In
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this setting of boundary problems on finite manifolds this was proved by

Bunke [11], while in the setting of degeneration to exact b-metrics it was

proved in [34].

It is much more interesting, of course, to see what happens when

ker ðH is nontrivial. Then δ(Λ+,Λ−) does not necessarily vanish. Rather

nicely, it turns out that the ‘best’ Lagrangians with respect to which to

compute this defect are the ones induced from the asymptotic limits of

bounded solutions on the cylindrical extensions of X±. The importance

of these Lagrangians even for the boundary problem on the compact

manifold was first proved by Müller [49]. There are several nice formulæ

for the defect in this case. The one obtained by Bunke is in the form of

an averaged Maslov invariant,

δ(Λ+,Λ−) =

∫

G

µ(gΛ, Λ+,Λ−) dh.

Here G is the Lagrangian Grassmanian of ker ðH , dh is normalized Haar

measure on it, µ is the Maslov invariant, which is a function of three sep-

arate Lagrangians, and Λ is an arbitrary third Lagrangian. The formula

found for the defect in this case in [25] is more elementary and purely

linear algebraic. Again when Λ± are the scattering Lagrangians,

(6) δ(Λ+,Λ−) =
i

2π
log Sdet (I − Sr

+Sr
−).

Here Sdet is the superdeterminant of a ZZ2-graded diagonal operator,

Sdet

(
A0 0

0 A1

)
≡ det A0 · (detA1)−1

and Sr
± are differences of certain projection operators associated to the

scattering Lagrangian subspaces Λsc in ker (ðH). We refer to [25] for

further explication.

A similar, but less tidy, finite-dimensional linear algebraic formula for

this term was discovered (earlier) by Lesch and Wojciechowski [32]

in their study of the closely related problem of the dependence of the

eta invariant on cylinders with boundary conditions given by arbitrary

Lagrangian subspaces. It arises, as does the expression above, from one

other useful way to think of this defect, namely as the eta invariant of
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an associated one-dimensional problem. The Dirac-type operator γ∂s

acts on the space of sections of the trivial bundle I × ker (ðH) over I =

[−1, 1], where γ denotes Clifford multiplication by the unit normal to

H. Imposing the boundary conditions associated with the Lagrangian

subspaces Λ± at s = ±1, we obtain a self-adjoint operator with discrete

spectrum. Then it is also true that the defect is simply the eta invariant

of this operator,

(7) δ(Λ+,Λ−) = η(γ∂s,Λ+,Λ−).

The seemingly more explicit expression (6) is deduced from this one.

2.3 – Analytic torsion

The analytic torsion was first defined in the seminal paper of Ray and

Singer [56]. In order to introduce it we first need to recall the definition

of zeta function ζP (s) associated to a (second order) self-adjoint elliptic

differential operator P on a closed manifold Z [57]. This zeta function is

defined in manner similar to, but simpler than, the eta function. Thus, if

spec (P ) = {λj}, now a sequence of real numbers tending only to infinity,

then

ζP (s) ≡
∞∑

j=0

λ−s
j .

We are assuming here that all eigenvalues are positive. If there are finitely

many nonpositive ones we simply omit them from this sum. The defini-

tion that Ray and Singer gave to the determinant is

det′P = e−ζ′
P (0).

The notation det′ is meant to indicate that the nonpositive eigenvalues

(in particular, the zero eigenvalue) have been omitted.

This determinant has emerged as one of the central objects of study

in spectral geometry (and also plays a prominent rôle in string theory).

In particular, it was a crucial ingredient in the proof of compactness of

isospectral sets by Osgood, Phillips and Sarnak, and many new results

about it have been obtained and applied by many authors over the past

decade. We mention only the work of S.-Y. Chang, Yang, Gursky, Okiki-

olu, in addition to that of Vishik.
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Just like the eta invariant, det′P depends on the Riemannian metric

g: its variation with respect to a family of metrics is actually computable

as an integral of local quantities. Ray and Singer observed, though, that

if one computes the determinants det′(∆p) of the Hodge-Laplacian on

p-forms, and takes a certain weighted sum of these expressions, then the

resulting object has much more invariance. This weighted sum is the

analytic torsion T (Z, g) defined by

log T (Z, g) =
n∑

p=0

(−1)pp det′(∆p).

This expression may also be defined when the Hodge-Laplacian is twisted

by some flat bundle E, and this yields a number T (Z, E, g). Actually, this

expression is independent of the metric only when the twisted de Rham

complex is acyclic, i.e. has all cohomology groups vanishing. Notice that

this never occurs in the untwisted case. In the general case there is an

explicit factor which contains all metric dependence.

To be somewhat more precise fix a set of bases {µ} = {µ
(i)
j } for the

cohomology spaces H i(Z). Next, using the Hodge theorem, let {ω
(i)
j } be

a basis of harmonic forms for each of these spaces which is orthonormal

with respect to the L2-inner product induced by g. Now let Λ(g, {µ})

be the determinant of the change of basis matrix. Following [56] we de-

fine T (M, {µ}) as the product T (Z, {µ}) ≡ T (Z, g) · Λ(g, {µ}). It is this

quantity which is independent of the metric g. Because of this somewhat

surprising invariance, and for other (more compelling) reasons, Ray and

Singer made their famous conjecture that the analytic torsion T (Z, {µ})

agrees with the Reidemeister torsion τ(Z, {µ}), a PL invariant of the

manifold Z defined by Reidemeister and Franz in the 1930’s. This con-

jecture was proved in the late 1970’s independently by Cheeger [13] and

Müller [48].

By now there are numerous proofs of this Cheeger-Müller theorem.

Many of these rely on ideas related to surgery degeneration, including

Cheeger’s original proof [13], and also the fairly recent proof by Burghe-

lea, Friedlander and Kappeler, which is based on Witten’s defor-

mation method [9]. Müller’s proof [48] was of a somewhat different

nature. The proofs we highlight here are those by Hassell [23], who

applied the surgery calculus of MM/HMM to obtain a gluing formula
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for the analytic torsion, and hence could then follow Cheeger’s strategy

to prove its equivalence with Reidemeister torsion, and Vishik’s gluing

formulæ for determinants [61], the proofs of which employ his method of

changing boundary conditions, as described below in the slightly different

context of gluing formulæ for eta invariants (developed by Brüning and

Lesch [10])).

It is obviously not surprising that the results and methods for ob-

taining gluing formulæ for determinants are much the same as for eta in-

variants. Both are obtained from integrating the appropriate heat kernel,

or combinations thereof. At any rate, the studies of these two quantities

are intimately interrelated. For reasons of space and time, we shall con-

centrate almost exclusively on results obtained for the eta invariant in

the remainder of the paper.

2.4 – Determinant bundles

Let E be a finite dimensional vector space and suppose that T : E →
E is linear. Then T induces in a natural way a map det(T ) : Λmax(E) →
Λmax(E) and hence an element det(T ) ∈ (Λmax(E))∗ ⊗ Λmax(E); the

numerical determinant of T is simply obtained by fixing a basis of E,

or at least a nonzero element of Λmax(E). If T ∈ Hom (E, F ), with

dimE = dimF , then det(T ) is again well defined as an element of

(Λmax(E))∗ ⊗ Λmax(F ).

The natural exact sequence of vector spaces

0 → ker T → E → F → coker T → 0

induces a natural isomorphism

(Λmax(E))∗ ⊗ Λmax(F ) ∼= (Λmax kerT )∗ ⊗ (Λmaxcoker T ).

Suppose now that the vector spaces E, F and the linear map T de-

pend smoothly on a parameter z ∈ B. In other words suppose that

T ∈ C∞(B,Hom (E, F )). Applying the preceeding remarks we obtain a

smooth section det T ∈ C∞(B,L) of the determinant line bundle L with

fiber at z equal to Lz = (Λmax(Ez))
∗ ⊗ Λmax(Fz).

Notice again that for each fixed z ∈ B

(8) Lz
∼= (Λmax ker Tz)

∗ ⊗ (Λmaxcoker Tz).
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These elementary remarks show that the determinant of a family of linear

maps is only defined as a section of a complex line bundle. Of course

if would be desirable to have a determinant function DET : B → C

assigning a number to each linear map Tz. If L is trivial this can certainly

be done by fixing a trivializing section τ ∈ C∞(B,L) and comparing detT

and τ , viz.

(detT )(z) = DETτ (Tz)τ(z).

The determinant function DETτ so obtained depends of course on the

trivializing section τ and it is natural to ask whether it possible to agree on

a canonical choice. This is particularly important in physics. One way to

proceed would be to assume that the determinant line bundle is equipped

with a metric and compatible connection. Using a nontrivial covariant

constant section τ to trivialize this bundle would fix the determinant

function up to a global phase C ∈ U(1). The local and global obstructions

to the existence of τ are given by the curvature and holonomy of the given

connection, respectively. In the usual physics parlance these are called

the local and global anomalies.

Again partly motivated by physics, the problem arises as to whether

these ideas can be extended to the infinite dimensional context where

the operator T is replaced by a family of Dirac operators. Thus let

ð = (ðz)z∈B be a smooth family of Dirac operators, associated as in §2.1

to a smooth fibration of closed compact manifolds φ : M → B with even

dimensional fibres. Since each ðz is Fredholm, it makes sense to define

the complex line

Λmax ker(ðz)
∗ ⊗ Λmaxcoker (ðz).

However, since the kernel and cokernel of ðz are not constant in z, these

complex lines do not vary smoothly with the parameter z. The first step

then is to show that there exists a smooth complex line bundle L(ð) over

B with the property that its fiber over z ∈ B is naturally identified with

Λmax ker(ðz)
∗ ⊗ Λmaxcoker (ðz). The second step is to introduce a metric

and compatible connection on L(ð) in some natural way, and then to

compute in geometric terms the curvature and the holonomy, i.e. the

local and global anomaly.

This program was accomplished by Quillen in his seminal paper [55]

in the special case of ∂-operators on Riemann surfaces acting on a vector
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bundle E and with parameter space A equal to the moduli space of holo-

morphic structures on E. Since A is simply connected, only information

about the curvature of the so-called Quillen metric is required to deter-

mine whether the determinant line bundle may be trivialized by parallel

transport. These results of Quillen were extended to the general case by

Bismut and Freed in two papers [7] (see also [15], [65], [21], [17]). We

now illustrate a few of the main ideas behind these works.

First we define the determinant line bundle L(ð) associated to the

family ð = (ðz)z∈B. We only treat the Dirac case here, but this construc-

tion can be applied to any family of Fredholm operators.

Since the fibers of φ : M → B are even dimensional, each Dirac

operator may be written as

(
0 ð−

z

ð+
z 0

)
ð−

z = (ð+
z )∗

with ð±
z : C∞(M z, S/±

z ) → C∞(M z, S/∓
z ). If E = E+ ⊕ E− is a ZZ2 graded

vector space we use the notation det(E) for the complex line Λmax(E+)∗⊗
Λmax(E−).

