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Strongly nonlinear elliptic unilateral problems

having natural growth terms and L
1 data

A. BENKIRANE – A. ELMAHI

Riassunto: Si dimostra un teorema di esistenza per una disequazione ellittica
fortemente non lineare in L1 con una condizione naturale di monotonia per la parte
non lineare.

Abstract: An existence theorem for a strongly nonlinear elliptic inequality with
an exact natural growth condition on the nonlinearity and an L1 data is proved.

1 – Introduction

Let Ω be a bounded domain in IRN and let A(u) = −div a(x, u,∇u)

be a Leray-Lions operator defined on W 1,p(Ω), 1 < p < ∞. Let f ∈
L1(Ω).

L. Boccardo and T. Gallouët [8] proved the existence of at least

one solution for the following nonlinear Dirichlet problem:

(1.1)
A(u) + g(x, u,∇u) = f in D′(Ω),

u ∈ W 1,p
0 (Ω) and g(x, u,∇u) ∈ L1(Ω)

where g is a nonlinearity having an ”exact natural growth” with respect

to |∇u| (of order p) and which satisfies the classical ”sign condition” with
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respect to u (see also [1]-[5] and [11] for related topics in the setting of

Orlicz-Sobolev spaces).

It’s our purpose in this paper to prove an existence theorem for the

corresponding obstacle problem. Indeed, we prove the existence of at

least one solution of the following unilateral problem:

(1.2)





u ∈ Kψ, g(x, u,∇u) ∈ L1 (Ω) ,

〈A(u), Tk(v − u)〉 +

∫

Ω

g(x, u,∇u)Tk(v − u)dx ≥
∫

Ω

fTk(v − u)dx,

for all v ∈ Kψ and all k > 0,

where Kψ =
{
v ∈ W 1,p

0 (Ω) : v ≥ ψ a.e. in Ω
}

with ψ a measurable func-

tion on Ω such that ψ+ ∈ W 1,p
0 (Ω) ∩ L∞ (Ω), and where Tk is the trun-

cation operator at height k > 0, defined on IR by:

(1.3) Tk(s) = s if |s| ≤ k , Tk(s) = k
s

|s| if |s| > k.

Note that the use of the truncation operator in (1.2) is justified by the

following facts: i) If f ∈ L1 (Ω), the solution does not in general belong

to L∞ (Ω) (see [8] and Remark 2.3 below); ii) If f ∈ W −1,p′
(Ω) then, a

solution of (1.2) is also a solution for the classical variational inequality,

and conversely (see Remark 2.2 below). If g ≡ 0, existence results can be

found in [12], [13].

2 – Main result

Let Ω be a bounded open subset of IRN , and let

Kψ =
{
v ∈ W 1,p

0 (Ω) : v ≥ ψ a.e. in Ω
}

where ψ : Ω → IR is a measurable function on Ω such that

ψ+ ∈ W 1,p
0 (Ω) ∩ L∞ (Ω) .

Let A : W 1,p
0 (Ω) −→ W −1,p′

(Ω) be a mapping given by

A(u) = − div a(x, u,∇u)
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where 1
p

+ 1
p′ = 1 and where a : Ω × IR × IRN −→ IRN is a Carathéodory

function satisfying for a.e. x ∈ Ω, for all s ∈ IR and ξ, ξ∗ in IRN with

ξ 6= ξ∗:

|a(x, s, ξ)| ≤ c(x) + k1 |s|p−1
+ k2 |ξ|p−1

(2.1)

[a(x, s, ξ) − a(x, s, ξ∗)] [ξ − ξ∗] > 0(2.2)

α |ξ|p ≤ a(x, s, ξ)ξ(2.3)

where c(x) belongs to Lp′
(Ω), c ≥ 0, k1 ≥ 0, k2 ≥ 0 and α > 0.

Note that taking ξ = te, with |e| = 1 and letting t tend to ±0, (2.3)

implies that a(x, s, 0) = 0.

Furthermore let g(x, s, ξ) : Ω × IR × IRN −→ IR be a Carathéodory

function such that for a.e. x ∈ Ω and for all s ∈ IR, ξ ∈ IRN :

g(x, s, ξ)s ≥ 0(2.4)

|g(x, s, ξ)| ≤ b(|s|)(c′(x) + (|ξ|p)(2.5)

|g(x, s, ξ)| ≥ β |ξ|p for |s| ≥ γ(2.6)

where b : IR+ → IR is a continuous and non decreasing function and c′(x)

belongs to L1 (Ω) , c′ ≥ 0 and β > 0, γ ≥ 0. Remark that in view of (2.5)

and (2.6), |g(x, s, ξ)| has a growth exactly of order |ξ|p when |ξ| → ∞.

