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On the Neumann problem for a hyperbolic partial

differential equation of second order

A. BORZYMOWSKI - M. SHAIEB

Ri1assuNTO: Si studia un problema di Neumann per l’equazione uzy, = c. Esten-
dendo il metodo introdotto da G. Fichera [5] per un problema di Dirichlet, si stabili-
scono la condizioni necessarie e sufficienti per l’esistenza della soluzione.

ABSTRACT: The paper concerns the Neumann problem for the equation ug, = c.
By using the method of G. Fichera, introduced in paper [5] devoted to the Dirichlet
problem, necessary and sufficient conditions for the existence of the solutions are found.

1 — Introduction

Neumann-type problems have been intensively examined for second-
order hyperbolic partial differential equations, or systems of such equa-
ti(Q)ns, Whoge leading parts correspond to the second canonical form
g—;; - ég—nz (cf. [1], [4], [8], [10]-[17] and references). Let us mention
briefly the main results of these investigations: In paper [8] of M. IKAWA
a mixed (i.e. initial-boundary) value problem for a hyperbolic equation
with the boundary condition of Neumann type is considered. The author
proves the existence, uniqueness and regularity of a solution assuming

first that the coefficients of the equation are independent of ¢ and then
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using the method of Cauchy’s polygonal line. Paper [13] of S. Mry-
ATAKE is devoted to a nonlinear problem in a quarter — plane with the
boundary conditions given on the line x = 0 which is, by assumption,
noncharacteristic for the considered partial differential equation.

A lot of important results have been obtained by Y. SHIBATA and his
collaborators (cf. [12] and [14]-[17]). In papers [14] and [15] the existence
and uniqueness of solutions to the mixed problems for linear hyperbolic
systems of second order with nonhomogeneous Neumann boundary con-
ditions is proved. Also, it is examined how the constants appearing in
the energy inequalities depend on the coefficients of the operators given
in the problems. In paper [16] of Y.S. and M. KIiKUCHI the local ex-
istence in time is proved for classical solutions of second-order systems
of hyperbolic equations with nonlinear boundary conditions. The proof
is conducted via the reduction of the problem to a hyperbolic-elliptic
coupled system with the unknowns v and D,u. Paper [17] of Y.S. and
G. NAKAMURA is devoted to the study of the Neumann problem for a
quasilinear hyperbolic system. The local existence in time of classical so-
lutions is proved. The result has applications to the equation of motion
describing the small deformation of a homogenous isotropic, hyperelastic
material under the action of gravity and small pressure. In paper [12] of
A. MiLANT and Y.S. the authors present a direct method to construct
compatible regularizing data in the two model cases of a linear second
order hyperbolic equation with the Neumann and Dirichlet boundary
conditions. In papers [10] of I. LASIECKA and A. STAHEL, and [11] of
I.L. the mixed problems for the wave equation with nonlinear Neumann
boundary conditions are examined. In [10] the existence and uniqueness
of a local solution is proved and under additional assumptions the global
solution is also obtained. In [11] the stability of solutions is studied. It
is shown that the boundary damping produces a uniform global stabil-
ity of the corresponding solutions. BEIRAO DA VEIGA in a number of
papers (cf. [1] and references) presented and developed a general method
to prove the strong continuous dependence with respect to the data of
the solutions to nonlinear hyperbolic problems (including the Neumann
problems considered in [16], [17]) as well as several problems of nonlinear
fluid dynamics. Finally, W. DAN [4] proved the existence and uniqueness
of solutions to some Neumann problems for linear hyperbolic-parabolic
coupled systems with coefficients in Sobolev spaces.
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Neumann-type problems for second-order hyperbolic partial differen-
tial equations with the leading parts corresponding to the first canoni-
cal form 5952;7, have not been considered (despite the fact that analogous
Dirichlet-type problems have been examined - cf. G. FICHERA [5], [6],
B. FIRMANI [7] and references) except in paper [3] of A. BORZYMOWSKI.