Clearly if (ker(ð±
z ))z∈B form two smooth vector bundles, Ker (ð+),

Ker (ð−), then the line bundle

L(ð) = ΛmaxKer (ð+) ⊗ ΛmaxKer (ð−) = det(Ker ð)

is globally well defined. Notice that if ∆±
z = ð∓

z ð±
z then it is also true

that L(ð) = det(Ker ∆). In general consider the set Uλ = {z ∈ B;λ /∈
spec(∆z)}. Since the spectrum of each Laplacian is discrete, this is ei-

ther a non-empty open set, or else the empty set. Since the latter may

happen for at most a countable set of values of λ, we may cover B by a

finite collection of such sets Uλk
. Let Π±

[0,λ)(z) be the spectral projection

associated to the interval [0, λ) for the Laplacian ∆±
z . Consider

H±
[0,λ)(z) = ImP ±

[0,λ)(z).

This is simply the direct sum of the eigenspaces of ∆±
z associated to the

eigenvalues in [0, λ). As z varies in Uλ these vector spaces define a ZZ2-

graded smooth vector bundle H[0,λ) = H+
[0,λ) ⊕ H−

[0,λ). We define L(ð)
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restricted to Uλ as det(H[0,λ)). This is a smooth complex line bundle over

Uλ and moreover for each fixed z ∈ Uλ there is a natural isomorphism

(L(ð))z ≡ det(H[0,∞)(z)) ∼= (Λmax(ker ð+
z ))∗ ⊗ Λmax(ker ð−

z ).

coming from the exact sequence

0 → ker ∆+
z → H+

[0,λ)(z) → H−
[0,λ)(z) → ker ∆−

z → 0.

Now if µ > λ, then on Uλ ∩ Uµ we have H[0,µ) = H[0,λ) ⊕ H[λ,µ) and thus

det(H[0,µ)) ∼= det(H[0,λ)) ⊗ det(H[λ,µ)). Moreover the restriction of ð+
z to

H+
[λ,µ)(z) is an isomorphism for each z ∈ Uλ ∩ Uµ; this means that we can

identify det(H[0,µ)) and det(H[0,λ)) over Uλ ∩ Uµ using the non-vanishing

section det((ð+)[λ,µ)). The resulting line bundle, which is now defined

over all of B is, by definition, the determinant line bundle L(ð) defined

by the family ð. By construction there is a natural isomorphism

(L(ð))z ≡ (Λmax ker(ð+
z ))∗ ⊗ (Λmaxcoker (ð−

z ))

for each fixed z ∈ B (as expected). If the family ð has index zero we

have dim(H+
[0,λ)) = dim(H−

[0,λ)) for each λ > 0 and it makes sense to

speak about det((ð+)[0,λ) as a section of det(H[0,λ)). These sections patch

togeher (simply because det(ð+
[0,µ)) = det(ð+

[0,λ)) ⊗ det(ð+
[λ,µ))) and we ob-

tain a smooth section det(ð+) ∈ C∞(B,L). This is the analogue of the

section det(T ) considered at the beginning of this section in the finite

dimensional case.

The definition of the determinant bundle involves only the small

eigenvalues of the operators ∆±
z . This is not the case for the natural met-

ric and metric-compatible connection, introduced by Quillen and Bismut

and Freed respectively, which involve instead the full spectrum of ∆±
z .

To define the Quillen metric ‖ · ‖Q first observe that each H[0,λ), and

thus each det(H[0,λ)), inherits a natural metric coming from the L2-metric

of C∞(M z, S/z). The problem with this L2-metric, which we denote by

| · |λ, is that it is not well defined: there is discrepancy between | · |λ and

| · |µ equal to the product of the eigenvalues of ∆+
z in the interval (λ, µ).

Denote by ζ(s,∆+
z , λ) the zeta function for the operator P+

(λ,∞)(z)∆+
z .
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This gives a C∞ function Uλ . z → ζ ′(0,∆+
z , λ) and it is possible to see

that the metrics

(9) ‖ · ‖Q = e−ζ′(0,∆+,λ)/2| · |λ

patch together to define a global metric on L(ð). This is the Quillen

metric; it involves the heat kernel of ∆+
z for all times. It gives another

use for the determinant of a Laplacian as defined in §2.3; in fact for the

section det(ð+) ∈ C∞(B,L) (which vanishes precisely when the operator

ðz is not invertible),
‖ det(ð+)‖2

Q = det(ð−ð+).

The Bismut-Freed connection is somewhat more complicated to describe

and we shall not enter into the details here. Just like the Quillen metric,

it is defined on each det(H[0,λ)) and then shown to be independent of

choices. On each U[0,λ) the Bismut-Freed connection, henceforth denoted

by ∇L, is the sum of two pieces

(10) ∇L|Uλ
= ∇λ + β+(λ).

The first summand ∇λ is a connection which comes ultimately from the

metric but is not globally defined; the second piece is a 1-form β+(λ)

which is given by a t-integral over IR+ involving ð± and the heat-kernel

exp(−t∆±). This term should be thought of as a sort of eta invariant

needed to make the various definitions ∇λ coherent. Bismut and Freed

prove that this connection is compatible with the Quillen metric. Notice

that once again, even from this vague description, it is clear that we

require the heat-kernel for all times.

Given a family of Dirac operators ð = (ðz)z∈B as above we now have

a determinant line bundle L(ð), with a natural metric ‖ · ‖Q and metric

compatible connection ∇L. One of the main contributions of Bismut-

Freed is the explicit computatation of the curvature and holonomy of

∇L; in other words they give geometric formulae for the local and global

anomaly. We refer to their papers for a statement of the precise results.

Our main concern here is of a different nature. Suppose as in §2.1

that the fibration M → B defining the Dirac family is the union along a

fibering hypersurface H of two fibrations with boundary M = M+∪H M−.

We have now four Dirac families, ðM , ðM± and ðH . If we fix a spectral

section P for ðH then we obtain two families of Fredholm operators, as in
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§2.1 and thus two determinant bundles L(ðM+
, P ), L(ðM− , Id − P ). The

questions we shall address later in the paper are

• Q1. Is there a natural isomorphism L(ð) −→ L(ðM+
, P ) ⊗ L(ðM− ,

Id − P )?

• Q2. Is it possible to define Quillen metrics and Bismut-Freed connec-

tions on these two line bundles, L(ðM+
, P ), L(ðM− , Id−P ), and prove

surgery formulæ for the corresponding curvature and holonomy?

3 – A closer look at the methods of Bunke and Vishik

Although the remainder of this paper is devoted mainly to a more

detailed discussion of the surgery calculus of MM/HMM along with a few

of its applications, we wish to describe the other two principal methods,

those of Bunke and Vishik, in at least a bit more detail than we have up

until now.

3.1 – Bunke’s unitary equivalence

The method developed by Bunke [11] was directed specifically at

finding a gluing formula for the eta invariant. Continuing our discussion

from §1.4, Bunke considers a compact manifold X split along a hyper-

surface H as usual, and with a metric g containing an exactly cylindrical

piece around H. On the manifolds with boundary, X±, the Dirac oper-

ators are endowed with augmented APS boundary conditions associated

to a choice of Lagrangian subspaces Λ± ⊂ ker (ðH). The issue is to find

a good expression for the defect

δ = δ(Λ+,Λ−) ≡ η(ðX) − η(ðX+
,Λ+) − η(ðX− ,Λ−).

In the easier case, when ðH is invertible, Bunke shows that the reduction

mod ZZ of the defect vanishes. He goes on to obtain a formula for the (no

longer reduced) defect in the general case:

(11) δ(Λ+,Λ−) = m(Λ+,Λ−)−2I(P+, P−)+dim ker (D+)−dim ker (D−).

Here m(Λ+,Λ−) is an invariant of the pair of Lagrangian subspaces which

is given in a few different ways. The first is in terms of the averaged

Maslov class, as explained in §2.2, while the second, the form in which it

was originally found by Lesch and Wojciechowski [32], is as a sum of
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eigenvalues of sum matrix. This expression may be written much more

simply and neatly as in (6), as discovered in [25]. To explain the other

terms on the right, we must first explain his proof a bit more.

The core of the proof involves comparing two different Dirac oper-

ators. The first is the sum of Dirac operators ðX± on the disjoint sum

of X±, where these components are now assumed to have finite product

cylindrical ends. The other is for the sum of Dirac operators on the dis-

joint union of the manifold X, assumed to contain a long cylindrical piece

around H, and the cylinder CR ≡ [−R, R] × H. On each of these pieces,

the Lagrangians Λ± are used to augment the APS conditions at the ap-

propriate boundary components. These sums of operators are called D0

and D+, respectively. The operator D− is obtained from D0 by applying

a unitary map, defined using a partition of unity, which identifies the

pieces of X+ 0 X− with the equivalent pieces of X 0 CR. This is done

only so that the operators D± live on the same manifold.

The other terms on the right in (11) may now be explained. The

dimensions of the kernels of D± are the obvious numbers. P± are the

positive spectral projections for the operators D±, and after Bunke shows

that their difference P+−P− is compact, the relative index between them,

I(P+, P−), is well-defined.

In the nondegenerate case, only the first term on the right in (11)

is necessarily trivial. However, if ðX itself has only trivial nullspace (at

least when the cylindrical piece is sufficiently long), then the other terms

on the right in (11) also vanish.

This formula is obtained by comparing the heat kernels of the oper-

ators D±. This is accomplished by comparing a particular regularization

of the integrals required to define the eta functions. These regulariza-

tions are

R±(s, t) ≡ 1

Γ( s+1
2

)

∫ ∞

0

r
s−1
2 D±e−(t+r)D2

± dr.

The difference of eta invariants should arise as the limit as t → 0 of the

difference of traces of the R± at s = 0. Unfortunately, these operators

are not continuous in the trace norm down to t = 0, which makes this

procedure not entirely straightforward. Additional terms are added on to

ensure that the limit exists, and these ultimately account for the various

terms in the expression (11) for the defect.
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We note again that the dependence of the invariant m(Λ+,Λ−) on the

Lagrangians Λ± was first considered by Lesch and Wojciechowski [32],

and they obtained one of the linear algebraic expressions for this number,

but not its identification with the averaged Maslov class.

Amongst the advantages of this procedure are its relatively elemen-

tary nature, and the reasonably explicit identification of the integer part

of the defect.

3.2 – Vishik’s variation of boundary conditions

The second approach, by Vishik, was developed for the study of de-

terminants and analytic torsion. In [61] Vishik studies determinants

of elliptic pseudodifferential operators in great generality and detail and

gives, amongst other things, a new proof of the Cheeger-Müller theorem.

Vishik’s approach was recently adapted by Brüning and Lesch [10] to

give another proof of the gluing formula for the eta invariant. Since this

paper is somewhat more accessible than those of Vishik, and because we

have chosen to concentrate on the surgery formula for the eta invariant

specifically, we follow the discussion from this latter paper instead.

Instead of considering a family of metrics degenerating (or lengthen-

ing) transversally to H, the perspective is now the ‘more classical’ one,

involving boundary conditions. The goal is to define a family of elliptic

boundary problems (ðX ,Πθ) on the manifold X+ 0 X−. The boundary

conditions are given by a family of orthogonal projections Πθ, |θ| < π/2,

acting on the direct sum L2(H;E) ⊕ L2(H;E). The two copies of this

Hilbert space arise because H needs to be thought of as the boundary of

X+ and of X− separately. To define Πθ we use the following notation.

For a (sufficiently smooth) section u on X+ 0X−, denote its restriction to

∂X± by u(±0). Also, let Π±
X± and Π0

X± denote the spectral projections

onto the positive, negative and zero spectral subspaces of ðH , where H

is considered alternately as the boundary of X+ and X−, respectively.