Finally let

(2.7) f ∈ L1(Ω)

Theorem 2.1. Under the assumptions (2.1)-(2.7), there exists at

least one solution of (1.2).
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Remark 2.2. Let us remark that if the data f lies in W −1,p′
(Ω) and

if u is a solution of the following variational inequality (see [6] for the

existence of u):

(2.8)





u ∈ Kψ, g(x, u,∇u) ∈ L1 (Ω) , g(x, u,∇u)u ∈ L1 (Ω)

〈A(u), v − u〉 +

∫

Ω

g(x, u,∇u)(v − u)dx ≥ 〈f , v − u〉
∀v ∈ Kψ ∩ L∞ (Ω) ,

then u is also a solution of (1.2). Conversely, if u is a solution of (1.2)

and if f ∈ W −1,p′
(Ω) then u is a solution of (2.8).

Indeed, assume first that u is a solution of (2.8). Take k > 0, v ∈ Kψ

and let h large enough such that h ≥ k + ‖ψ+‖∞ . Define w = Th(u) +

Tk(v − u). It is easy to see that w ∈ Kψ ∩ L∞ (Ω) .

Using in (2.8) w as test function yields:

(2.9)





〈A(u), Th(u)−u+Tk(v−u)〉+
∫

Ω

g(x, u,∇u)(Th(u)−u+Tk(v−u))dx

≥ 〈f , Th(u) − u + Tk(v − u)〉 .

Note that Th(u) → u strongly in W 1,p
0 (Ω) as h → ∞ and that for

a.e. x ∈ Ω

|g(x, u,∇u)(Th(u)−u+Tk(v−u))|≤2g(x, u,∇u)u+k |g(x, u,∇u)|∈L1(Ω).

Passing to the limit as h → ∞ in both sides of (2.9) gives:

〈A(u), Tk(v − u)〉 +

∫

Ω

g(x, u,∇u)Tk(v − u)dx ≥ 〈f, Tk(v − u)〉 ,

and u is thus a solution of (1.2).

Conversely, assume now that u is a solution of (1.2). Let us first

prove that g(x, u,∇u)u ∈ L1(Ω).

Using v = ψ+ in (1.2) we obtain

∫

Ω

g(x, u,∇u)Tk(u − ψ+)dx ≤ 〈
A(u), Tk(ψ

+ − u)
〉 − 〈

f, Tk(ψ
+ − u)

〉
.
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Since (u − ψ+) and u have the same sign, we have g(x, u,∇u)(u −
ψ+) ≥ 0 for a.e. x ∈ Ω. Letting k → ∞ we get by using Fatou’s lemma

∫

Ω

g(x, u,∇u)(u − ψ+)dx ≤ 〈
A(u), ψ+ − u

〉 − 〈
f, ψ+ − u

〉
< +∞

which implies, since g(x, u,∇u) ∈ L1(Ω) and ψ+ ∈ L∞(Ω) that

g(x, u,∇u)u ∈ L1(Ω).

Note that for a.e. x ∈ Ω we have

|g(x, u,∇u)Tk(v − u)| ≤ |g(x, u,∇u)| ‖v‖∞ + g(x, u,∇u)u ∈ L1 (Ω)

when v ∈ L∞ (Ω) . Going back to (1.2) and letting k → ∞ we obtain by

using Lebesgue’s theorem in the second term and Tk(v − u) → v − u in

W 1,p
0 (Ω) in the first and third one:

〈A(u), v − u〉+
∫

Ω

g(x, u,∇u)(v−u)dx≥〈f, v − u〉 , for all v∈Kψ∩L∞ (Ω) ,

and u is thus a solution of (2.8).

Remark 2.3. The condition β > 0 is necessary in order to obtain

u ∈ W 1,p
0 (Ω), since in the case of equations, the solution of A(u) = f

does not belong to W 1,p
0 (Ω) when f belongs only to L1 (Ω): indeed it is

well known that the solution belongs only to W 1,q
0 (Ω) with q < N(p−1)

N−1

(see [9]).

Proof of Theorem 2.1. Some tools of this proof are inspired by

[6], [7], [8] and [10].

