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Local boundedness for minima of functionals

with nonstandard growth conditions

A. DALL’AGLIO – E. MASCOLO – G. PAPI

Riassunto: In questo articolo proviamo la locale limitatezza dei minimi locali di
funzionali della forma

F(u) =

∫

Ω

f(x, u, ∇u) dx ,

dove f soddisfa opportune ipotesi di convessità e la sua crescita rispetto al gradiente è
controllata da una funzione di Young di classe ∆2 e dalla sua coniugata di Sobolev. I
risultati ottenuti estendono quelli già noti per funzionali con crescita p, q.

Abstract: We prove the local boundedness of local minimizers of functionals of
the form

F(u) =

∫

Ω

f(x, u, ∇u) dx ,

where f satisfies some convexity assumptions and its growth with respect to the gradient
is controlled in terms of a Young function of ∆2 class and its Sobolev conjugate. The
results extend some boundedness theorems for minimizers of functionals satisfying the
so called p, q-growth conditions.

1 – Introduction

Let Ω be an open subset of IRn. Let us consider the variational
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integral

(1) F(u) =

∫

Ω

f(x, u,∇u) dx

and the local minimizers for F , i.e., functions u ∈ W 1,1
loc (Ω) such that

f(x, u,∇u) ∈ L1
loc(Ω), and

∫

supp ϕ

f(x, u,∇u) dx ≤
∫

supp ϕ

f(x, u + ϕ, ∇u + ∇ϕ) dx

for every ϕ ∈ W 1,1(Ω) with suppϕ ⊂⊂ Ω.

The problem of regularity of minimizers is one of the main questions

concerning functionals of the form (1), and it has been widely studied in

the last decades.

In the literature the integrand f is very often required to satisfy some

growth conditions like, for instance,

(2) c0|ξ|p − c1 ≤ f(x, s, ξ) ≤ c2(|ξ|q + 1)

for almost every x ∈ Ω, for every s ∈ IR, ξ ∈ IRn, where c0, c1, c2 are

positive constants and 1 < p ≤ q.

If p = q, that is, if f satisfies the so-called natural growth conditions,

there are so many significant contributions to the theory of regularity,

starting from the pioneering papers by De Giorgi (see [3]), that it would

be impossible to give an exhaustive list. If p < q, we say that f satisfies

p, q-growth conditions. This case has been studied extensively in the

last years, starting from some papers by Marcellini (see [11]–[14] and the

references therein contained). In most of these papers, p and q must not

be too far from each other in order to obtain regularity of local minimizers.

For instance, if f does not depend on x and u, the condition q < p∗ = np
n−p

assures that minimizers are locally bounded (see [17]). A result of higher

integrability of the gradients of minimizers has been obtained by Fusco

and Sbordone in [5] for functionals which depend only on the modulus

of the gradient.

We will say that f satisfies general growth conditions if there exist

two positive functions g1 and g2 and two positive constants c1, c2 such

that

(3) g1(|ξ|) − c1 ≤ f(x, s, ξ) ≤ c2[g2(|ξ|) + 1]
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for almost every x ∈ Ω, for every s ∈ IR, ξ ∈ IRn. Some regularity

results in the case where g1 = g2 have been given by Lieberman in [10],

and Mascolo, Papi in [15] and [16]. Moreover Marcellini in [13] and

[14] has proved the local Lipschitz-continuity of minimizers under general

growth conditions on the second derivatives of f .

In this paper we consider general growth conditions on f , more pre-

cisely we assume that there exist a Young function g belonging to the class

∆
(m)
2 ∩ ∇(r)

2 (see Definitions 2.2 and 2.4), and three positive constants c1,

c2 and β, with β < 1, such that

(4) g(|ξ|) − c1 ≤ f(x, s, ξ) ≤ c2 [1 + g∗(|s|) + g∗(|ξ|)]β ,

where g∗ is the Sobolev conjugate function of g (see Definition 2.6). We

allow f to depend also on x and u, with some convexity assumptions on f

(see Section 3). By assuming (4), we will prove that the local minimizers

of (1) are locally bounded. We point out that, if g(t) = tp, p > 1, our

result contains the local boundedness results previously known in the

p, q-growth case.

On the other hand, condition (4) actually extends the class of the

admissible integrands. Indeed there are significant cases in which (4) is

satisfied but it is not possible to obtain any p, q-growth condition with

1 < p ≤ q < p∗. Some examples of this type, which cannot be treated

using the previously known results, but which satisfy the hypotheses of

our boundedness theorem, are considered in Section 3.

The plan of the paper is the following. In Section 2 we introduce

the Young functions and the related Orlicz spaces, and give some prop-

erties which will be used in the sequel. In Section 3 we give the precise

statement of the boundedness theorem, and some applications. Finally in

Section 4 we give the proof of the result, which is based on a new version

of Caccioppoli’s inequality and on a suitable iteration method.