Then
cos θ Π+

X+
u(+0) = sin θ Π+

X−u(−0)

sin θ Π−
X+

u(+0) = cos θ Π−
X−u(−0)

Π0
X+

u(+0) = Π0
X−

defines the nullspace of the orthogonal projector on L2(H;E)2 which we

term Πθ.
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This family of boundary conditions interpolates between two ex-

tremes. One extreme, at θ = π/4, is the ‘transmission condition’: any

section u which solves ðu = 0 on X+ 0X− and also Π0u = 0 must extend

smoothly across H, and thus corresponds to an element of ker (ðX); the

other, when θ = 0, corresponds to APS conditions independently on the

two pieces X±. As the parameter θ changes, the first projector ‘rotates’

to the other.

Having defined these boundary conditions, one obtains a family of

self-adjoint problems, and for each operator in this family one considers

the eta invariant, which we denote by η(ðθ). The main work in this

proof is showing first that the eta invariant for this family of boundary

problems is well-defined, i.e. that the eta function is regular at zero,

and then computing the derivative of the eta invariant with respect to θ.

After suitable normalizations, conjugating by unitary transformations,

Brüning and Lesch show that this derivative vanishes. Unwinding the

various normalizations leads to the same gluing formula.

While perhaps not quite as simple as Bunke’s method, this method

seems perhaps the simplest to adapt for the eventual study of gluing

problems in more complicated situations. One such situation arises when

the hypersurface H is the union of hypersurfaces with boundary Hj in-

tersecting at a common codimension two submanifold, Y = ∂Hj for all j.

This generalization would be of particular importance if the signature

formula of [26] is to be extended to manifolds with corners of arbitrary

codimension, cf. §5.3 below.

4 – Pseudodifferential operators and the surgery problem

After the cursory treatments of the other methods in the previous

section, we now turn to a description of some of the details of the surgery

calculus of MM/HMM from [34], [25]. We follow these papers, as well

as [36] closely. In in the first two subsections below we continue and

extend the discussion of §1.3 on the b-calculus, and shall refer to the

notation there without further comment.

4.1 – Degenerating metrics

Let X = X+ ∪H X− as in the previous sections. Assume, just for

the time being, that the Riemannian metric on X is of product-type
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near H. Let UH = (−T, T ) × H be a collar neighbourhood of H. Letting

T → +∞ we obtain two manifolds, X̂+, X̂−, with infinite cylindrical ends.

In general a manifold

Ẑ = Z ∪∂Z (∂Z × (−∞, 0])

with a cylindrical end and metric dt2+h∂Z along the cylinder ((−∞, 0])t×
∂Z) can be compactified as a manifold with boundary Z with an exact

b-metric, simply by making the change of variable log x = t. In a neigh-

bourhood of the boundary {x = 0}, corresponding to t = −∞, the metric

takes the form
dx2

x2
+ h∂Z .

We can now give a natural analytic realization of the stretching procedure

in this approach to the surgery problem. Let h be an arbitrary Rieman-

nian metric on X and let x ∈ C∞(M) be a signed defining function for

H; thus H = {x = 0}, dx 6= 0 on H, but x < 0 on X− and x > 0 on X+.

Consider the one-parameter family of metrics

(12) gε =
dx2

x2 + ε2
+ h.

For each ε > 0 the metric gε is non-degenerate on X. As ε → 0 the metric

gε develops a neck across H, the length of which is L(ε) = (2 sinh−1( 1
ε
)+

O(1)). The limiting metric, at ε = 0, is

(13) g0 =
dx2

x2
+ h;

this is an exact b-metric on X+ 0 X−. We shall denote these two exact b-

manifolds by X+, X− and their disjoint union by X = X+ 0X−. In other

words, g0 endows the interior of X± with the structure of a Riemannian

manifold with asymptotically (no longer necessarily product) cylindrical

ends.

In summary, the family of metrics (12) models the degeneration of X,

through the stretching of a tubular neighbourhhod of H, from a closed

compact manifold to a manifold X which is the disjoint union of two

manifolds with asymptotically cylindrical ends.
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As already explained the invariants we are interested in are each

associated (one way or another) to the heat kernel of the Dirac Laplacian

ð2. Since the heat operator is defined through the resolvent (ð2 − λ)−1

we conclude that the solution of the surgery problem for these invariants

rests ultimately on a deep understanding of the uniform behaviour, down

to ε = 0, of the resolvent associated to ð2
X,gε

, the Dirac Laplacian defined

by metric (12). Amongst the other consequences of this analysis will be

a complete picture of the degeneration of the spectrum.

The problem breaks into two intimately related problems. The first is

to describe the limit picture, i.e. the geometry and analysis corresponding

to ε = 0. This is nothing more than the setting of the b-calculus which

we have already introduced. The second is to find a geometric setting

(i.e. an appropriately blown-up space) on which the relevant Schwartz

kernels behave uniformly with respect to ε.

4.2 – The limit picture: more on the b-calculus

We have already discussed the b-calculus of pseudodifferential oper-

ators on manifolds with boundary in §1.3. We shall now continue this

discussion with two goals. On the one hand we shall describe more pre-

cisely the analytic properties of the operators appearing in the limit of

the surgery problem, while on the other hand parametrix construction

for inverses of b-elliptic operators illustrates most of the main ideas in

the more involved parametrix construction in the surgery calculus.

Getting down to business at last, consider the definition of the pseu-

dodifferential calculus as given in §1.3. To motivate the introduction of

the blown-up space there, we consider a simple example drawn from [36]

This is the b-differential operator

(1 − x)x
d

dx
+ c c ∈ IR

on the manifold with boundary Z = [0, 1]. This operator is invertible

acting on xα(1 − x)βH1
b ([0, 1]) if α < −c, β > c; the Schwartz kernel of

its inverse is given quite explicitly by the distribution

(14) Kc(x, x′) = − xc

(1 − x)c

(1 − x′)c

(x′)c
H(x′ − x),
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where H(·) is the Heaviside function. This Schwartz kernel exhibits the

usual diagonal singularities in the interior of Z2 = Z × Z, and has ad-

ditional singularities on the boundary hypersurfaces lb ≡ (∂Z × Z) =

{x = 0}, rb ≡ (Z × ∂Z) = {x′ = 0}, and on the part of the corner

which intersects the diagonal (viz. (∂Z × ∂Z) ∩ ∆ = {(0, 0) ∪ (1, 1)}).

The corner carries the most complicated singularities, resulting from the

interaction of those coming from the diagonal ∆ and those coming from

the two boundary hypersurfaces. The key observation is that the corner

singularities can be simplified, or resolved, by introducing (generalized)

polar coordinates. For example near (0, 0) consider the singular change

of coordinates

r = x + x′, τ =
x − x′

x + x′ .

Then 2x = r(1+τ), 2x′ = r(1−τ), and Kc may be written as the product

of a C∞ function and the distribution

(15)
(1 + τ)c

(1 − τ)c
× H(−τ)

which is singular on three non-intersecting hypersurfaces, τ = 0, τ = 1

and τ = −1. These new variables are not smooth at the corner relative to

the original ones, but on the b-stretched product Z2
b of §1.3 they are both

smooth and independent. Recall again that (assuming ∂Z is connected)

Z2
b is the blow-up of Z2 along ∂Z × ∂Z, denoted [Z2; ∂Z × ∂Z]. If, as in

the example above, ∂Z is not connected, then Z2
b = [Z2; (∂Z × ∂Z) ∩ ∆].

As a set [Z2; ∂Z × ∂Z] is obtained by replacing the corner ∂Z × ∂Z with

its (inward pointing) spherical normal bundle S+N(∂Z × ∂Z):

[Z2; ∂Z × ∂Z] = Z2\(∂Z × ∂Z) 0 S+N(∂Z × ∂Z).

The b-stretched product comes with a natural surjective blow-down map

β2
b : [Z2; ∂Z × ∂Z] −→ Z2

and is given the minimal C∞ structure for which the lift of C∞(Z2) and

of the polar coordinates around the corner are smooth. There are four

important submanifolds in Z2
b ; the lifted diagonal ∆b, the left and right

boundary faces, lb, rb, obtained by lifting the corresponding boundary
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hypersurfaces in Z2 and finally the new boundary hypersurface created

by the blow-up: ff(Z2
b ) = S+N(∂Z × ∂Z). This is called the front face

and by its very definition has the structure of a fibre bundle, with fibres

diffeomorphic to the interval [−1, 1].

The blow-up [M ; N ] of a manifold with corners M along the the

submanifold N may be defined in substantial generality, assuming only

that N satisfies certain local triviality conditions. It formalizes the intro-

duction of polar coordinates around N . We shall encounter other, more

complicated, examples below.

The b-calculus is defined by specifying the singularities allowed in the

Schwartz kernels of its elements. As the example illustrates, and this is

really the main point, these singularities are best understood when they

are resolved, i.e. lifted to Z2
b .

In order to make the definition of §1.3 more precise recall first that

if M is a manifold with boundary {x = 0} and if E ⊂ C × IN+ is a set of

indices, then the space AE
phg(M) of polyhomogeneous conormal functions

can be defined. It consists of functions which are smooth in the interior

and have an asymptotic expansion of the type

(16)
∑

(z,k)∈E

az,kx
z(log x)k, az,k ∈ C∞(∂M)

near the boundary. The index set E specifies which exponents are allowed

in (16); the set IN × {0}, which we denote by 0 for brevity when the

context is clear, corresponds to functions smooth up to the boundary. A

similar definition may be given when M is a manifold with corners; one

simply requires expansions of this type at all boundary hypersurfaces and

product-type expansions at the corners. Here it is necessary to specify an

index family E = (E1, . . . , En), where Ej is an index set for the boundary

hypersurface Hj, j = 1, . . . , n.

Now consider the case M =Z2
b and fix an index family E=(Erb, 0, Elb),

where the boundary hypersurfaces are listed in the order left boundary,

front face and right boundary. In particular, the index set associated to

the front face ff(Z2
b) is the one associated with smooth functions.

The b-calculus Ψ∗,E
b (Z) is the sum of two pieces:

Ψ∗,E
b (Z) = Ψ∗

b(Z) + Ψ̃−∞,E
b (Z).
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The first one, Ψ∗
b(Z), is the small calculus: elements in Ψ∗

b(Z) have

Schwartz kernels on Z2 lifting to Z2
b so as to have the usual interior

singularities along ∆b, vanish to infinite order at lb, rb and to be C∞ up

to the front face ff(Z2
b). To say that a conormal singularity along ∆b

is smooth up to ff(Z2
b) means that it extends smoothly across this face

as a distribution conormal to the extended diagonal. For example, a b-

differential operator has Schwartz kernel which is a smooth delta section

along ∆b, and hence Diff∗
b(Z) ⊂ Ψ∗

b(Z) as expected. The second sum-

mand contains the boundary terms, which are smooth in the interior and

polyhomogeneous, with index family E at the boundary of Z2
b :

Ψ̃−∞,E
b (Z) = AE

phg(Z
2
b ).

Strictly speaking, it is also necessary to add to these two summands a

third, containing ‘very residual’ parts of the calculus. Since these are not

important for the present discussion, we shall not discuss them further.