Step 1: Consider the sequence of approximate problems:

(2.10)





un ∈ Kψ, g(x, un,∇un) ∈ L1(Ω), g(x, un,∇un)un ∈ L1(Ω)

〈A(un), v − un〉 +

∫

Ω

g(x, un,∇un)(v − un)dx ≥
∫

Ω

fn(v − un)dx,

∀v ∈ Kψ ∩ L∞(Ω),

where fn is a sequence of smooth functions which converges strongly to

f in L1 (Ω) with ‖fn‖1 ≤ C0 for some constant C0.
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By Theorem 3.1 of [6], there exists at least one solution un of (2.10).

Applying Remark 2.2, we also have:

(2.11)





〈A(un), Tk(v−un)〉+
∫

Ω

g(x, un,∇un)Tk(v−un)dx≥
∫

Ω

fnTk(v−un)dx,

∀v ∈ Kψ and ∀k > 0.

We shall prove that (un)n is bounded in W 1,p
0 (Ω) . For that we fix

k for the remainder of this step, with k ≥ γ (where γ is given by (2.6))

(take for example k = γ).

Applying (2.11) with v = ψ+ as test function one has

(2.12)





〈A(un), Tk(un − ψ+)〉 +

∫

Ω

g(x, un,∇un)Tk(un − ψ+)dx

≤
∫

Ω

fnTk(un − ψ+)dx.

Since (un−ψ+) and un have the same sign one has g(x, un,∇un)Tk(un−
ψ+) ≥ 0 and since a(x, s, 0) = 0, we have then:

∫

{|un−ψ+|≤k}
a(x, un,∇un)∇(un − ψ+)dx =

〈
A(un), Tk(un − ψ+)

〉

≤
∫

Ω

fnTk(un − ψ+)dx ≤ C0k.

We deduce that:
∫

{|un−ψ+|≤k}
a(x, un,∇un)∇undx ≤

≤ C0k +

∫

{|un−ψ+|≤k}
|a(x, un,∇un)|

∣∣∇ψ+
∣∣ dx

which gives by using Young’s inequality
∫

{|un−ψ+|≤k}
a(x, un,∇un)∇undx ≤

≤ C0k +
1

p′ ε
p′

∫

{|un−ψ+|≤k}

∣∣∣∣
1

µ
a(x, un,∇un)

∣∣∣∣
p′

dx+

+
1

p

(
µ

ε

)p ∫

{|un−ψ+|≤k}
∣∣∇ψ+

∣∣p dx
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where we choose µ = 3 max(k1, k2) and εp′

p′ = α
2
. This implies

(2.13)

∫

{|un−ψ+|≤k}
a(x, un,∇un)∇undx ≤ C1+

+
εp′

p′

∫

{|un−ψ+|≤k}

[
1

µ
|a(x, un,∇un)|

]p′

dx

where Ci (i = 1, 2, ...) are various constants which do not depend on n

(but which can depend on k, ε, ψ+, c(x), k1, k2, β and α).

Using (2.1) in (2.13) yields since (a + b + c)
p′

≤ 3p′ (
ap′

+ bp′
+ cp′)

(2.14)

∫

{|un−ψ+|≤k}
a(x, un,∇un)∇undx ≤

≤ C2 +
εp′

p′

∫

{|un−ψ+|≤k}
|un|p dx +

εp′

p′

∫

{|un−ψ+|≤k}
|∇un|p dx ≤

≤ C2 +
εp′

p′

∫

Ω

∣∣k + ψ+
∣∣p dx +

εp′

p′

∫

{|un−ψ+|≤k}
|∇un|p dx ≤

≤ C3 +
εp′

p′

∫

{|un−ψ+|≤k}
(k4 |∇un|)pdx.

Consequently using the coercivity (2.3) and εp′

p′ = α
2

(2.15)
α

2

∫

{|un−ψ+|≤k}
|∇un|p dx ≤ C3.

On the other hand one has because of (2.12) and a(x, s, ξ)ξ ≥ 0

∫

Ω

g(x, un,∇un)Tk(un − ψ+)dx ≤

≤ C0k −
∫

{|un−ψ+|≤k}
a(x, un,∇un)∇(un − ψ+)dx ≤

≤ C0k +

∫

{|un−ψ+|≤k}
a(x, un,∇un)∇ψ+dx.
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Since
(
unχ{|un−ψ+|≤k}

)
n

is bounded in L∞ (Ω) and
(
∇unχ{|un−ψ+|≤k}

)
n

is bounded in(Lp(Ω))N then in view of (2.1),
(
a(x, un,∇un)χ{|un−ψ+|≤k}

)
n

is bounded in (Lp′
(Ω))N . This implies that

(∫

{|un−ψ+|≤k}
a(x, un,∇un)∇ψ+dx

)

n

is bounded. So
∫

Ω

g(x, un,∇un)Tk(un − ψ+)dx ≤ C4,

which gives

k

∫

{|un−ψ+|>k}
|g(x, un,∇un)| dx ≤ C4.