2 – Young functions and Orlicz spaces

In this section we will recall some definitions and well known re-

sults on Young functions and Orlicz-Sobolev spaces. A convex func-

tion g : [0,+∞) → [0, +∞) is called a Young function if g(0) = 0 and
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limt→+∞ g(t) = +∞. Let ϕ be the left derivative of g. Then ϕ is nonde-

creasing and left-continuous, and

(5) g(t) =

∫ t

0

ϕ(s) ds , t ∈ [0,+∞) .

Moreover, by the convexity of g, one has

(6) g(t) ≤ tϕ(t) , for every t > 0.

In this paper we only consider positive Young functions, that is, Young

functions which are zero only for t = 0. A useful class of positive Young

functions is that of the so called N -functions, that is, the positive Young

functions such that

lim
t→0+

g(t)

t
= 0 , lim

t→+∞
g(t)

t
= +∞ .

If g is an N -function, (5) holds with ϕ nondecreasing, left-continuous,

such that ϕ(0) = 0, ϕ(t) > 0 for t > 0 and limt→+∞ ϕ(t) = +∞.

We will say that two positive Young functions g and h are equivalent

near infinity if there exist positive constants t0, k1 and k2 such that

h(k1t) ≤ g(t) ≤ h(k2t)

for every t ≥ t0.

We will now introduce some classes of positive Young functions which

refine the notion of ∆2 class (see [9] and [18]). A simple well known

preliminary result will be needed. For sake of completeness we will give

its proof.

Proposition 2.1. Let g be a positive Young function, and let ϕ be

its left derivative. For m ≥ 1, the following properties are equivalent:

(i) tϕ(t) ≤ mg(t), for every t ≥ 0;

(ii) g(λt) ≤ λmg(t), for every t ≥ 0, for every λ > 1;

(iii) the function t−mg(t) is nonincreasing.
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Proof. (i) ⇒ (ii): From (i) we obtain, for every s > 0:

ϕ(s)

g(s)
≤ m

s
.

Integrating this between t and λt, we have

ln
g(λt)

g(t)
≤ m lnλ ,

and therefore (ii) follows.

(ii) ⇒ (iii): If τ > t, from (ii) we obtain

g(τ) = g

(
τ

t
t

)
≤ τm

tm
g(t) ,

that is,
g(τ)

τm
≤ g(t)

tm
.

(iii) ⇒ (i): For every t such that ϕ(t) is continuous (that is, for all t

except at most a countable number), by taking the derivative of t−mg(t),

we obtain

0 ≥ d

dt

g(t)

tm
=

tϕ(t) − mg(t)

tm+1
.

Therefore (i) holds for these values of t. The result then follows by the

left continuity of ϕ.

Definition 2.2 Let m ≥ 1. We will say that a positive Young

function g belongs to the class ∆
(m)
2 if any of the three conditions (i), (ii)

or (iii) is satisfied.

It is easy to check that the usual ∆2 class of positive Young functions

(see [9] or [18] for the definition) is the union of the classes ∆
(m)
2 , for

m > 1. The N -function tm belongs to ∆
(m)
2 , while the N -function

g(t) = tm loga (1 + t), where m > 1 and a ≥ 1, is equivalent near infinity,

for every ε > 0, to a N -function in ∆
(m+ε)
2 . The same is true for g(t) =

tm − log (1 + t). Moreover we observe that it follows from (iii) that every

g ∈ ∆
(m)
2 satisfies g(t) ≤ c tm for all t ≥ 1. It is easy to see that the class

∆
(1)
2 contains only linear Young functions.
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The following proposition can be proved similarly to Proposition 2.1.

Proposition 2.3. Let g be a positive Young function, and let ϕ be

its left derivative. Let r be a constant such that r ≥ 1. Then the following

conditions are equivalent:

(i)′ tϕ(t) ≥ rg(t), for every t ≥ 0;

(ii)′ g(λt) ≥ λrg(t), for every t ≥ 0, for every λ > 1;

(iii)′ the function t−rg(t) is nondecreasing.

Definition 2.4. Let r ≥ 1. We will say that a positive Young

function g belongs to the class ∇(r)
2 if any of the three conditions (i)′, (ii)′

or (iii)′ is satisfied.

By (6), every positive Young function belongs to ∇(1)
2 . As before,

one can show that the usual class ∇2 (see [9] and [18]) is the union

of the classes ∇(r)
2 for r > 1. Moreover, by (iii)′, if g ∈ ∇(r)

2 , then

g(t) ≥ ctr for t ≥ 1, with c > 0. For r ≥ 1, the N -functions g(t) = tr and

g(t) = tr loga (1 + t), with a ≥ 1, belong to ∇(r)
2 .