The small b-calculus is an algebra. The full b-calculus itself is not,

but only for the trivial reason that sometimes the boundary terms are

not integrable. When they are, it is possible to give precise composition

formulæ: when A ∈ Ψ∗,E(Z) and B ∈ Ψ∗,F(Z), the resulting operator

A ◦ B will be an element of Ψ∗,G(Z), where the new index family G may

be determined explicitly from E and F . These composition formulæ are

one cornerstone of the whole theory; in some sense, the main work in set-

ting up one of these degenerate calculi is in proving such formulæ. They

may either be proved directly, as in [36], which becomes less feasible in

more complicated geometric situations, or else using general facts about

pushforwards of polyhomogeneous conormal distributions with respect to

so-called b-fibrations on manifolds with corners, cf. [38]. Closely related

to these arguments are those used to establish the precise mapping prop-

erties for these operators, in particular their boundedness on weighted

Sobolev spaces.

For an invertible elliptic b-pseudodifferential operator A, the inverse

is an element of Ψ∗,E
b (Z) for some particular choice of the index set E .

This important result is, of course, the raison d’être for establishing the

calculus. It is not immediately apparent why it should be necessary

to enlarge the small calculus to include the polyhomogeneous boundary

terms. We explain this issue now. Let P ∈ Diffm
b (Z) be a b-elliptic
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operator. Using a suitably adapted symbol calculus, we may construct a

parametrix Qσ ∈ Ψ−m
b (Z) for P . This has the property that P ◦ Qσ =

Id − Rσ with Rσ ∈ Ψ−∞
b (Z). At this point it might seem that we are

essentially done, but this is not the case because elements of Ψ−∞
b (Z) are

not compact on L2. In fact the element Rσ ∈ Ψ−∞
b (Z) is compact on

L2 if and only if the Schwartz kernel of Rσ restricted to the front face is

equal to zero. In one direction this property should be clear. In fact, if

(KRσ)|ff = 0, then KRσ vanishes when restricted to any boundary face of

∂Z2
b , and so its pushforward to Z2 also vanishes on the entire boundary of

Z2. Compactness of operators with Schwartz kernels of this form, which

are also smooth in the interior, follows from the Arzelà-Ascoli theorem.

To remedy this situation, we look for a correction term Q′ with the

property that

(17) P ◦ (Qσ − Q′) = Id − (Rσ − R′) with (KRσ)|ff = (KR′)|ff .

Thus the operator Q′ is intended to cancel the restriction to the front

face of Rσ.

The restriction of the Schwartz kernel to the front frace is defined for

any element in the small calculus; it defines a natural homomorphism

I : Ψ∗
b(Z) −→ Ψ∗

b(N
+(∂Z)).

with N+(∂Z) ∼= [−1, 1] × ∂Z the compactified inward pointing normal

bundle. This map is called either the normal or indicial homomorphism,

and we use these two names interchangeably. (These two model operators

exist for any of the degenerate calculi, but coincide only in the special

case of the b-calculus.) It is defined by observing that the front face in

Z2
b is canonically identified with the front face in the stretched product of

N+(∂Z). Thus the restriction of the kernel to ff(Z2
b) may be transferred

to the other stretched product and using the dilation structure of N+(∂Z)

may be extended further to be homogeneous in the interior. This gives a

kernel on (N+(∂Z))2
b , i.e. a b-pseudodifferential operator on N+(∂Z). In

the special case of a b-differential operator P , locally given by

P =
∑

j+|α|≤m

aj,α(x, y)(x∂x)
j∂α

y
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then it is not hard to check that this procedure leads to the indicial

operator for P ,

I(P ) =
∑

j+|α|≤m

aj,α(0, y)(x∂x)
j∂α

y .

The normal homomorphism may be thought of as a noncommutative

secondary boundary symbol.

To solve (17) then we need to find an operator Q′, defined by a

Schwartz kernel in Z2
b , such that I(P ) ◦ I(Q′) = I(Rσ). Formally

(18) I(Q′) = I(P )−1 ◦ I(Rσ)

fixes the Schwartz kernel of Q′ near the front face, and this may then be

extended to all of Z2
b . Formula (18) shows that in order to construct a

parametrix we need to invert the normal operator of P ∈ Diffm
b (Z). It is

because the inverse I(P )−1 always involves polyhomogeneous boundary

terms that we must always include the polyhomogeneous part of the gen-

eral b-calculus. This may be seen already in the one-dimensional example

above.

The invertibility of I(P ) is considered relative to weighted Sobolev

spaces, and as in §1.3, the basic result is that except for a discrete set

of values of the weight parameter I(P ) can be inverted; the inverse has

polyhomogeneous expansions at lb and rb. Different weights give rise to

different index sets in the expansion. In the special case ðX ∈ Diff 1
b , the

omitted set of weights coincides exactly to the spectrum of the boundary

operator ð∂X ; the elements in the various index families, i.e. the expo-

nents allowed in the polyhomogeneous expansions, are given explicitly in

terms of specL2(ð∂X). The same sort of result also holds for ð2.

In summary, we have indicated how, for each ‘admissible’ weight δ,

i.e. one for which I(P )−1 exists, this construction gives the Schwartz ker-

nel of a right parametrix Gδ for P ∈ Diff m
s (Z) acting on xδHm

b ; Gδ itself

is an element of Ψ
−m,E(δ)
b , where the index family E(δ) can be explicitly

described. The remainder term Rδ = GδP − Id is compact on xδL2. A

left parametrix with similar properties is constructed similarly.

This parametrix construction may be applied to show that the actual

resolvent (ð2 − λ)−1 ∈ Ψ
−m,Eλ
b , for some explicitly given index family Eλ.
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4.3 – The surgery calculus

Having described the limit picture for the surgery problem at ε = 0

in the family of metrics (12), we now turn to a description of the uniform

behaviour of the family of resolvents (ð2
X,gε

− λ)−1.

The basic idea is to incorporate the parameter ε into the geometric

description of the Schwartz kernels. Thus consider the space M = X ×
[0, ε0], with projection πε : M → [0, ε0]. The metric gε lifts to this space,

and is nondegenerate along the fibres of πε. The vector field
√

x2 + ε2∂x is

of (essentially) unit length with respect to this metric, and thus appears

in the definition of the Dirac operator ðX,gε (henceforth denoted simply

by ðε). This vector field is not smooth on M – it has singularities along

the submanifold H × {0} = {x = 0, ε = 0}. As usual, we resolve these

singularities by blowing up this submanifold.

We thus define the single surgery space Ms as the blow-up of M along

H × {0}:

Ms = [M ;H × {0}] = (M\(H × {0}) 0 S+N(H × {0}).

The single surgery space is equipped with a blow-down map βs : Ms → M

and thus with a projection πs,ε : Ms → [0, ε0]. The set on the right hand

side of the formula above is given the minimal C∞ structure containing

both the lift of C∞(M) and also the polar coordinate functions (r, θ) (with

x = r cos θ, ε = r sin θ).

Besides the uninteresting boundary at ε = ε0 the single surgery space

has two boundary hypersurfaces: the b-boundary X, corresponding to the

original boundary at ε = 0, X =(closure of β−1({ε = 0}\H))= X− 0 X+,

and the new boundary hypersurface created by the blow-up, the surgery

boundary H = S+N(H×{0}) ∼= [−1, 1]×H. By construction, the singular

vector field
√

(x2 + ε2)∂x lifts to be smooth on Ms; in fact the lift belongs

to Vb(Ms). The latter space is the span, over C∞(Ms), of lifts of the vector

fields on M that are tangent to H ×{0}. Clearly the Dirac operator ðε is

in the algebra of operators generated by vector fields in Vb(Ms). However,

ðε does not differentiate in the direction of the (lift of the) vector field

ε∂ε, and so we restrict our attention to the somewhat smaller class of

surgery vector fields on Ms,

Vs(Ms) = {V ∈ Vb(Ms) : (πs,ε)∗V = 0}.
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The lift of the family of metrics gε to Ms is smooth and non-degenerate

on Vs(Ms); moreover its restriction to X is precisely the exact b-metric

g0. The lifted metric may also be restricted to H, and gives another exact

b-metric there.

The surgery differential operators on X, Diff ∗
s(X), are now defined

as the differential operators generated over C∞(Ms) by the vector fields

Vs(Ms). The notation Diff ∗
s(X), referring to X instead of Ms, is meant

to indicate that these operators should be regarded as acting on X (or

rather, the fibres of πε) and depending parametrically in a precise manner

on ε. The Dirac operator ðε is a surgery differential operators of order one.

In fact it is surgery-elliptic, in the sense that may be locally expressed by

an elliptic combination of basis of sections of Vs(Ms). Similarly ð2
ε ∈ Diff 2

s

and it is elliptic as well. (Henceforth we shall merely write elliptic rather

than surgery-elliptic).

The main goal now is to define the surgery calculus, a pseudodiffer-

ential calculus naturally containing the inverses (when they exist) of the

elliptic surgery differential operators. Surgery pseudodifferential opera-

tors are defined in terms of their Schwartz kernel on X2 × [0, ε0]. These

are distributions on X2 × [0, ε0] with specific singularities along the sub-

manifolds ∆ × [0, ε0], H × H × {0}, H × X × {0}, and X × H × {0}. It

is convenient to introduce the notation

HR = X × H HL = H × X.

The Schwartz kernels of surgery operators are best described as being

pushed forward from the surgery double space M 2
s , which is obtained

from X × X × [0, ε0] by blowing up these various submanifolds. The

order in which we perform these blow-ups is important. First we blow

up H × H × {0}, obtaining the space [X2 × [0, ε0];H
2 × {0}] with its

blow-down map β̂2. Then we blow up in [X2 × [0, ε0];H
2 × {0}] the lifts

by β̂2 of HR × {0} and HL × {0}. This defines M 2
s , and we denote this

two-step blow-up process more succinctly by

M 2
s = [X2 × [0, ε0];H

2 × {0}; HR × {0} 0 HL × {0}].

The total blow-down map is β2
s : M 2

s → X2 × [0, ε0].

As a general note about iterated blow-ups, the order in which various

submanifolds of a manifold with corners are blown up is important and
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will in general affect the final space. There are various conditions on the

submanifolds, however, which ensure that the iterated blow-up may be

performed in any order.

The blow-ups in the definition of M 2
s define three new boundary

hypersurfaces. The blow-up of H2 × {0} produces the face Bds, and the

blow-up of HR × {0} and HL × {0} produces the hypersurfaces Brs and

Bls. We also have the boundary hypersurface coming from the original

boundary at ε = 0 which is denoted by Bdb. Finally the diagonal ∆ ×
[0, ε0] lifts through β2

s to a submanifold ∆s ⊂ M 2
s . Notice that both Bds

and Bdb have non-empty intersection with the lifted diagonal (the “d” in

the subscript is meant to suggest this).

The calculus of surgery pseudodifferential is the sum of two pieces:

Ψ∗,E
s (X) = Ψ∗

s(Z) + Ψ−∞,E
s (Z).

The small surgery calculus Ψ∗
s(X) consists of operators with Schwartz

kernels on X2 × [0, ε0] which are pushforwards from M 2
s of distributions

which exhibit the usual conormal singularities along the lifted diagonal

∆s and which vanish to infinite order at the boundary hypersurfaces Brs

and Bls (the ones not intersecting the lifted diagonal). By construction,

Diff ∗
s(X) ⊂ Ψ∗

s(Z).