Since |un| ≥ k when |un − ψ+| ≥ k, and since we have fixed k ≥ γ,

one has |un| > γ whenever |un − ψ+| > k. Consequently by (2.6)

(2.16) βk

∫

{|un−ψ+|>k}
|∇un|p dx ≤ C4.

Combining (2.15) and (2.16) we deduce that (un)n is bounded in W 1,p
0 (Ω).

Passing to a subsequence, if necessary, we can assume that:

(2.17) un ⇀ u weakly in W 1,p
0 (Ω) , strongly in Lp (Ω) and a.e. in Ω.

Note that u ∈ Kψ, which is the first statement in (1.2).

Step 2: Let now k such that k ≥ ‖ψ+‖∞ and let δ =
(

b(k)

2α

)2

. Let

ϕ(s) = s eδs2
, zn = Tk(un) − Tk(u), η = e−4δk2

and v = un − ηϕ(zn). It is

easy to see that we have v ∈ Kψ and that when δ ≥
(

b(k)

2α

)2

one has for

all s ∈ IR:

(2.18) ϕ′(s) − b(k)

α
|ϕ(s)| ≥ 1

2
.

Using v as test function in (2.11) we get, for all h > 0 :

〈A(un), Th(ηϕ(zn))〉+
∫

Ω

g(x, un,∇un)Th(ηϕ(zn))dx ≤
∫

Ω

fnTh(ηϕ(zn))dx.
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Choosing h > 2k one has since |ηϕ(zn)| ≤ |zn| ≤ 2k

(2.19) 〈A(un), ϕ(zn)〉 +

∫

Ω

g(x, un,∇un)ϕ(zn)dx ≤
∫

Ω

fnϕ(zn)dx.

Denote by ε1(n), ε2(n), ... various sequences of real numbers which con-

verge to zero when n tends to infinity.

Note that in (2.19),

∫

Ω

fnϕ(zn)dx → 0 when n → ∞, since ϕ(zn) ⇀ 0

weak* in L∞ (Ω) and fn → f strongly in L1 (Ω) .

Since g(x, un,∇un)ϕ(zn) ≥ 0 on the subset {|un(x)| > k} we deduce

from (2.19) that

(2.20) 〈A(un), ϕ(zn)〉 +

∫

{|un|≤k}
g(x, un,∇un)ϕ(zn)dx ≤ ε1(n).

On the one hand writing Ω = {|un| ≤ k} ∪ {|un| > k} and using

a(x, s, 0) = 0, we have:

〈A(un), ϕ(zn)〉 =

∫

Ω

a(x, un,∇un)(∇Tk(un) − ∇Tk(u))ϕ′(zn)dx

=

∫

Ω

a(x, un,∇Tk(un))(∇Tk(un) − ∇Tk(u))ϕ′(zn)dx+

−
∫

{|un(x)|>k}
a(x, un,∇un)∇Tk(u)ϕ′(zn)dx.

Since ∇ Tk (u) χ{| un (x) | < k } → 0 in (Lp (Ω))
N

strongly while

(a (x, un, ∇ un) ϕ′ (zn) )n is bounded in
(
Lp′

(Ω)
)N

, and since ∇Tk(un)⇀

∇Tk(u) in (Lp (Ω))
N

weak, we have

(2.21)

〈A(un), ϕ(zn)〉 =

∫

Ω

[a(x, un,∇Tk(un)) − a(x, un,∇Tk(u))]×
× [∇Tk(un) − ∇Tk(u)]ϕ′(zn)dx+

+

∫

Ω

a(x, un,∇Tk(u)) [∇Tk(un) − ∇Tk(u)]×
× ϕ′(zn)dx + ε2(n) =

=

∫

Ω

[a(x, un,∇Tk(un)) − a(x, un,∇Tk(u))]×
× [∇Tk(un) − ∇Tk(u)]ϕ′(zn)dx + ε3(n).
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On the other hand

(2.22)