Let us introduce the Orlicz space associated with a Young function

g ∈ ∆
(m)
2 , for m ≥ 1 (see [9], [1], [18]). Let Ω be a measurable subset

of IRn with finite Lebesgue measure. We denote by Lg(Ω) the set of all

measurable functions u defined on Ω satisfying

∫

Ω

g(|u|) dx < +∞ .

As usual, we identify functions which differ on a set of zero measure.

Since g ∈ ∆
(m)
2 , the set Lg(Ω) is a vector space. Lg(Ω) is a Banach space

when endowed with the norm

(7) ||u||g,Ω = inf

{
k > 0 :

∫

Ω

g

( |u|
k

)
dx ≤ 1

}
.

For ||u||g,Ω > 0, the infimum in (7) is attained and

(8)

∫

Ω

g

( |u|
||u||g,Ω

)
dx = 1 .

Moreover, it can be shown that Young functions which are equivalent

near infinity generate the same Orlicz space.
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Proposition 2.5. Assume that g ∈ ∆
(m)
2 , for m ≥ 1, and let u be

a function in Lg(Ω). Then

(a) ||u||g,Ω ≤ 1 if and only if
∫
Ωg(|u|) dx ≤ 1;

(b) If ||u||g,Ω ≤ 1, then

(9) ||u||mg,Ω ≤
∫

Ω

g(|u|) dx ;

(c) If g ∈ ∇(r)
2 and ||u||g,Ω ≤ 1, then

(10)

∫

Ω

g(|u|) dx ≤ ||u||rg,Ω .

Proof. (a) follows from (7) and (8).

By (ii) of Proposition 2.1 and (8), we have:

1 =

∫

Ω

g

( |u|
||u||g,Ω

)
dx ≤ 1

||u||mg,Ω

∫

Ω

g(|u|) dx ,

which implies (9).

If g ∈ ∇(r)
2 , (ii)′ of Proposition 2.3 implies

1 =

∫

Ω

g

( |u|
||u||g,Ω

)
dx ≥ 1

||u||rg,Ω

∫

Ω

g(|u|) dx ,

which gives (10).

Using the Young functions and the correspondent Orlicz spaces, it is

possible to extend the classical notion of Sobolev spaces.

Let Ω be a bounded open set of IRn. The Orlicz-Sobolev space

W 1Lg(Ω) consists of those functions u in Lg(Ω) whose distributional

derivatives belong to Lg(Ω). This is a Banach space under the norm(1)

(11) ||u||W1Lg(Ω) = ||u||g,Ω + ||∇u||g,Ω .

(1)For simplicity of notation we write ||∇u||g,Ω instead of || |∇u| ||g,Ω .
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As for the usual Sobolev spaces, W 1
0 Lg(Ω) will denote the closure of

C∞
0 (Ω) with respect to the norm (11). An extensive study of these spaces

can be found in [1], [4], [18].

We now recall the notion of Sobolev conjugate of a positive Young

function (see [1], [4], [2]). For sake of simplicity, we will only consider the

case of a function in ∆
(m)
2 .

Definition 2.6. Assume that g ∈ ∆
(m)
2 , with m < n. We define the

Sobolev conjugate function of g as the Young function g∗ whose inverse is

defined by

(12) (g∗)−1(t) =

∫ t

0

g−1(s)

s1+ 1
n

ds .

It is easy to check, using condition (ii) of Proposition 2.1, that

g−1(s) ≤ cs1/m for s ≤ 1. Therefore the integral in (12) is finite, and

it is easy to verify that g∗ is a positive Young function. For every number

m ∈ [1, n), we denote by m∗ the usual Sobolev conjugate exponent of

m, i.e., m∗ = mn/(n − m). In the case where g(t) = tm, with m < n,

then g∗(t) = (t/m∗)m∗
. Moreover, if g(t) is equivalent near infinity to

tm (log(1 + t))a, with 1 ≤ m < n and a ≥ 1, then g∗(t) is equivalent near

infinity to tm∗
(log(1 + t))na/(n−m) (see [2]).

Proposition 2.7. Let g be a positive Young function in ∆
(m)
2 ∩∇(r)

2 ,

with r,m ∈ [1, n). Then g∗ ∈ ∆
(m∗)
2 ∩ ∇(r∗)

2 .

Proof. Since g ∈ ∇(r)
2 , for every λ > 1 one has g−1(λt) ≤ λ1/rg−1(t).