The second piece of the calculus contains operators with nontrivial

boundary terms; their Schwartz kernels are smooth in the interior of

M 2
s but have polyhomogeneous conormal expansions of the type (16) at

the various boundary faces. As in the discussion of the b-calculus, the

exponents allowed in these expansions are given by an index family

E = {Eds, Els, Ers, Edb}

The boundary faces Bls and Brs are given index sets with strictly positive

real part, which ensures that the corresponding kernels vanish at these

faces; the boundary faces Bds and Bdb, the ones meeting ∆s, are given

index sets with non-negative real part and with the first term in the

expansion equal to (0, 0), which ensures that the kernels can be restricted

to these faces. It is possible to consider index sets depending on a complex

parameter, which will be the case for the resolvent (ð2
ε −λ)−1, and it also

possible to discuss holomorphy in this context.
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Again as with the b-calculus, it is most important to establish how

surgery pseudodifferential operators behave under composition. There

are composition formulæ of the type

Ψm,E
s (X) ◦ Ψm′,E′

s (X) ⊂ Ψm+m′,E′′
s (X),

with E ′′ given explicitly by E , E ′. These are proved using the general

results on pushforwards of polyhomogeneous distributions in [38].

4.4 – The surgery resolvent

Having now defined the surgery calculus, one would like to show that

the resolvent (ð2
ε − λ)−1 lies in it for a suitable choice of the index family

E = E(λ). This is proved by constructing a good parametrix for the

resolvent in this calculus, which we now sketch.

First consider the case where λ ∈ Ω, Ω ∩ [0,+∞) = ∅. We wish to

construct an element E(λ) in the surgery calculus which is an inverse of

(ð2
ε − λ) modulo a “small” remainder:

(19) (ð2
ε − λ) ◦ E(λ) = Id − R(λ).

Provided that the remainder term is sufficiently residual, the right hand

side of (19) can be inverted using Neumann series, and after some work

we can conclude that the resolvent itself is a surgery pseudodifferential

operator.

Using the symbol calculus, a version of which exists for the small

surgery calculus, we obtain an initial parametrix Eσ(λ) ∈ Ψ−2
s (X), with

(ð2
ε − λ) ◦ Eσ(λ) = Id − Rσ(λ) Rσ(λ) ∈ Ψ−∞

s (X).

The remainder term Rσ(λ) is compact when ε > 0, but not when ε = 0.

The problem comes from its nonvanishing restriction to the two boundary

hypersurfaces meeting the lifted diagonal, Bdb and Bds.

Exactly as we did in the b-calculus, we must then find a correction

term which cancels the first term in the Taylor series of R(λ) at Bdb and

Bds. In order to implement this argument, we use two normal homomor-

phisms, given by restrictions of Schwartz kernels to these two boundary

faces. To be more specific, there are two natural identifications

(20) Bds = [H
2
; ∂H

2
] Bdb = [X

2
; ∂X

2
].
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Restriction to each of these hypersurfaces defines, in turn, two surjective

homomorphisms

(21) Ns : Ψ∗
s(X) → Ψ∗

b(H) Nb : Ψ∗
s(X) → Ψ∗

b(M),

the surgery normal and b-normal homomorphism, respectively.

Notice that in (20) we are blowing up the entire corner, not just

that component of it which intersects the lifted diagonal. The resulting

b-calculi in (21) are therefore slightly larger than the ones considered in

§4.2; the differences in their properties, however, are negligible.

These normal homomorphisms are also natural with respect to the

geometry. For example,

Ns(ðε) = ðH Nb(ðε) = ðX ≡ ð0,

where ðH is defined in terms of the restriction of the lift of gε to H.

Returning to the construction of a good parametrix, we must modify

Eσ(λ) by an operator E(λ)′ ∈ Ψ−∞,E
s for some index family E and such

that

(ð2
ε − λ) ◦ (Eσ(λ) − E(λ)′) = Id − (Rσ(λ) − R′(λ)) with

KRσ(λ)|ds = KR′(λ)|ds KRσ(λ)|db = KR′(λ)|db.

This is equivalent to solving

(22)
Ns(ð2

ε − λ) ◦ Ns(E(λ)′) = Ns(Rσ(λ))

Nb(ð2
ε − λ) ◦ Nb(E(λ)′) = Nb(Rσ(λ)).

In other words, once again we need to invert the two normal operators:

(ð2
H

−λ) and (ð2
0 −λ). For λ away from the spectrum of ð2

H
and ð2

0, as we

are at present assuming, this is possible. The solutions of these problems

in (22) always have nontrivial asymptotic expansions at ∂M 2
s .

This argument fixes the Schwartz kernel of E(λ)′ on Bds and Bdb

respectively, and we then find some extension E(λ)′ to the entire space

M 2
s . The remainder term after this correction term has been added is

now sufficiently residual that we can iterate it away without difficulty.

In conclusion, we reemphasize that the fundamental step in proving

that the resolvent (ð2
ε −λ), for λ ∈ Ω, is an element of the surgery calculus

Ψ−2,Eλ
s (X) is the inversion of the two normal homomorphisms Ns and Nb.
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4.5 – Small eigenvalues in the nondegenerate case

In analyzing the large time behaviour of the heat kernel exp(−tð2
ε),

uniformly in ε, it is necessary to understand the structure of the resolvent

(ð2
ε −λ) for λ near 0. The simplest case to understand is when we impose

the assumption that

(23) the Dirac operator ðH is invertible.

This hypothesis is called nondegeneracy. As indicated in §4.2, under this

assumption the operator ð2
0 induced on X by the limiting metric g0 is

Fredholm on the ordinary (unweighted) L2 space. In particular, spec (ð2
0)

is discrete near 0. This can be sharpened: if σ2
0 is the smallest eigenvalue

of the boundary operator ðH associated to ð0, then the spectrum of ð0 is

discrete in the interval [0, σ2
0). It is continuous, possibly with embedded

discrete spectrum, in [σ2
0,+∞). The full spectral and scattering theory of

such operators is described, using the b-calculus, in [36]. A similar, but

easier, analysis shows that assuming (23), the surgery normal operator

Ns(ðε) has only continuous spectrum contained in [σ2
0,+∞).

Choose δ so that spec (ð2
0) ∩ (−δ, δ) = ∅. For λ in a δ-neighbourhood

of 0, the resolvent of ð0 can be written as

(ð2
0 − λ)−1 = Res0(λ) +

1

λ
Π0,

where Res0(λ) a parametrix depending holomorphically on λ and with a

finite rank error term, and Π0 is the orthogonal projection onto the null

space of ð2
H . We let N = dim null(ð0).

We can modify the construction of the resolvent in the surgery cal-

culus to take into account this refined structure of the inverse of the

b-normal operator. In fact, it is not hard to produce a surgery pseudodif-

ferential operator G(λ), depending holomorphically on λ near zero, such

that

(24) (ð2
ε − λ) ◦ G(λ) = Id − Π(λ)

with Π(λ) a surgery pseudodifferential operator depending holomorphi-

cally on λ and of uniform finite rank = N , and with Nb(Π(λ)) = Π0.
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Projecting the operator Π(λ) onto its range, it is clear that the invert-

ibility of the right hand side of (24) is equivalent to the invertibility of an

N × N -matrix of the form (δij − aij(λ)). If q(ε, λ) is the determinant of

this matrix, then it is holomorphic in λ for each fixed ε and polyhomo-

geneous conormal in ε. Moreover q(0, λ) = λN . For each fixed ε ∈ [0, ε0],

the function q(ε, ·) has precisely N zeros, counting multiplicity; these are

the small eigenvalues of ð2
ε. The orthogonal projection Πε onto the small

eigenvalues of ð2
ε is therefore of uniform finite rank and it follows from

this construction that it too is a surgery pseudodifferential operator. The

small eigenvalues themeselves have polyhomogeneous expansion in ε.

In summary, assuming the nondegeneracy condition (23), for λ in

a small neighbourhood of zero, the resolvent (ð2
ε − λ) is a meromorphic

family of surgery pseudodifferential operators, with poles at the small

eigenvalues of ð2
ε. The orthogonal projection onto the small eigenvalues

is a surgery pseudodifferential operator of uniformly finite rank N =

dim (null(ð0)).

4.6 – The logarithmic surgery calculus

The nondegeneracy condition (23) is strong, and often not satisfied

in applications. To proceed further without this assumption requires

substantially more work, unfortunately. Although we will not be able to

describe this in anywhere near the amount of detail we have been going

into up until now, we wish to indicate a few of the new features in this

general case.

The main problem is already seen in the very simplest example of

surgery degeneration, namely the one-dimensional example of the interval

X = I = [−1, 1]x with the family of metrics gε = dx2/(x2 + ε2). (The

boundaries at x = ±1 are unimportant here, and we could well have

considered the surgery degeneration of a circle at the risk of slightly

more complicated notation.) The total length of X with respect to gε

is 2Lε, where Lε = arcsinh (1/ε), and the (Dirichlet) eigenfunctions of

the Laplacian ∆ε are of the form uk(r, ε) ≡ sin(πkr/Lε), k ∈ ZZ, where

r = arcsinh (x/ε). Already we see the new length scale: each of these

quantities is most naturally expressed not in terms of the parameter ε,

but rather in terms of the inverse logarithm of ε, ilg ε = 1/ log(1/ε).

Proceeding further with this example, we next examine the lifts of

the eigenfunctions above on the single surgery space Ms. After a brief
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calculation, we see that uk lifts to a function obviously smooth in the

interior of Ms, equal to 1 on the surgery front face (the lift of {0}× {0}),

and equal to (−1)k on the adjacent boundaries at ε = 0. The lift is not

polyhomogeneous on Ms, and does not behave uniformly in ε. In fact, the

oscillations of these eigenfunctions somehow disappear into the corners,

at the intersection of the surgery front face and the other b-faces at ε = 0.

These various issues must be dealt with simultaneously, and again

the idea is to resolve these new singular phenomena geometrically by

performing some new blow-ups. We describe these only for the singular

surgery space, and shall now define the single logarithmic surgery space

MLs. The double logarithmic surgery space M 2
Ls is unfortunately much

more complicated than the (already none-too-simple) space M 2
s , and we

must refer the interested reader to [25] for its definition.

To deal with the new length scale we first define the logarithmic blow-

up of Ms. This is obtained by simply replacing the boundary defining

function ρ of each boundary hypersurface (at ε = 0) by ilg ρ. In effect, this

defines a new (but equivalent) C∞ structure on Ms. Smooth functions

in this new structure are those which are smooth in the various ‘new’

functions ilg ρ on the original space. Although this may not appear to

be a blow-up in the sense we have been describing this concept, it may

be recast in this language, cf. [25]. Next we blow up the corners, i.e. the

intersections of the b-faces and the surgery face at ε = 0. The resulting

space is now called the single logarithmic surgery space MLs. It has four

boundary faces at ε = 0, instead of the two possessed by Ms.