∣∣∣∣∣

∫

{|un|≤k}
g(x, un,∇un)ϕ(zn)dx

∣∣∣∣∣ ≤

≤
∫

{x∈Ω:|un|≤k}
b(k)(c′(x) + |∇un|p) |ϕ(zn)| dx ≤

≤ ε4(n) + b(k)

∫

Ω

|∇Tk(un)|p |ϕ(zn)| dx ≤

≤ ε4(n) +
b(k)

α

∫

Ω

a(x, un,∇Tk(un))∇Tk(un) |ϕ(zn)| dx ≤

≤ b(k)

α

∫

Ω

[a(x, un,∇Tk(un)) − a(x, un,∇Tk(u))]×
× [∇Tk(un) − ∇Tk(u)] |ϕ(zn)| dx + ε5(n)

Combining (2.20), (2.21) and (2.22) yields

(2.23)

∫

Ω

[a(x, un,∇Tk(un)) − a(x, un,∇Tk(u))]×

× [∇Tk(un) − ∇Tk(u)] (ϕ′(zn) − b(k)

α
|ϕ(zn)| dx ≤ ε6(n)

which gives by using (2.18)

0 ≤
∫

Ω

[a(x, un,∇Tk(un)) − a(x, un,∇Tk(u))] [∇Tk(un) − ∇Tk(u)] ≤
≤ 2ε6(n) → 0

Therefore Lemma 5 of [7] implies

(2.24)

∇Tk(un) → ∇Tk(u) strongly in W 1,p
0 (Ω) for any fixed k ≥

∥∥ψ+
∥∥

∞ .

Consequently there exists a subsequence, still denoted by (un)n, such

that:

(2.25) ∇un → ∇u a.e. in Ω.

Step 3: We shall prove in this step that

g(x, un,∇un) → g(x, u,∇u) strongly in L1 (Ω)
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by using Vitali’s theorem. Since g(x, un,∇un) → g(x, u,∇u) a.e. x ∈ Ω

thanks to (2.17) and (2.25), we only have to prove that (g(x, un,∇un))n

is uniformly equi-integrable in Ω.

Let E ⊂ Ω be a measurable subset of Ω. We have for any m > 0:





∫

E

|g(x, un,∇un)| dx ≤
∫

E∩{|un|≤m}
|g(x, un,∇un)| dx+

+

∫

E∩{|un|>m}
|g(x, un,∇un)| dx,

(2.26)

∫

E∩{|un|≤m}
|g(x, un,∇un)| dx ≤ b(m)

∫

E

(c′(x) + |∇Tm(un)|p)dx.

Let ε > 0 be given. In virtue of the strong convergence (2.24), there

exists some ρ(ε, m) > 0 which depends only on ε and m such that

(2.27)

E measurable, |E| < ρ(ε, m) ⇒
⇒

∫

E∩{|un|≤m}
|g(x, un,∇un)| dx ≤ ε

2
, ∀n.

We now turn to the second term of the right-hand side of (2.26).

Define vn = un − Sm(un), where for m > 1,





Sm(s) = 0 if |s| ≤ m − 1

Sm(s) =
s

|s| if |s| ≥ m

S′
m(s) = 1 if m − 1 ≤ |s| ≤ m.

If un ≤ m − 1 then Sm(un) ≤ 0 and vn ≥ un ≥ ψ; if un ≥ m − 1

then since 0 ≤ Sm(un) ≤ 1 one has vn ≥ un − 1 ≥ m − 2 ≥ ψ for

m ≥ 2 + ‖ψ+‖∞.

Consequently vn belongs to Kψ. Using vn as test function in (2.11)

yields:

〈A(un), Tk(Sm(un))〉 +

∫

Ω

g(x, un,∇un)Tk(Sm(un))dx ≤
∫

Ω

fnTk(Sm(un))dx

which implies by choosing k ≥ 1

∫

Ω

a(x, un,∇un)∇unS′(un)dx+

∫

Ω

g(x, un,∇un)Sm(un)dx ≤
∫

Ω

fnSm(un)dx.
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So ∫

{|un|>m}
|g(x, un,∇un)| dx ≤

∫

{|un|>m−1}
|fn| dx.

Since fn → f strongly in L1 (Ω) and since |{|un| > m − 1}| → 0

uniformly in n when m → ∞, there exists some m(ε) > 1 which only

depends on ε such that:

∫

{|un|>m(ε)−1}
|fn| dx ≤ ε

2
, ∀n,

and thus

(2.28)

∫

{|un|>m(ε)}
|g(x, un,∇un)| dx ≤ ε

2
, ∀n.