Therefore

(g∗)−1(λt) =

∫ λt

0

g−1(s)

s1+ 1
n

ds = λ

∫ t

0

g−1(λs)

(λs)1+ 1
n

ds ≤ λ
1
r − 1

n (g∗)−1(t) ,

which implies g∗(λt) ≥ λr∗
g∗(t). Thus inequality (ii)′ of Proposition 2.3

holds with exponent r∗. If g ∈ ∆
(m)
2 , since in this case g−1(λt) ≥

λ1/mg−1(t) for every λ > 1, we obtain

(g∗)−1(λt)≥λ
1
m − 1

n

∫ t

0

g−1(s)

s1+ 1
n

ds ,

which implies that g∗ satisfies (ii) of Proposition 2.1, with exponent m∗.
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The following embedding theorem holds (see [1], [4], [2]):

Theorem 2.8. Let Ω be an open set of IRn with smooth boundary,

and let g be a positive Young function in ∆
(m)
2 , with 1 ≤ m < n. Then

W 1Lg(Ω) ⊂ Lg∗(Ω) ,

and the embedding is continuous. Moreover, if u ∈ W 1
0 Lg(Ω), one has

||u||g∗,Ω ≤ c ||∇u||g,Ω ,

where c depends on n, g and Ω.

3 – Main result and applications

Let Ω be an open set, Ω ⊂ IRn. Let f = f(x, s, ξ) be a function

defined for x ∈ Ω, s ∈ IR, ξ ∈ IRn, with values in IR. We will assume

that f is a Caratheodory function, that is, it is continuous with respect

to (s, ξ) for almost every x ∈ Ω, and it is measurable with respect to x

for every s ∈ IR and every ξ ∈ IRn.

We will assume that f satisfies

(f1) there exist a positive Young function g ∈ ∆
(m)
2 ∩ ∇(r)

2 , with r ≥ 1

and 1 ≤ m < min{r∗, n}, and three positive constants c1, c2 and β,

with β < 1, such that

(13) g(|ξ|) − c1 ≤ f(x, s, ξ) ≤ c2[1 + g∗(|s|) + g∗(|ξ|)]β ,

for almost every x ∈ Ω, for every s ∈ IR and ξ ∈ IRn.

Moreover we will assume that f satisfies one of the following properties

(f2) for almost every x ∈ Ω, f(x, ·, ·) is a convex function;

(f2)
′ for almost every x ∈ Ω and for every s ∈ IR, f(x, s, ·) is a convex

function; moreover, there exists a constant c3 > 0 such that

f(x, s1, ξ) ≤ c3f(x, s2, ξ)

for almost every x ∈ Ω, for every pair s1, s2 ∈ IR, with |s1| ≤ |s2|,
and for every ξ ∈ IRn.
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Let us define the integral functional

(14) F(u) =

∫

Ω

f(x, u(x), ∇u(x)) dx .

We shall consider local minimizers of F , i.e., functions u ∈ W 1,1
loc (Ω) such

that

(15)

∫

Ω′
f(x, u(x), ∇u(x)) dx < +∞

for every Ω′ ⊂⊂ Ω, and

(16)

∫

supp ϕ

f(x, u,∇u) dx ≤
∫

supp ϕ

f(x, u + ϕ, ∇u + ∇ϕ) dx ,

for every ϕ ∈ W 1,1(Ω), with suppϕ ⊂⊂ Ω.

Remark 3.1. We observe that, if (15) holds, then u belongs to

W 1
locLg(Ω). Indeed, by the growth condition (13), |∇u| ∈ Lg,loc(Ω) and

this in turn implies that u ∈ Lg,loc(Ω).

We now state the main result of this paper. For R > 0, let QR be a

cube of IRn with center x0 ∈ Ω and side 2R, such that QR ⊂⊂ Ω.

Theorem 3.2. Let u be a local minimizer of the functional F , with

f satisfying either conditions (f1), (f2) or (f1), (f2)
′. Then u is locally

bounded in Ω, and there exists R0 > 0 such that, for every R, 0 < R < R0,

and for every cube QR with closure contained in Ω, the following estimate

holds:

(17) sup
QR/2

g∗(|u|) ≤ 1 + C

[∫

QR

[g∗(|u|)]β dx

] r∗−m
m(1−β)

,

where C depends on R, g, n, Ω.
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In the rest of this section we will make some comments and give some

examples to which this theorem applies.

Remark 3.3. If we consider a function f of the form

f(x, s, ξ) = h(|s|)g(ξ) ,

with h and g nonnegative, then condition (f2)
′ is satisfied if g is convex

and h is nondecreasing, or more generally if h satisfies

a(s) ≤ h(s) ≤ ca(s) ,

for every s > 0, where a is a positive, nondecreasing function, and c is a

positive constant.

Remark 3.4. Assume that f satisfies p, q-growth conditions of the

form (2). Then Theorem 3.2, applied with g(t) = tp ∈ ∆
(p)
2 ∩∇(p)

2 , assures

local boundedness of local minimizers of F as soon as q < p∗. This result

generalizes the boundedness theorem proved in [17] in the case where f

does not depend on x and u and satisfies conditions of the ∆2 type.