Rather than entering into any more details of this construction, suf-

fice it to say that the overall strategy is much the same as before. A

double logarithmic surgery space M 2
Ls is defined, and is equipped with

blow-down maps to MLs. The space Ψ∗,E
Ls of logarithmic surgery pseudod-

ifferential operators is again defined as containing operators, the Schwartz

kernels of which are pushed forward from M 2
Ls, and these kernels on the

double logarithmic surgery space are conormal at all boundary faces (note

that now this implies the existence of expansions in powers of ilg ρ at any

face with boundary defining function ρ). The main theorem, proved by

an explicit parametrix construction, is that in the degenerate case the

resolvent (ð2
ε − λ)−1 is an element of this surgery calculus, in a precise

sense uniformly even as λ approaches zero.

The one aspect of this that we shall discuss slightly more is the new
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normal operator that must be considered. This is the reduced normal

operators, RN(ðε). To define it, first recall that since 0 is now an eigen-

value of ker(ðH), the limit operator ð2
0 is not Fredholm on L2 (the weight

0 is one of the omitted ones). However, it is Fredholm on x±δL2 for δ

sufficiently small, and has a parametrix G(±δ) in the b-calculus. The

structure of this parametrix can be used to prove that near H

ð2
0v=0, v ∈ x−δL2

b(X+0X−) =⇒ v ∼ v1 log x+v0+v′, ð2
H(vi)=0 , v′ ∈ L2

.

These asymptotic boundary values define two pairs of subspaces in

ker(ð2
H), analogous to the scattering Lagrangians considered earlier for

the Dirac operator. These are

ΛN
± = {v1;∃ v ∼ v1(y) log x + v0(y) + v′, ð2

0v = 0, v′ ∈ L2}

ΛD
± = {v0;∃ v ∼ v0(y) + v′, v′ ∈ L2}.

(The subscripts here refer to X±.) The reduced normal operator RN(ðε)

is the operator D2
s on [−1, 1] acting on ker(ð2

H)-values funtions with the

boundary conditions

u|s=−1 ∈ ΛD
− Dsu|s=−1 ∈ ΛN

−

u|s=+1 ∈ ΛD
+ Dsu|s=+1 ∈ ΛN

+ .

Just as in the simpler parametrix construction in the nondegenerate case,

we need to invert the various normal operators, which now includes this

new one. The inversion of the reduced normal operator can be done

quite explicitly, and we can also see at least in very vague outline how

the scattering Lagrangians enter into the analysis.

5 – Applications of the surgery calculus

In this final section of this survey, we present four applications of

the surgery calculus. The first is purely analytic, and is the detailed

description of how eigenvalues of ðX,ε accumulate as ε → 0. The second

is a final discussion of the proof of the gluing formula for the eta invariant
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from this point of view. After that we discuss an interesting application

of this gluing formula, which is the signature formula for manifolds with

corners of codimension two. We finally discuss the analytic torsion and

some aspects of the proof of the gluing formula for determinant bundles.

5.1 – Accumulation of eigenvalues

One of the immediate consequences of the construction of the resol-

vent for the family of operators ð2
X is a formula for the rate of accumula-

tion of its eigenvalues as ε → 0. We shall only state the result here and

say very little about its proof, which involves the full intricacies of the

logarithmic surgery calculus.

Consider the eigenvalues λj(ε) of ð2
X . We are particularly interested

in the eigenvalues tending to zero as ε → 0. In order to study them, we

rescale by setting λj(ε) = (ilg ε)zj(ε), where ‘ilg ’ stands for the inverse

logarithm, i.e. ilg ε = 1/ log(1/ε) as in §4.6. (Of course other eigenvalues

λj(ε) tend to finite nonzero limits or to infinity, and it may be possible

to study them by analogous methods, but this has not been carried out.)

Recall also the reduced normal operator RN (ð2
ε) introduced at the end

of the last section.

Theorem 2. Assuming that the eigenvalues λj(ε), and hence zj(ε),

are listed in increasing order, with multiplicity, and similarly for the

eigenvalues µj of the reduced normal operator RN (ð2
ε), then as ε → 0,

either zj(ε) → µj, or else zj(ε) → ∞. The number of eigenvalues converg-

ing to zero is the same as the dimension of the nullspace of the limiting

operator ð2
X,0 on X+ 0 X−, and for each µj, there is exactly one family

of eigenvalues zj(ε) converging to it.

The eigenvalues zj(ε) converging to 0 are somewhat special: it can

be proved that they are rapidly decreasing in ilg ε – in fact, they vanish

as a power of ε – and are therefore called the very small eigenvalues.

This result shows that the bottom of the spectrum of ð2
X,0 is somehow

‘granular’, at least inasmuch as it is obtained as a limit of eigenvalues

accumulating at a very slow rate.

The only point of the proof we wish to mention is that it involves

considering the resolvent with rescaled spectral parameter

R(z, ε) = (ð2
X,ε − (ilg ε)2z2)−1.
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The uniformity of this object is considered as ε → 0. The rescaling of the

spectral parameter corresponds essentially to blowing up the λ-spectral

plane at λ = 0.

5.2 – The surgery formula for the eta invariant

We next consider the eta invariant for the Dirac operator associated

to the metric gε:

η(ðε) =
1√
π

∫ ∞

0

t−1/2Tr(ðεe
−tð2

ε)dt.

According to the third approach to surgery, our main concern is to de-

scribe as precisely as possible the behaviour of η(ðε) as ε → 0.

First we assume that

(25) ker(ðH) = {0}.

The large time behaviour of e−tð2
ε can be analyzed using the results of

the §4.5 : since the spectrum of ð2
ε remains discrete near λ = 0, down to

ε = 0, it follows from the contour integral representation

(26) e−tð2
ε =

i

2π

∫

γ

e−tλ(ð2
ε − λ)−1dλ

(with γ enclosing the spectrum) that e−tð2
ε is exponentially decreasing as

t → ∞ uniformly in ε, up to a uniformly finite rank operator.

Next one needs to understand the heat kernel uniformly for finite

times. Consider first the heat kernel associated to a Dirac Laplacian on

a closed Riemannian manifold X. For each t > 0, e−tð2
X is a smoothing

operator. Bearing in mind the initial condition it must satisfy we see

that as t → 0 the heat kernel must develop some sort of singularity along

the diagonal. For the Laplacian in IRn, for example, the heat kernel is

explicitly given by
1

(2πt)
n
2
e−|x−x′|2/4t.

In other words, viewed as a distribution on X×X×[0,∞)t, the heat-kernel

is singular along the submanifold ∆ × {t = 0}. It is possible to encode
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the full short-time asymptotics of the heat kernel, i.e. the expansion

of this singularity, using the language of blow-ups; this is explained in

detail in [36]. Because of the different homogeneities of the space and

time variables, we must use parabolic blow-up instead of the normal blow-

ups to which we have mostly been referring. (In fact, these parabolic

blow-ups are akin to the logarithmic blow-ups of §4.6.) The parabolic

blow-up of a submanifold Y , which is defined relative to a subbundle

S ⊂ N∗Y , appeared first in [20]. The heat space is the parabolic blow-up

of X2×[0, ∞) along ∆×{0} with respect to the subbundle S = Span{dt},

and is denoted [X2 × [0,∞); ∆ × {0}, S]. It is defined as the disjoint

union of (X2 × [0,∞))\(∆ × {0}) and a ‘parabolic normal bundle’ to

∆ × {0}. We shall not give more details of its definition, but only state

the basic fact that the fundamental solution of the heat equation lifts to

a polyhomogeneous conormal distribution on this space.

Because this construction is essentially local in the space variables,

it is also possible to define a b-heat space as well as a surgery heat space

M 2
hs. This latter space is the parabolic blow up of M 2

s × [0,∞)t along

∆s × {0} relative to the analogous subbundle S spanned by dt along the

diagonal at {t = 0}. The heat kernel of ð2
ε is polyhomogeneous conormal

on this space, which fully encodes its uniformity as ε → 0. In order to

remain within the category of compact manifolds with corners, we can

even compactify the temporal variable at t = ∞, thus obtaining the

compactified surgery heat space M 2
c−hs. The notation [0, 1]t denotes the

compactified t-axis, although of course t is not the natural linear variable

on this finite interval. The lifted diagonal embeds into M 2
hs, and hence in

M 2
c−hs, and this induces

i∆s : ∆s × [0, 1]t ≡ Ms × [0, 1]t ↪→ M 2
c−hs.

Using this notation, we can now reexpress the integral which define the

eta invariant in terms of pull-backs and push-forwards. Thus

η(ðε) = (πt)∗(πs)∗

[
i∗∆s

tr

(
t−1/2

√
π

Tr(ðεe
−tð2

ε)

)]
.

Here tr denotes the trace on each fibre of the endomorphism bundle

Hom(S/, S/). The map πs ≡ πs × Id : Ms × [0, 1]t → [0, ε0] × [0, 1]t is
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the composition of the blow-down map βs : Ms → X × [0, ε0] and the

natural projection X × [0, ε] → [0, ε0]; finally πt : [0, ε0] × [0, 1]t → [0, 1]t
is the obvious projection.

This formula expresses the eta invariant of ðε as the push-forward of

the polyhomogeneous conormal distribution

i∗∆s
tr

(
t−1/2

√
π

Tr(ðεe
−tð2

ε)

)
.

from the manifold with corners Ms × [0, 1]t to the interval [0, ε0]. Poly-

homogeneity of the ‘integrand’ at the two temporal faces follows from

the short-time and large-time behaviour of the surgery heat kenel. The

short-time behaviour follows from Getzler rescaling, as in [36]; it actually

implies smoothness up to the face t = 0. The large time behaviour has

been already analyzed, and it implies the rapid vanishing at the corre-

sponding temporal face, up to a uniformly finite rank operator.

The resulting distribution on [0, ε0] may be analyzed using the general

results on push-forwards from [38]. In this manner, the behaviour of the

eta invariant of ðε as ε → 0 can be simply read off geometrically. To state

the theorem recall that the projection Πε onto the small eigenvalues of

ðε is a finite rank operator, uniformly in ε. Let η̃(ε) be the signature of

Πε. Then we have

Theorem 3 ([34]). The eta invariant associated to the Dirac oper-

ator ðε subject to the condition (25) satisfies

η(ðε) = bη(ðX+
) + bη(ðX−) + η̃(ε) + r1(ε) + r2(ε) log ε

as ε → 0, where r1, r2 ∈ C∞([0, ε0]) with r1(0) = r2(0) = 0.

When the operator ðε is no longer nondegenerate, a similar proof

works. One must define a logarithmic heat surgery space, and then the

eta invariant, as a function of ε, may be obtained as the push-forward

from this space of a polyhomogeneous distribution. Let Πε denote the or-

thogonal projection onto the eigenspaces corresponding to the very small

eigenvalues and let η̃(ε) be the signature of Πε. The generalization of the

previous result is
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Theorem 4 ([25]). The eta invariant associated to the Dirac op-

erator ðε, no longer necessarily satisfying the nondegeneracy hypothesis

(25), satisfies

η(ðε) = bη(ðX+
)+bη(ðX−)+η̃(ε)+η(RN (ðε))+r1(ilg ε)+log(ilg ε)r2(ilg ε)

as ε → 0. Here, as before, r1 and r2 are smooth functions vanishing at 0.

It is possible to calculate the eta invariant for the reduced normal

operator in terms of finite dimensional data involving the scattering La-

grangian subspaces associated to the Dirac operators on X±, as discussed

in §2.2.