Fixing first m = m(ε), and combining (2.26), (2.27) and (2.28), we

obtain that there exists ρ′(ε) = ρ(ε, m(ε)) such that

∫

E

|g(x, un,∇un)| dx ≤ ε , ∀n when |E| < ρ′(ε), E measurable

which shows that g(x, un,∇un) are uniformly equi-integrable in Ω as re-

quired.

Step 4: Go back to approximate problems (2.11). We have in par-

ticular:

∫

Ω

a(x, un,∇un)∇Tk(v − un)dx +

∫

Ω

g(x, un,∇un)Tk(v − un)dx ≥(2.29)

≥
∫

Ω

fnTk(v − un)dx ∀v ∈ Kψ ∩ L∞ (Ω) and ∀k > 0.

Since fn tends to f in L1 (Ω) strongly and g(x, un,∇un) tends to

g(x, u,∇u) in L1 (Ω) strongly, there is no problem to pass to the limit

in the last and second terms of (2.29). For what concerns the first

one, note that a(x, un,∇un) ⇀ a(x, u,∇u) weakly in
(
Lp′

(Ω)
)N

, since

a(x, un,∇un) is bounded in
(
Lp′

(Ω)
)N

and un → u, ∇un → ∇u a.e. in

Ω; on the other hand, since v ∈ L∞ (Ω), set h = k + ‖v‖∞ ; then

|∇Tk(v − un)| = χ{|v−un|≤k} |∇v − ∇un| ≤
≤ χ{|un|≤h} |∇v − ∇un| ≤ |∇v| + |∇Th(un)| ,
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which implies, using Vitali’s theorem with (2.24) and (2.25) that

∇Tk(v − un) → ∇Tk(v − u) in (Lp (Ω))
N

strongly

for any v ∈ W 1,p
0 (Ω) ∩ L∞ (Ω) .

Letting n → ∞ in both sides of (2.29), we get

(2.30)
〈A(u), Tk(v − u)〉 +

∫

Ω

g(x, u,∇u)Tk(v − u)dx ≥
∫

Ω

fTk(v − u))dx

∀v ∈ Kψ ∩ L∞(Ω) and ∀k > 0.

Taking for any v ∈ Kψ the test function Tm(v) which belongs to

Kψ ∩ L∞(Ω) for m ≥ ‖ψ+‖∞ and passing to the limit in (2.30) as m

tends to infinity completes the proof of Theorem 2.1.

Remark 2.4 Since we only know that f ∈ L1(Ω) we can not hope

for the existence of a solution u of

(2.31)





u ∈ Kψ, g(x, u,∇u) ∈ L1 (Ω) ,

〈A(u), v − u〉 +

∫

Ω

g(x, u,∇u)(v − u)dx ≥
∫

Ω

f(v − u)dx,

∀v ∈ Kψ ∩ L∞(Ω)

because in general neither the right-hand side nor the term
∫
Ω

g(x,u,∇u)(v−
u)dx are defined. Note indeed that in general g(x, u,∇u)u /∈ L1(Ω) (see

Remark 3 of [8]).

Remark 2.5 If ψ ≥ 0 then we can show that in addition to (1.2) we

have

〈A(u), v − Tk(u)〉 +

∫

Ω

g(x, u,∇u)(v − Tk(u))dx ≥
∫

Ω

f(v − Tk(u))dx

∀v ∈ Kψ ∩ L∞ (Ω) .

Indeed, the use in (2.10) of the test function v + Th(un) − Tk(un) with

h ≥ k, which belongs to Kψ ∩ L∞ (Ω) when v ∈ Kψ ∩ L∞ (Ω), yields

〈A(un), v + Th(un) − un − Tk(un)〉 +

+

∫

Ω

g(x, un,∇un)(v + Th(un) − un − Tk(un))dx ≥

≥
∫

Ω

f(v + Th(un) − un − Tk(un))dx, ∀v ∈ Kψ ∩ L∞ (Ω) .
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Since for n fixed Th(un) tends to un in W 1,p
0 (Ω) strongly when h tends

to infinity, passing to the limit in h for n fixed gives

〈A(un), v−Tk(un)〉 +

∫

Ω

g(x, un,∇un)(v−Tk(un))dx ≥
∫

Ω

fn(v − Tk(un))dx,

∀v ∈ Kψ ∩ L∞ (Ω) ,

in which it is easy to pass to the limit as n tends to infinity. This

proves (2.32).
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