Remark 3.5. Let g(t) = t lna(1 + t), with a ≥ 1. We recall that, for

every ε > 0, g is equivalent near infinity to a function in ∆
(1+ε)
2 , but g is

not equivalent to any function in ∇(r)
2 with r > 1. The Sobolev conjugate

of g is equivalent near infinity to the function h(t) = t1
∗
(ln(1 + t))

na
n−1 .

If f satisfies (13) with this choice of g, then Theorem 3.2 can be applied

since one can take ε such that 1 + ε < 1∗. A similar remark applies to

the cases g(t) = t or g(t) = t − log(1 + t).

Remark 3.6. Let us consider a positive Young function g ∈ ∆
(m)
2 ∩

∇(r)
2 satisfying the following growth condition:

c1t
p − c2 ≤ g(t) ≤ c3(t

q + 1) ,

with 1 ≤ p ≤ q < n. It follows from the definition that its Sobolev

conjugate g∗ satisfies:

(18) c′
1t

p∗ − c′
2 ≤ g∗(t) ≤ c′

3(t
q∗

+ 1) .

for suitable constants c′
1, c

′
2, c

′
3 > 0. In Example 3.7 below, we exhibit a

function g for which the powers appearing in (18) are sharp. Therefore,
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if we consider an integrand f(x, s, ξ) satisfying condition (13) with this

choice of g, then f satisfies the following power growth condition:

c′′
1t

p − c′′
2 ≤ f(x, s, ξ) ≤ c′′

3(t
q∗β + 1) .

Therefore, if one wants to apply the existing results proved for p, q-growth

conditions, recalled in Remark 3.4, one has to impose that q∗β < p∗, that

is, β < p∗/q∗, while our results allows the weaker condition β < 1.

For instance one can take

f(x, s, ξ) = a(x, s)
[
g(|ξ|) + g∗(|ξ|)β

]
,

where β < 1 and a(x, s) is a Carathéodory function satisfying λ ≤
a(x, s) ≤ Λ, for some positive constants λ, Λ.

As a further example, one could consider an integrand of the form

f(x, s, ξ) = a(x, s)g(|ξ|) ,

with 0 < λ ≤ a(x, s) ≤ Λ[1 + g∗(|s|)γ ], γ < 1
n
. Since one can check that

g(t) ≤ c(1+ g∗(t)
n−1

n ), f satisfies the growth condition (f1) for a suitable

β ∈ (0, 1).

Example 3.7. For every p, q such that 1 < p < q < n, and for every

ε > 0, we construct an N -function g ∈ ∆
(q+ε)
2 ∩ ∇(p−ε)

2 such that

(19) tp ≤ g(t) ≤ 1 + tq

for every t ∈ IR and such that its Sobolev conjugate satisfies

(20) c1t
p∗ ≤ g∗(t) ≤ c2(1 + tq∗

) ,

with sharp exponents. Define a = (p + q)/2, b = (q − p)/2, and consider

the function

(21) h(t) =

{
tp if t ≤ τ0 ,

ta+b sin ln ln ln t if t > τ0 ,

where τ0 is such that sin ln ln ln τ0 = −1. First of all, we observe that the

function h(t) oscillates between the function tp, to which it is tangent for
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t such that sin ln ln ln t = −1, and the function tq, to which it is tangent

for sin ln ln ln t = 1. It is easy to see that, for every ε > 0, it is possible

to choose τ0 large enough such that h is convex and h ∈ ∆
(q+ε)
2 ∩ ∇(p−ε)

2 .

We now modify the function h to obtain a function g with the same

growth (19) such that g∗ satisfies (20) with sharp exponents. To do this,

we construct four increasing sequences of positive numbers {sk}, {tk},

{σk}, {τk} such that

. . . < sk < tk < σk < τk < sk+1 < . . .

and sin ln ln ln sk = sin ln ln ln tk = 1, sin ln ln lnσk = sin ln ln ln τk = −1.

The new function g(t) will be equal to tq in [sk, tk], and to tp in [σk, τk].

In the remaining intervals we take g(t) = h(t). Then g ∈ C1(IR+) and is

convex. We will show that it is possible to choose the four sequences so

that the Sobolev-conjugate g∗ satisfies

(22) lim sup
t→+∞

g∗(t)(q∗)q∗

tq∗ = 1 , lim inf
t→+∞

g∗(t)(p∗)p∗

tp∗ = 1 .

We take as s1 the first value greater than τ0 such that sin ln ln ln s1 = 1.

Similarly, once τk is fixed, we will take as sk+1 the first value greater than

τk such that sin ln ln ln sk+1 = 1. For fixed sk, we show how to choose tk.

Since g(t) = tq in [sk, tk], we have

(23)

(g∗)−1(tq
k) =

∫ t
q
k

0

g−1(t)

t1+
1
n

dt =

=

∫ s
q
k

0

g−1(t)

t1+
1
n

dt +

∫ t
q
k

s
q
k

g−1(t)

t1+
1
n

dt = Ck + q∗t
q/q∗
k ,

where Ck depends on sk and the values of g(t) for t ≤ sk. If we set

ξk = Ck + q∗t
q/q∗
k , (23) implies

g∗(ξk) =

(
ξk − Ck

q∗

)q∗

.