5.3 – The signature theorem on manifolds with corners

Suppose that X is a compact manifold with corners. As with mani-

folds with boundary, there are many possible choices for natural metrics

to consider on X. Following our usual choice in this matter, we shall

assume that the interior of X is endowed with an exact b-metric g. This

may be described as follows. Assume that the codimension one boundary

faces of X are listed as Mα, α = 1, . . . N , and that each such boundary

face has a defining function xα. Then near Mα,

g =
dx2

α

x2
α

+ hα,

where hα is some smooth nonnegative symmetric 2-tensor in a collar

neighbourhood of Mα which restricts to a metric on Mα, and near each

corner of codimension k, given as the intersection of boundary faces

Mα1
, . . . , Mαk

,

g =
dx2

α1

x2
α1

+ . . . +
dx2

αk

x2
αk

+ hα1...αk
,

where the final summand restricts to a metric on the corner.

Suppose that dimX = 42, and let ðX denote the signature operator

on X. This is simply the deRham-Hodge operator d+d∗, restricted to act

between the +1 and −1 eigenspaces of the natural algebraic involution

τ which equals ip(p−1)+2,∗ on p-forms. The question we discuss here is

whether it is possible to obtain a signature formula for X, relative to
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a metric of this (or any other) type. In the case where X has only

a boundary, i.e. has corners only up to codimension one, then this is

precisely the celebrated signature formula for manifolds with boundary

of Atiyah, Patodi and Singer [1]. We have already mentioned some

extensions and generalizations of this result, in particular its recasting

by Melrose [36] and the families index theorems of [44], [45]. In each

of these papers, the signature formula is regarded as an index formula,

and so it would seem that the most natural problem to study is whether

it is possible to obtain an index formula for general Dirac-type operators

associated to exact b-metrics on manifolds with corners.

At this stage we recall for the reader the fact that on a compact closed

manifold there are in some sense two index theorems: one for Dirac-type

operators and the other for general elliptic (pseudodifferential) operators.

These are regarded as equivalent, because the latter may be deduced

from the former using K-theory. One may consider these two types of

index theorems for manifolds with boundary or corners as well, but the

relationship between them is no longer so simple. In this context the index

theorem for general elliptic operators was only very recently obtained, by

Melrose and Nistor [41], [42], but this formula is stated and proved

using Hochschild homology, and the terms in it do not translate readily

to more familiar ones for specific geometric operators. Thus it is still

an open problem to find an index formula for Dirac-type operators on

manifolds with corners.

Some partial progress on this sort of index theorem was made by

Müller [50] when X has corners only up to codimension two, assum-

ing also some rather strong nondegeneracy conditions. If ðX is a Dirac-

type operator in the interior of X, then because of the nature of the

metric, there are induced Dirac-type operators ðα on every codimension

one boundary face Mα, each of which is now a manifold with bound-

ary endowed with an exact b-metric, and also operators ðαβ on the cor-

ners Hαβ = Mα ∩ Mβ, whenever these intersections are nontrivial. Since

these corners are compact, these latter operators have discrete spectrum,

but the ðα and ðX have continuous spectrum. The continuous spectrum

for the ðα is fairly simple, since it is of locally finite multiplicity, with

thresholds at points determined by the eigenvalues of the ðαβ. In par-

ticular, 0 is in the essential spectrum of ðα if and only if some ðαβ is

not invertible. The continuous spectrum for ðX itself is much more
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complicated, since its multiplicity is no longer necessarily locally con-

stant. In particular, if some ðαβ is not invertible, then the spectrum of

ðX near zero is of this rather complicated type. In particular, it is un-

clear whether the basic method to understand this spectrum near zero,

by analytically continuing the resolvent of ð2
X to some branched cover of

the plane, still works. Unfortunately, some sort of information about the

spectrum of ðX near zero is necessary to obtain a formula for the index,

and this does not seem any too accessible. In any event, Müller’s analy-

sis assumes that each of the corner Dirac operators is invertible so that,

while the continuous spectrum of ðX may reach zero, it is of the sim-

pler type there, of locally finite multiplicity. Müller does prove without

this assumption, though, that when ðX is the signature operator, then

its L2-index is well-defined and still yields the topological signature of

the manifold X. Unfortunately, the nondegeneracy conditions are never

satisfied for the signature operator, and so Müller cannot deduce the

signature formula this way.

It turns out that it is possible to obtain the signature formula for

manifolds with corners of codimension two following a somewhat different

sort of argument. This was accomplished by the first author, Melrose

and Hassell [26]. The idea is to obtain this formula not via an index

calculation on all of X, but instead as a limit of index formulæ on a

family of compact manifolds with smooth boundary Xε which fill out X

as ε tends to zero.

There are a few steps to this proof. In the first, an appropriate family

of smoothings Xε is defined. Then the APS signature theorem is applied

to each of these manifolds with boundary. Denoting by ðε the restriction

of ðX to Xε, we get

sign (X) = ind (ðε) =

∫

Xε

ω − 1

2
η(ð∂Xε) + B.

The first term on the right here is the integral of the usual signature den-

sity, which is the L-polynomial in the Pontrjagin forms, the second term

is the eta invariant of the induced signature operator on the boundary,

and the final term is an integral over ∂Xε of a local expression involv-

ing the second fundamental form. This final term is necessitated by the

fact that the metric gε is no longer of product type near the boundary.
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The remainder of the proof involves calculating the limits of these vari-

ous terms as ε → 0. The left hand side, the signature, is topological, so

obviously does not change with ε. Using the asymptotics of the metric g,

the integral of ω over all of X is well-defined, and the first term on the

right tends to this. The final term on the right tends to zero because of

the specific construction of the smooth surfaces ∂Xε.

Thus it remains to calculate the limit of the eta invariant. It turns

out, again by the choice of smoothing, that the induced metric on ∂Xε is

simply undergoing surgery degeneration. Thus we already have the tools

to analyze the limit of the eta invariant of the induced Dirac operator

ð∂Xε . The only difficulty now is essentially combinatorial. The gluing

formula for the eta invariant assumes only a single disconnecting hyper-

surface H, decomposing the manifold into two pieces. Here the relevant

manifold ∂Xε has some system of nonintersecting hypersurfaces Hαβ, and

the metric is degenerating across each one of them. There are again sev-

eral ways of expressing the defect term in the formula for the limit of

the eta invariant. The most elegant of these is as follows. Associate to

X a one-dimensional directed graph G by discarding the interior of X,

replacing each codimension one boundary component Mα by a vertex vα

and each codimension two corner Mα ∩ Mβ by an edge eαβ. These edges

are directed by choosing arbitrarily some ordering of the Mα, then iden-

tifying eαβ in an orientation preserving manner with [−1, 1] if α < β in

this ordering. We consider the trivial vector bundle V over G with fibre

the direct sum of all the cohomologies of the corners, i.e. the direct sum

of all ker (ðαβ). There is a Dirac operator acting on sections of this triv-

ial bundle. The ‘boundary conditions’ at the vertex vα are given by the

scattering Lagrangian Λα
sc associated to Mα. The domain of the Dirac

operator ðG is the space of sections φ which restrict along each edge eαβ

to an element φαβ of the corresponding nullspace ker (ðαβ), and such that

at the vertex vα, the sum of all φαβ for edges eαβ contiguous to that edge

sum to an element of Λα
sc. Notice that in the simple case where there are

only two vertices and one edge, this reduces to the operator introduced at

the end of §2.2. In any case, the defect term may be expressed as the eta

invariant of this operator (ðG,Λsc). The final signature formula then is

Theorem 5. Let X be a manifold of dimension 42 with corners of

codimension two, and suppose that g is an exact b-metric on the interior
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of X. Then with the preceding notation and conventions,

sign (X) =

∫

X

ω − 1

2

∑

α

η(ðMα) − 1

2
η(ðG,Λsc).

The correction term in this formula may once again be expressed in

purely finite dimensional linear algebraic terms using the various scatter-

ing Lagrangians, cf. [26].

The one place where we have really used special features of the sig-

nature operator here is when we were able to rule out any extra integer

terms when taking the limit of the eta invariant. This is because the rank

of ð∂Xε is determined topologically, hence is constant. In general, there

might well be some spectral flow. The only thing we would be able to

deduce by this method in general, then, is the mod ZZ reduction of this

formula.

5.4 – The surgery formula for the analytic torsion

Behaviour of the analytic torsion under surgery was already studied

in the fundamental work of Cheeger. Many of the subsequent proofs of

the Cheeger-Müller theorem also exploit some form of this method in a

basic way. In this section we look at the surgery problem for the analytic

torsion from the point of view of the surgery calculus, as studied by

Hassell [23].

Let X = X+ ∪H X− and gε = h+dx2/(x2 +ε2) be a family of metrics

on X undergoing surgery degeneration along H, as usual. Consider the

analytic torsion T (X, gε) associated to the metric gε. We can also consider

the metric independent definition given in §2.3

T (X, {µ}) = T (X, gε) · Λ(gε, {µ})

with {µ} = {µ(i)} a basis of H∗(X) = ⊕H i(X). More generally, if E is

a flat unitary bundle we can define T (X, E, gε) and T (X, E, {µ}) using

the de Rham complex twisted by E. A suitable understanding of the

behaviour of the two terms appearing in this definition of T (X, {µ}) will

lead to a surgery formula for T (X, {µ}). The analysis of the first factor

T (X, gε) is based directly on the uniform analysis of the heat kernel asso-

ciated to ∆ε, as in the case of the eta invariant. The construction of this
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heat kernel as a polyhomogeneous distribution on the logarithmic surgery

heat space is again the main ingredient in this analysis. The second factor

Λ(gε, {µ}) can be understood using a Hodge-theoretic reinterpretation of

the Mayer-Vietoris sequence for X = X+ ∪H X−.

Putting these two results together Hassell proves [23] that for suit-

able choices of {µ},

T (X, {µ}) = bT (X+, g0) + bT (X−, g0) +
1

2

n∑

q=0

q log detRN(∆q).

The correct choice of set of bases {µ} is determined by properties of

the very small eigenvalues. These are rather simple to understand here

because, using the (Hodge-) Mayer-Vietoris sequence again, it can be seen

that the multiplicity of 0 ∈ spec (∆ε) is constant in ε ≥ 0. If Πε is the

orthogonal projection onto ker(∆ε), then the {µ} in this formula must

be chosen in the image of Πε, which is by definition simply the Hodge

cohomology of (X, gε).

It is also important to use the fact that

1

2

n∑

q=0

q log detRN(∆q)

may be explicitly decribed in terms of the finite dimensional subspaces

ΛN
± , ΛD

± appearing in the definition of the boundary condition for the

reduced normal operator, and thus ultimately from the cohomology of

H. In fact, another cohomological computation shows that this finite

dimensional geometric expression also appears in a ‘surgery formula’ for

the combinatorial Reidemeister torsion τ(M, {µ}). Using this, it is possi-

ble to state the surgery formula for the analytic torsion in a particularly

elegant way:

Theorema 6 ([23]). If X = X+ ∪H X− is odd dimensional, the

difference log T − log τ obeys the surgery formula

log
T (X, gε)

τ(X, gε)
= log

bT (X, g0)
bτ(X, g0)

+
1

2
χ(H) log 2

with X = X+ 0 X− and χ(H) equal to the Euler characteristic of H.
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This result can be applied to reprove the Cheeger-Müller theorem

on the equality of the analytic and Reidemeister torsion on any closed

compact manifold. Also, using a doubling argument it is also possible

to prove an extension of the Cheeger-Müller theorem for manifolds with

boundary.