In the said paper a nonlinear Neumann-type for a system of hyperbolic

integral-differential equations of order 2p; p > 1 with two independent
variables is examined by reducing it (via some technique originating in
paper [18] of Z. SzZzMYDT) to a system of integral-functional equations
and hence the local existence and uniqueness of a solution is proved on
the basis of the Banach fixed point theorem.

In this paper we examine a linear Neumann problem for the equation
Uy, = ¢ by adopting the method introduced by G. FICHERA [5] in his
investigation of the Dirichlet problem and by using functional equations.
We find necessary and sufficient conditions for the global existence of a
solution and get this solution in series form. We also discuss the unique-
ness of the solution. To the best of our knowledge, the said results have
not been obtained so far.

The authors want to thank the Referees for their valuable comments.

2 — The problem and the assumptions

Let Y be a Banach space with norm || - ||, and P the rectangle P =
[0,1] x [0, 0], where 0 < 0 < 0.

We consider the system of two curves, I' and f, of equations y = «a(x)
and y = [(x), respectively, where «, 8 : [0,1] — [0, 0], and we introduce
the class I of all functions P — Y possessing continuous derivatives
D} D;u, where D, = (%; D, = a% and r,5s =0, 1.

Let n and n denote the unit normal vectors to I' and f, respectively,
denote L = D, D, and assume that c: P — Y is a given function.

The aim of this paper is to examine the following problem (P):

Find a solution of the equation

(2.1) Lu=c

in P, that is a function v € K satisfying (2.1) at each point (z,y) € P,
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fulfilling the boundary conditions

%u[x, a(z)] = M(x)
(2.2) p
Ll () = N(2)

where = € [0,1], and M, N :[0,1] — Y are given functions.
We make the following assumption that will be in force throughout
the whole paper:

I. The functions « and 3 are of class C!, strictly increase and satisfy
the conditions

a(0) =B(0)=0; a(l)=p8(1)=0
(23) a,<B.; a@>p; min(e,f) >0

where a, = a'(0); 8. = 8'(0); & =o' (1); B = 5'(1).
Moreover, the curves I" and I" have no common points except O(0,0)
and Qo(1,0).

II1. The functions M and N are continuous and satisfy the condition
(2.4) max (|| M (z)]], | N (z)]]) < mi[min(z,1 - 2)]'

for x € [0,1], where m; and ©; are positive constants.

ITII. The function c is of the form

(2.5) c(x,y) = d(x)h(y)

where d : [0,1] - IR and h : [0,0] — Y are continuous functions satisfying
the following relations

(2.6)  |d(z)| < mo[min(z,1 - 2)]%%;  [[A(y)]| < mo[min(y, o — y)]°

for (z,y) € P, where my and O, are positive constants;

(2.7) / " d(e)de = PG
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REMARK 2.1. Denote
@8) Ry = [ [Tdemindgs Ry = [ [ ceminde.

It follows from the equality
1 o
Rie,y) = Re(eg) + [ [ cle.mdnd+

- (/Ol/yUC(é,n)dncEJr/;/Ogc(g,n)dndg)

and from Assumption III that
(2.9) R(z,y) = R.(z,y).
Evidently, the following Lemma holds good

LEMMA 2.1. Ifu is of the form

(2.10) u(z,y) = R(x,y) + ¢(x) + ¥ (y)

where ¢ : [0,1] =Y and ¢ : [0,0] = Y are functions of class C* then u is
a solution to equation (2.1) in P. Conversely, for any given solution u to
equation (2.1) in P there are functions ¢ : [0,1] =Y and ¢ : [0,0] = Y
of class C* such that equality (2.10) is satisfied in P.

3 — The main result

We explain the notation before stating the result.