We now choose tk satisfying sin ln ln ln tk = 1 so large that ξk ≥ k (so

that ξk → +∞) and

(
q∗

ξk

)q∗

g∗(ξk) ≥ 1 − 1

k
.
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We now take as σk the first value greater than tk such that

sin ln ln lnσk+1 = −1. With the same argument used for the choice of

tk, once σk has been fixed we can take τk large enough in order to find a

number ηk such that ηk ≥ k and

(
p∗

ηk

)p∗

g∗(ηk) ≤ 1 +
1

k
.

Since (
t

p∗

)p∗

≤ g∗(t) ≤
(

t + c3

q∗

)q∗

,

(22) is satisfied. Finally, it is easy to check, using statements (iii) and

(iii)′ of Propositions 2.1 and 2.3, that g ∈ ∆
(q+ε)
2 ∩ ∇(p−ε)

2 .

4 – Caccioppoli’s inequality and proof of the main theorem

The first result of this section is a modified version of Caccioppoli’s

inequality. For u ∈ W 1,1
loc (Ω) and k ≥ 0, we define the set

A(k,R) = {x ∈ QR : u(x) > k} .

Theorem 4.1. Assume that f satisfies one of the hypotheses (f2),

(f2)
′, and that, for almost every x ∈ Ω, for every s ∈ IR and ξ ∈ IRn,

(24) −c1 ≤ f(x, s, ξ) ≤ c2[1 + H(|ξ|) + H(|s|)] ,

where c1 and c2 are positive constants, and H(t) is a positive, increasing

function such that, for every t > 0 and λ > 1,

H(λt) ≤ λmH(t) ,

where m ≥ 1. Let u be a local minimizer of the functional F . Then there

exists a constant C depending only on c1, c2, m and diam Ω such that,

for every cube QR ⊂⊂ Ω, for every 0 < σ < 1 and k > 0, u satisfies

(25)

∫

A(k,R(1−σ))

f(x, u,∇u) dx ≤

≤ C

[
1

(Rσ)m

∫

A(k,R)

H(u − k) dx + (1 + H(k))|A(k, R)|
]

,

where we denote by |E| the Lebesgue measure of a measurable set E.
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To prove this result we will need the following lemma (see [6], Section

V, Lemma 3.1)

Lemma 4.2. Let φ(t) be a nonnegative bounded function, defined in

[τ0, τ1]. Suppose that, for τ0 ≤ s < t ≤ τ1, φ satisfies

φ(s) ≤ A

(t − s)m
+ B + θφ(t) ,

where A, B, m, θ are nonnegative constants with 0 ≤ θ < 1. Then for

all ρ and R such that τ0 ≤ ρ < R ≤ τ1 one has

φ(ρ) ≤ c

[
A

(R − ρ)m
+ B

]
,

where c is a constant depending on m and θ.

Proof of Theorem 4.1. By replacing f with f +c1, we can assume

f ≥ 0. For σ ∈ (0, 1), let s and t be positive real numbers such that

R(1 − σ) ≤ s < t ≤ R, and let η be a function in C∞
0 (Qt) such that

0 ≤ η ≤ 1, η = 1 on Qs and |∇η| ≤ 2
t−s

. Consider ϕ = −ηmw, where

w = (u − k)+ = max {u − k, 0}. It follows that ϕ = 0 outside of A(k, t),

and that, on this set,

∇ϕ = −ηm∇u − mηm−1(u − k)∇η .

Using the definition (16) of local minimizer with this choice of ϕ, we

obtain
∫

A(k,t)

f(x, u,∇u) dx ≤
∫

A(k,t)

f(x, u + ϕ, ∇u + ∇ϕ) dx =

=

∫

A(k,t)

f(x, (1 − ηm)u + ηmk, (1 − ηm)∇u + ηm[
m

η
(k − u)∇η]) dx .

If (f2) holds, the convexity of f and the properties of H imply:

f(x, (1 − ηm)u + ηmk, (1 − ηm)∇u + ηm[
m

η
(k − u)∇η]) ≤

≤ (1 − ηm)f(x, u,∇u) + ηmf(x, k,
m

η
(k − u)∇η) ≤

≤ (1 − ηm)f(x, u,∇u) + c2η
m

[
H(

m

η
(u − k)|∇η|) + 1 + H(k)

]
≤

≤ (1 − ηm)f(x, u,∇u) + c2

[
(2m max {1, R})m

(t − s)m
H(u − k) + 1 + H(k)

]
,
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where in the last passage we have used the bound t − s ≤ R.