Theorem 7 ([23]). For an odd-dimensional manifold with boundary

with exact b-metric g,
bT (Z, g) = 2−χ(∂Z)/4 τ(Z, g).

Similar results hold when we twist by a flat unitary bundle E.

5.5 – Determinant bundles and surgery

In this section we finally address the two questions raised at the end

of §2.5, following the treatment given by the second author in [53], [54].

Recall the geometrical data: we are given a fibration φ : M → B of com-

pact manifolds with fibres even dimensional and endowed with smoothly

varying metrics and smoothly varying spin structures. We denote by

gM/B this family of fibre metrics and by ðM the associated family of

Dirac operators. These data define a determinant bundle L(ð) with a

Quillen metric ‖ · ‖Q and Bismut-Freed connection ∇L. We assume that

the fibration M is the union along a fibering hypersurface H of two fibra-

tion with boundary: M = M+ ∪H M−. These data fix the families ðM± as

well as the family ðH . First let us make the very strong assumption that

ker(ðH)z = {0} for each z ∈ B. In this particular case, assuming that

the metrics are product-like near H, the two families of APS boundary

value problems on the fibrations M± are well defined and vary smoothly

with z ∈ B; since they are Fredholm they define two smooth determinant

bundles, L(ðM+
,Π+

0 ) and L(ðM− ,Π−), with Π+
0 (z) equal to the spectral

projection for (ðH)z.

These two determinant bundles can also be defined using the L2

condition on the associated fibration with cylindrical ends: M = M+ 0
M−. In other words they can be defined in terms of the associated b-

Dirac families ðM+
, ðM− . We shall also use the suggestive notation ðM =

ðM− 0 ðM+
. We denote the associated determinant bundles by bL(ðM+

)
bL(ðM−). Notice that each Laplacian (∆M)z has discrete spectrum near
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zero; this means that the description of the b-determinant bundle in terms

of small eigenvalues, as given in §2.5, is still valid.

The determinant bundles in the two pictures (APS vs L2
b) are canon-

ically isomorphic (see §1.2); however there are substantial advantages to

working with b-determinant bundles. Namely, the definition of Quillen

metric and Bismut-Freed connection can be given directly on bL, pro-

vided that the trace functional appearing in the definition of the zeta

function ζ(s,∆+, λ) = Tr(Π(λ,∞)(∆
+)−s) is replaced by the b-Trace and

similarly for the second term, β+(λ), appearing in the Bismut-Freed con-

nection (see §2.5). Here λ must be always chosen away from the discrete

spectrum of the family of b-Laplacians ∆M . The first term ∇λ in the

definition of the Bismut-Freed connection is defined directly in terms of

the metric and thus extends to b-metrics with no effort. In summary, by

using the b-Trace functional, we obtain in a natural way the b-Quillen

metric ‖ · ‖Q,b and, more importantly, the b-Bismut-Freed connection

b∇L|Uλ
= b∇λ + bβ+(λ).

This latter step is not at all obvious in the APS framework. We note that

in proving the compatibility of b∇L with ‖ ·‖Q,b, the commutator formula

for the b-Trace is used in a crucial way.

Returning to the surgery problem, this discussion clarifies the limit

picture at least under the assumption that Ker (ðH)z = 0. Thus let

x ∈ C∞(M) be a defining function for H and consider the family of

vertical metrics

gM/B(ε) =
dx2

x2 + ε2
+ gM/B.

Let ðM(ε) be the associated Dirac family on the closed fibration (M →
B, gM/B(ε)). We denote by ∇L,ε the associated Bismut-Freed connection.

We denote by b∇L
+ and b∇L

− the b-Bismut-Freed connections induced by

the limit metric gM/B(0) on the fibrations M+, M−.

The following theorem is proved in [53] under the assumption

Ker (ðH)z = 0 for all z ∈ B.

Theorem 8. There exists a natural explicit isomorphism of deter-

minant bundles

S(ε) : L(ðM(ε)) −→ bL(ðM+
) ⊗ bL(ðM−).
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For the curvature and the holonomy of the corresponding Bismut-Freed

connection the following formulæ hold:

lim
ε→0

(∇L,ε)2 = (b∇L
+)2 + (b∇L

−)2

lim
ε→0

holγ(∇L,ε) = holγ(
b∇L

+) · holγ(
b∇L

−) ∀γ ∈ Map(S1, B).

The proof is another application of the surgery calculus; the explicit

isomorphism is induced by the projection Πε onto the small eigenvalues

of ∆±. The behaviour of the curvature and the holonomy of the Bismut-

Freed connection is obtained by working directly with a push-forward

of the latter object. The first “metric” part of ∇L,ε (see (10)) converges

almost by definition; the second part, i.e. the term β+
ε (λ) can be analyzed

using the heat-surgery calculus. One can prove that for λ small

lim
ε→0

β+
ε (λ) + log ε · dζ ′(0, ð2

H , 0) = bβ+

M+
+ bβ+

M−

where the convergence is to be taken as Ck convergence of 1-forms on the

set Uλ. The two formulæ in the theorem then follow readily.

This theorem successfully solves the surgery problem on determinant

bundles under the nondegeneracy condition on (ðH)z, z ∈ B. We now

drop this assumption and consider the general case (see [54]). Since ðH

arises as a boundary family we can certainly fix a spectral section P for

ðH obtaining as in §2.1 and §2.5 the two Fredholm families (ð+
M+

, P ),

(ð+
M− , Id − P ) and thus the two determinant bundles L(ðM+

, P ), L(ðM− ,

Id − P ). These should be thought of as APS-determinant bundles. How-

ever, in order to apply the surgery calculus and the b-calculus we need

to consider the corresponding b-determinant bundles, as we did in the

invertible case. This is indeed possible provided we allow the use of pseu-

dodifferential operators.

We shall now briefly pause to explain this fundamantal point. Let

D/ = (D/z)z∈B be any family of Dirac operators on manifolds with bound-

ary. Let us denote by D/∂ the boundary family and let P be a spectral

section for D/∂ . It is proved in [43] that there exists a smooth family of

operators AP , with AP (z) ∈ Ψ−∞
b with the following properties:

• The family (D/+AP )∂ and the family of indicial operators I(D/+AP )

are both invertible; according to the b-calculus the family (D/ + AP )

is then Fredholm on L2.
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• The two families of Fredholm operators, one defined by the general-

ized APS-boundary value problem (D/, P ), and the other fixed by the

b-family (D/ + AP ), are homotopic.

• The family (AP )∂ is finite rank and self-adjoint, and Pz is equal the

projection onto the non-negative part of the spectrum of ((D/+AP )∂)z

for each z ∈ B.

We refer to AP as a P -regularizing perturbation. These properties

establish the following important priciple: the general APS family index

theory defined by a spectral section P can always be reduced to the

invertible case but only by passing to a larger class of operators. In any

case, using these properties, we now have a b-determinant bundle defined

in terms of the Fredholm family (D/+AP ), which we denote by bL(D/+AP ).

Since we are again in the invertible case, we can use the b-calculus and

introduce a b-Quillen metric and a b-Bismut-Freed connection, essentially

as in the previous case.

Returning again to the surgery problem, this discussion shows that

there are b-determinant bundles, bL(ðM+
+ AP

+) and bL(ðM− + A
(Id−P)
− )

endowed with b-Quillen metrics and Bismut-Freed connections, b∇P
+,

b∇(Id−P)
− . The surgery calculus can be used to show the existence of

an element in the (fibre) surgery calculus A(ε) ∈ Ψ−∞
s with the property

that as ε → 0

ð(ε) + A(ε) −→ (ðM+
+ AP

+) 0 (ðM− + A
(Id−P)
− )

(in the precise sense of §4.3). Since the family ð(ε) + A(ε), ε > 0 is a

perturbation by a family of smoothing operators of the family ð(ε), it is

certainly Fredholm. The associated determinant bundle L(ð(ε) + A(ε))

can be endowed with a Quillen metric and Bismut-Freed connection. The

arguments leading to the theorem above can now be extended (using the

full force of the surgery and b-pseudodifferential calculi), resulting in the

explicit isomorphism

SP (ε) : L(ð(ε) + A(ε)) −→ bL(ðM+
+ AP

+) ⊗ bL(ðM− + A
(Id−P)
− )

and the (asymptotic) additivity of the curvatures and multiplicativity of

the holonomies.
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The final step is to show that these surgery formulæ for the curvature

and the holonomy are independent of the particular choice of perturba-

tions AP
+ 0 A

(Id−P)
− and A(ε).

Consider first the closed case. Let ð be a Dirac family and A0, A1 two

smoothing perturbations. We obtain two determinant bundles, L(ð+A0)

and L(ð + A1), endowed with their hermitian structures. The space of

smoothing perturbations is clearly simply connected; let A(r), r ∈ [0, 1],

be a path of perturbations. Consider the family D on B × [0, 1] given by

(D)(z,r) = ðz +(A(r))z. This is a family of Fredholm operators and we can

consider the associated determinant bundle. The latter is endowed with a

Bismut-Freed connection ∇D; the local anomaly formula of Bismut-Freed

can now be applied, and it shows explicitly that the curvature of ∇D is

zero in the dr-direction. Since the space of smoothing perturbations is

simply connected, this shows that parallel transport defined by ∇D gives a

canonical isomorhism τ : L(ð+A0) → L(ð+A1) which preserves curvature

and holonomy. This property can be applied to the pair of families ð(ε)

and ð(ε) + A(ε) as well as the pair ð(ε) + A(ε) and ð(ε) + B(ε) for a

different choice of perturbation B(ε).

Consider now the boundary case and, as above, let D/ = (D/z)z∈B be a

family of Dirac operator on manifolds with boundary. Denote by D/∂ the

boundary family and let P be a spectral section for D/∂ . It is not difficult

to see, using the b-calculus, that the space of P -regularizing perturbations

is simply connected. Let AP
0 and AP

1 two P -regularizing perturbations,

AP (r) a path joining them and DP the induced family on B × [0, 1]. The

Bismut-Freed curvature formula is extended to manifolds with boundary

in [54]. Applying the formula we discover that the dr-component of the

curvature of the b-Bismut-Freed connection of the determinant bundle

associated to DP is not zero; however, and this is the key point, it only

depends on the boundary family (DP )∂ . When this argument is applied

to the fibration M = M+ 0M− the two contributions cancel out because

of the different orientation of the normals; thus the parallel transport

defined by the Bismut-Freed connection produces, as in the closed case, a

canonical isomorphism preserving curvature and holonomy. This means

that the surgery results established for the P -regularizing perturbation

AP
+ 0 A

(Id−P)
− on M = M+ 0 M− and the surgery perturbation A(ε), only

depend on the family ðM(ε), the limit families ðM± and on the choice of

spectral section P for the family of operators ðH induced on the fibering
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hypersurface defining our decomposition M = M+ ∪H M−. These results

answer the questions raised at the end of §2.5 in the framework of the

b-calculus. It is still an open problem as to whether the APS-framework,

and the other two approaches to surgery, can be used to give similar

answers.
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