Let oy € (0,0) be arbitrarily fixed, set o = a~*(0¢); To = S (00)
and introduce the following function classes:

a) The class K; of all continuous functions @ : [Zg, 1] — Y such that

(3.1) o)) < Call —2)*+®

where CN’@ is a positive constant depending in general on @, and © =

min(0;, 0,);
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b) The class Ky of all continuous functions w, : [0, 0¢] — Y such that
(3.2) lw. (Il < CZy™*°

where C7 is a positive constant depending in general on w,, and © is as
in (3.1).
We consider the functions (cf. [5])

(3.3) T(y) =ao B (y);  ple)=atopB(x)
(3.4) e(x) = (1+a?(2)%; é(z) = (1+82(2))%;
Vo) =~ (M@= Rea)], )
(3.5) 1 n y=ala
W= 5 (x){ (@)~ [mRew] )
We shall use the following series
(3.6) S(x) = i an(x) € [T, 1]
(3.7) S.0) =3 anly)  y€[0,00]
with:
(3.8) in(z) = Bu(z)F o " (x)
(3.9) an(y) = An(y)F o 7"(y)
M. mig): e _ o op(z)
(3.10) B,(r) = L[Ob pm(x); b(w) e
T o 27 (2): ~ Bep ()
(3.11) An(y) = 110 W) bW) = o510
(3.12) F(z) = W(x) —b(z)V o u(z)
(3.13) Fly) =8 oB™ (y)[VoB  (y) - Wo B ()
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Finally, we shall also employ the condition

(3.14) V(x) = Z{—(a/(aj))_lAn oa(x)F om"[a(x)] + Bn(x)ﬁ’ ou"(x)}

n=0

for x € [Zo, 1], and set for x € [Zo, 1], y € [00,0], t € [0, Zo], z € [0, F¢):

(3.15) pla) = (o) = [ S(©de+C,
(3:16) () = 5(w) == [ ' oa (@B o)~ Voa (g +C?,
BN o) =) = [ [5€)75. 0 56) + W +C" +a,

(3.18) W(2) = ) == / CS.(E)dE+ C? 4 b,

where C', C? are arbitrary constants and

(3.19) “:_([1§(€)d5+/%[(6/(5))‘15* o B(&)+W (€)]d¢)
3.19 20 0 .
bz—(/ o o afl(f)[go a”l(¢) Vo a*l(g)]df-i-/o S*(§)d§> )

o0
Now we state our result

THEOREM 3.1. If Assumptions 1-111 are satisfied then condi-
tion (3.14) is necessary and sufficient for the existence of a solution of
problem (P) such that the first derivatives of the functions ¢ and ¢ ap-
pearing in formula (2.10) are continuous and belong to the classes Ky
and Ky on [Zo, 1] and [0,00], respectively. The said solution is given by
formula (2.10) together with relations (3.15)-(3.19).
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4 — Auxiliary theorems

LEMMA 4.1.  For every number ey € (0,1) there is a sufficiently
small number § € (0, min(1, o))such that the inequalities:

(1—eo)a, < o (z) < (1+eo)a

(4.1) , x € [6,1]
(1 —¢0)B. < B (x) < (1+&0)B
(4.2) (I-e)a<a(@<+e)a 5y
(1—e0)B<B(z) <(l+&)B
hold good.

The validity of Lemma 4.1 follows directly from Assumption 1.
The following lemmas are valid.
LEMMA 4.2 (cf. [2], Lemma 2). The relations

(4.3) ™ —=0o0nl0,0); u"—1o0n(0,1]

hold good when n (€ N') tends to infinity, where — denotes the almost
uniform convergence.

LEMMA 4.3. The following inequalities

(4.4) H [%R* (z, y)}yzy(x) < const[(1 — z)(c — v(x))]®? x
X o —~(x) + (1 —2)
@s) Ry [ < constlor(@)h@) + o

are satisfied where n = n, v =« or n = n, v = 3, respectively.
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PROOF. The proof, being similar for relation (4.5), will be given only
for inequality (4.4).