On the other hand, if (f2)
′ is satisfied, then, using the convexity with

respect to ξ, and recalling that u > k on A(k, t), we obtain that on this set

f(x, (1 − ηm)u + ηmk, (1 − ηm)∇u + ηm(
m

η
(k − u)∇η)) ≤

≤ (1 − ηm)f(x, (1 − ηm)u + ηmk,∇u)+

+ ηmf(x, (1 − ηm)u + ηmk,
m

η
(k − u)∇η) ≤

≤ c3(1 − ηm)f(x, u,∇u) + c2η
m

[
H(

m

η
(u − k)|∇η|) + 1 + H(u)

]
.

Since H is increasing, for every a, b ≥ 0 one has H(a+b) ≤ H(2a)+H(2b),

and therefore, for almost every x in A(k, t),

H(u) ≤ H(2(u − k)) + H(2k) ≤ 2m[H(u − k) + H(k)] .

We thus obtain

f(x, (1 − ηm)u + ηmk, (1 − ηm)∇u + ηm(
m

η
(k − u)∇η)) ≤

≤ c3(1 − ηm)f(x, u,∇u) + c4

[
(2m max {1, R})m

(t − s)m
H(u − k) +1 +H(k)

]
,

where c4 depends only on c2 and m.

In both cases, since R < 1
2
diam Ω, supp (1 − ηm) ⊂ A(k, t) \ A(k, s)

and A(k, s) ⊂ A(k, t) ⊂ A(k, R), we obtain

∫

A(k,s)

f(x, u,∇u) dx ≤ c5

∫

A(k,t)\A(k,s)

f(x, u,∇u) dx+

+
c5

(t − s)m

∫

A(k,R)

H(u − k) dx + c5(1 + H(k))|A(k, R)| .

Adding c5

∫
A(k,s) f(x, u,∇u) dx to both sides of the inequality, we obtain

∫

A(k,s)

f(x, u,∇u) dx ≤ c6

∫

A(k,t)

f(x, u,∇u) dx+

+
c6

(t − s)m

∫

A(k,R)

H(u − k) dx + c6(1 + H(k))|A(k, R)| ,
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where c6 = c5/(c5 + 1) < 1. Applying Lemma 4.2 with

φ(t) =

∫

A(k,t)

f(x, u,∇u) dx, A = c6

∫

A(k,R)

H(u − k) dx,

B = c6(1 + H(k))|A(k, R)|, θ = c6,

τ0 = ρ = R(1 − σ), τ1 = R,

we obtain the desired result.

In order to give the proof of Theorem 3.2 we recall a well known

iteration lemma (see [8], Lemma 7.1):

Lemma 4.3. Let {Jh} be a sequence of positive real numbers, such

that

Jh+1 ≤ CBhJ1+α
h ,

with C > 0, α > 0, B > 1. Then, if J0 satisfies

J0 ≤ C− 1
α B

− 1
α2 ,

one has

Jh ≤ B− h
α J0 ,

and therefore Jh tends to zero as h → +∞.

Proof of Theorem 3.2. Let u be a local minimizer of F , and let

QR ⊂⊂ Ω. We consider the following sequences of radii:

ρh =
R

2

(
1 +

1

2h

)
, ρh =

ρh + ρh+1

2
, h = 0, 1, 2, . . .

Let d be a positive constant to be chosen later, and define the following

sequence of levels of u:

kh = d

(
1 − 1

2h+1

)
, h = 0, 1, 2, . . .

For h ∈ IN, let us consider

(26) Jh =

∫

A(kh,ρh)

[g∗(u − kh)]β dx h = 0, 1, 2, . . .
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Since {ρh} is decreasing and {kh} is increasing, the sequence {Jh} de-

creases with h. By the absolute continuity of the integral, choosing R0

small enough we can assume that Jh ≤ J0 ≤ 1 for every h and that

R0 < 1. Let now ηh be a smooth function such that

(27)

supp ηh ⊂ Qρh
, 0 ≤ ηh ≤ 1 ,

ηh = 1 on Qρh+1
, |∇ηh| ≤ 2h+4

R
.

By Hölder’s inequality, we get

(28)

Jh+1 ≤
∫

A(kh+1,ρh)

[g∗(ηh(u − kh+1))]
β dx ≤

≤|A(kh+1, ρh)|1−β

(∫

A(kh+1,ρh)

g∗(ηh(u − kh+1)) dx

)β

.

Once again, for R0 small enough, we can assume that

||ηh(u − kh+1)||g∗,A(kh+1,ρh) ≤ 1 .