Let n = n; y(z) = a(z). Basing on (2.8) and using Assumption III,
we get

gsren], < [ tetwaans [ e atollas <
< 1 - o)

+(1—2)"% (0 — a(2))®] <
< const[(1 - 2)(0— a(2))]%*[(0 — a(x)) + (1-2)],

as required. The argument for n = n; vy(x) = (x) is analogous.

5 — Proof of the main result

This section is devoted to the proof of Theorem 3.1.

To this end we adopt the argument of G. FICHERA (cf. [5]), according
to which the considered problem is first examined, by using functional
equations, in the subrectangles A = [0, Zo] % [0, 0o and 2 = [Zg, 1] X 00, 0]
of the rectangle P (see fig. 1) and hence the necessary and sufficient
conditions for the existence of a solution in the whole domain P are
found.

@

Q

90

Fig. 1
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We are going to consider problem (P) in the domains Q and A,
successively, begining with 2.

Let us assume that the direction cosines of the normals n and n are
given by

cos(z,n) = (Z((;)), cos(y,n) = %
(5.1) ) .
cos(z,n) = B (z) cos(y,h) = ———

~—

™

(z

Imposing on function u (cf. (2.10)) the boundary conditions (2.2), we
get the following system of functional equations

/ ’ _

(5.2) (@) ¢@) (@) oalr) = V()
) @ (x)— (B (2) ¢ oBx) =W(x)

(x € [0,1]), where ¢ and ¢ are the unknowns sought in the class C°,
and V and W are given by formulae (3.5), respectively.

Thus, problem (P) reduces in the rectangle €2 to solving system (5.2)
for x € [Zg,1]; y € [0, 0]

Replacing = by p(x) in (5.2)(a) and combining the obtained equation
with (5.2)(b), we get

(5.3) Yy =a oa (Yl oal(y)~Voa(y)] ye o0l

’ ~ ~

(5.4) ¢ () = b(z)p o p(x) = F(x) € [Fo,1]

Evidently, it is sufficient to solve the functional equation (5.4) and
then substitute its solution ¢ to (5.3) and find Y. We shall examine equa-
tion (5.4) by using the well known iteration method (cf. [9], chapt. II).

PROPOSITION 5.1.  Equation (5.4) has a solution given by the for-
mula

(5.5) ¢ () = ¢ (2) = S() @€ [,1]

It is the unique solution of (5.4) in the class KCy. The function gol given
by (5.5) belongs to K;.
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PROOF. First of all we shall prove that the series representing S (z)
(cf. (3.6)) is uniformly convergent in [Zg, 1].
Let £y be a number such that

1—gx
(5.6) 0<2<
where (cf. (2.3))
B
. =2 €(0,1);
(5.7) ¢==¢€(0,1);
)
(58) X=ite

It follows from Lemma 4.2 that there is a number ng € N such that
for all ng < n € N and = € [T, 1] the relation u"(x) € [1 — §,1] holds
good. In what follows we shall assume that n > ny. By (3.10) we have

no—1~ n—1 5 n—1 Ck, o /,Lerl(x)
- m m <
B, (z) IJO bo u™(z) 1:[ b o () < const e
m= m=ng m=n,

whence and from Lemma 4.1 (with g, satisfying (5.6)) we obtain the
estimate

(5.9) B,(x) < const[(1

Let us observe that (cf. (2.9), (3.5) and (3.12))

|F o (@)]] < const (1M o u" (@) + | N o u"(x)]| +

(5.10) +| [%R* (2,9)]

y=aount1(z)

In virtue of (2.4), (3.3) and Lemma 4.1, we have the following se-

+| [ 57w

y=Bou™ ()



338 A. BORZYMOWSKI — M. SHAIEB [12]

quence of relations

:| 1+0,

HM O/,Ln+1 H <m H [ (1 _ $)1+®1 <

Oé o l/+1

(5.11) werie)

( + 50)/6\:|n(1+@1 (1 B x)1+®1
[0

(1 — Eo)

(r <& < 1), and in a similar way we get

< const {

(5.12) IN op"(x)| < const[gl - 32} 1+61)(1 )it

Furthermore, Lemma 4.3 yields

|- | < const(1 — i+ ()70 <

y=aountl(x)

(5.13) SCOHSt[El + Zogg}n(lﬂ@z (1— z)'T202,
—&o
d (1 +€o)B n(14203) 1426,
(5.14) H [d—ﬁR*(x,y)} o (a) §const[( — 60)&] (1 — )"

On joining relations (5.10)-(5.14) we obtain the inequality

(5.15) |F o p(z)|| < COHSt[El tizig}n(H@ (1—z)*®

which, together with (5.9), implies (cf. (3.8))
(5.16) |G, ()| < constg}(1 — x)'*® < const ¢}

(x € [Zo, 1]) where

1+ ¢&9\2+©
(5.17) a=(—2) ¢

with ¢ given by (5.7).
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It follows from (5.6) and (5.8) that ¢; € (0,1) and hence (cf. (5.16))
the series (3.6) is uniformly convergent, as required.

It is easily verified by direct calculation that the function gol given
by (5.5) is a solution to equation (5.4) for = € [T, 1].

In order to prove the uniqueness of the solution in the class K; , let us
observe that if a function ¢ : [Z,1] — Y is a solution to equation (5.4)
in the interval [Zg,1] then, for every » € N and every x € [Zo, 1], the
following equality

(5.18) Z(l__[ )Fou (@) + pr(2)

holds good where

(5.19) )= ( ]__[ "(2)) 0wt (@)

Assuming that r > ng, we have the following sequence of inequalities
(cf. (3.1) and the derivation of (5.15))

r a’ oum+1(1})
lpr(x)]| < const [

m(l - MrJrl(x))lJr@ <
m=ng+1

(14 eo)aqr(1 + &) B770+9) 1 ©
< const[(1 - 50)3] [(1 — 50)&} (1—p"(2)2 <
< comst gj(1 — )" "7 (1 — (@) 7 <
<(:0nst(]2(1—an')1+ (1-— T+1(m))%

where (cf. (5.6))

As a consequence we get

(5.20) o, (@)]] < const(l — '+ (x))
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whence and from Lemma 4.2 it follows that

(5.21) pr(z) — 0

r—00

Relations (5.18) and (5.20) imply that ¢ () is of the form (5.5) which
ends the proof of uniqueness.

Finally, it follows from (3.6), (3.8)-(3.12) and (5.16) that the func-
tion ¢ given by (5.5) is continuous and satisfies inequality (3.1), i.e. be-
longs to the class K.

Thus, the proof of Proposition 5.1 is completed.

REMARK 5.1. It results from (2.4), (3.5) and (4.4) that if ¢ € K,
then (5.3) implies the inequality

(5.22) ' W)l < Cpr(o —y)'*©

where CA'SDI is a positive constant depending on ésa' (cf. (3.1)).

COROLLARY 5.1. It follows from Proposition 5.1 that the functions
@ () and

(523) Y'(y)=a ca'W[Soal(y)~Voaly)]  yEloo o0l

satisfy system (5.2) in Q if, and for ¢ € Ky only if, the equalities (3.15)
and (3.16) hold good.

Now, let us consider system (5.2) in the domain A.
Evidently, (5.2) is equivalent to
(5.24)
¢ (z) = (/ (x) W oa(z)+V(z) = (B (x) W of@)+W(x) x € [0,

/ ’

(5.25) Y (y) = b)Y ot(y) = F(y) y€[0,00]

By an argument analogous to that in the proof of Proposition 5.1,
one can prove the following
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PROPOSITION 5.2.  Equation (5.25) has a solution given by the
formula

(5.26) Y (y) =v.(y) == S.(y) y€[0,00]

It is the unique solution of (5.25) in the class Ky. The function ¢/ given
by (5.26) belongs to KCs.

REMARK 5.2. By (2.4), (3.5) and (4.5) we can assert that if ¢ € K,
then (5.24) implies the inequality

(5.27) le' (@)l < Cra'+®

k%

where 7 is a positive constant depending on C:Z/ (cf. (3.2)).