Then, using Proposition 2.7 and part (c) of Proposition 2.5, and applying

the Orlicz-Sobolev embedding Theorem 2.8, we obtain:

Jh+1 ≤|A(kh+1, ρh)|1−β ||ηh(u − kh+1)+||r∗β
g∗,Qρh

≤

≤c |A(kh+1, ρh)|1−β||∇(ηh(u − kh+1))||r
∗β

g,A(kh+1,ρh) ,

where c = c(Ω, n, g, β) (in the following, we allow c to assume different

values from line to line). By the properties of ηh, we have

||∇(ηh(u − kh+1))||g,A(kh+1,ρh) ≤
≤ ||∇u||g,A(kh+1,ρh) + ||∇ηh(u − kh+1)||g,A(kh+1,ρh) ≤

≤ ||∇u||g,A(kh+1,ρh) +
2h+4

R
||u − kh+1||g,A(kh+1,ρh) .

As before, by taking R0 small, we can assume that ||u−kh+1||g,A(kh+1ρh) ≤
1, and that ||∇u||g,A(kh+1,ρh) ≤ 1. Using part (b) of Proposition 2.5, we
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obtain

(29)

Jh+1 ≤ c |A(kh+1, ρh)|1−β





[∫

A(kh+1,ρh)

g(|∇u|) dx

] 1
m

+

+
2h+4

R

[∫

A(kh+1,ρh)

g(u − kh+1) dx

] 1
m





r∗β

.

Using Caccioppoli’s inequality (25), with H = (g∗)β, k = kh+1, R = ρh,

σ = [4(2h+1)]−1 and m replaced by m∗β, and recalling the first inequality

of (13), we have

(30)

∫

A(kh+1,ρh)

g(|∇u|) dx≤c

[(
2h+3

R

)m∗β ∫

A(kh+1,ρh)

[g∗(u − kh+1)]
βdx+

+ (1 + [g∗(kh+1)]
β)|A(kh+1, ρh)|

]
.

Therefore, since (f1) implies g(t) ≤ c(1 + [g∗(t)]β) for every t ≥ 0, and

since R < 1, (29) and (30) imply

Jh+1 ≤ c |A(kh+1, ρh)|1−β×

×
{

λh

R1+
m∗β

m

(
J

1
m
h + |A(kh+1, ρh)| 1

m (1 + [g∗(kh+1)]
β)

1
m

)}r∗β

,

where we denote by λ a constant depending on m and β which may

assume different values from line to line. On the other hand

(31)

Jh ≥
∫

A(kh+1,ρh)

[g∗(u − kh)]β dx ≥ [g∗(kh+1 − kh)]β |A(kh+1, ρh)| =

=

[
g∗

(
d

2h+2

)]β

|A(kh+1, ρh)| .

Since g∗ ∈ ∆
(m∗)
2 , from (ii) of Proposition 2.1 we obtain

(32)

[
g∗

(
d

2h+2

)]β

≥ [g∗(d)]β

2(h+2)m∗β
.
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Combining (31) and (32) we get

|A(kh+1, ρh)| ≤ λhJh

[g∗(d)]β
.

Therefore we have

(33) Jh+1 ≤ c c1(R)λh

[g∗(d)]β(1−β)
J1−β

h



J

1/m
h + J

1/m
h

(
1 + [g∗(d)]β

[g∗(d)]β

)1/m




r∗β

,

where

c1(R) =
1

R(1+
m∗β

m )r∗β
.

If we assume that d satisfies

(34) g∗(d) ≥ 1 ,

which implies
1 + [g∗(d)]β

[g∗(d)]β
≤ 2 ,

inequality (33) becomes

(35) Jh+1 ≤ c c1(R)λh

[g∗(d)]β(1−β)
J

1+β( r∗
m −1)

h .

Applying Lemma 4.3, with

B = λ α = β
r∗ − m

m
C =

c c1(R)

[g∗(d)]β(1−β)
,

we obtain limh→∞ Jh = 0 if

(36) J0 ≤ c c2(R)[g∗(d)]
m(1−β)
r∗−m .

Since

J0 ≤
∫

QR

[g∗(|u|)]β dx ,
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it is easy to see that (36) is satisfied if we choose d such that

(37) g∗(d) ≥
(

1

c c2(R)

∫

QR

[g∗(|u|)]β dx

) r∗−m
(1−β)m

.

Hence, since limh→∞ Jh = 0 implies |A(d, R
2
)| = 0, we conclude that

(38) sup
Q R

2

u ≤ d .

On the other hand, since (−u) is a local minimizer of the functional

F̃(v) =

∫

Ω

f̃(x, v,∇v)dx ,

where f̃(x, v, ξ) = f(x,−v,−ξ) satisfies the same assumptions as f , we

obtain

(39) sup
Q R

2

(−u) ≤ d .

Taking (34) and (37) into account, inequalities (38) and (39) give (17).

Theorem 3.2 is then proved.
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Matematica “Ulisse Dini” – Viale Morgagni 67a – Firenze, Italia
e-mail: daglio@udini.math.unifi.it – mascolo@udini.math.unifi.it – papi@udini.math.unifi.it