COROLLARY 5.2. In virtue of Proposition 5.2, the functions . (y) and
(5.28) . (@) = (B ()", 0 Bx) + W(z) [0, %]

satisfy system (5.2) in A if, and for V' € Ky only if, the equalities

(6:29) () =o.@)i= [ [5(©)7S. 05O + W(QdE + €

(5.30) vy) = b.(0) = [ S.()de + €

hold good for x € [0,Zo] and y € [0,00], where C3, C* are arbitrary
constants.

Let u be a solution of problem (P) (cf. (2.9) and (2.10)) with ¢’
and ¢ belonging to K; and K, on [Zo, 1] and [0, 0¢], respectively.
By Corollaries 5.1 and 5.2 we have

@.(z) for x €0,z

(5.31) p(r) = { p(x)  for x € [T, 1]



342 A. BORZYMOWSKI — M. SHAIEB [16]

and

(5.32) Y(y) = { Y.(y) fory €0, 00]

Y(y)  fory € [oo,0]

and hence ¢ and 9 are continuous in the intervals [0, 1] and [0, o], respec-
tively, if and only if the equalities

(5.33) P(Zo) = Pu(Z0); &(Uo) = QZ*(UO)

are satisfied.
Using formulae (3.15), (3.16) and (5.29), (5.30) we get from (5.33)
relations (3.17), (3.18) where a and b are given by (3.19), respectively.
Moreover, it is clear that <p/ and 1/1/ are continuous in the above-
mentioned intervals if and only if

’ ~1/ /

(5.34) @ (%o) = 90;(550% Y (00) = . (00)

Basing on (3.6)-(3.11), (5.5), (5.23), (5.26) and (5.28) we can assert
that relations (5.34) are equivalent to the equalities

(5.35) V(%) = HZ::O{—(a (z0))"* A, 0 a(z)F o 7 [ Eo )]+
+ Bo(Z0) F o " (i)}
and
(5.36) V(o) = i[(o/ (20)) " A (00) F 0 7 (00) + By(z0)F o ™ (20)],
respectively.

It is easily seen that we still have to fulfil the following requirement:
the first of conditions (2.2) must be satisfied on the part of I" marked
on figure 1, that is equation (5.2)(a) should be valid for x € [Zo,xo];
y € [0,00]. This requirement yields, in virtue of (5.2)(a), (5.5), (5.26),
(5.31) and (5.32), the condition (3.14) which contains the equalities (5.35)
and (5.36).



[17] On the Neumann problem for a hyperbolic partial etc. 343

It follows from the above-performed considerations that condition (3.14)
is necessary and sufficient for the existence of a solution u of problem (P)
such that the derivatives <p' and ¢ of the functions @ and 1 appearing
in formula (2.10) are continuous and belong to the classes K; and Ky on
[Zo, 1] and [0, o], respectively. The said solution is given by formula (2.10)
together with relations (3.15)-(3.19).

Thus, the proof of Theorem 3.1 is completed.

6 — Final remarks

REMARK 6.1. By Propositions 5.1 and 5.2 we can assert that if
¢ :[0,1] = Y and ¢’ : [0,0] — Y are continuous and belong to the
classes IC; and Ky on [, 1] and [0, 0], respectively, then the solution
(¢, ") of system (5.2) is unique. However, the solution u of problem (P)
is not uniquely determined since it depends on an arbitrary constant
C = C'"+ C? (cf. (2.10), (3.17), (3.18), (5.5) (5.23), (5.31) and (5.32)),
and in order to get the unique solution of problem (P) one should impose
on u an additional condition.

For example, if we demand from u to satisfy the equality

(6.1) u(0,0) = 0
then (cf. (2.10), (3.17) and (3.18))
(6.2) C=—(a+b)

and the unique solution of problem (P) is given by the formula

(6'3) u(af:,y) = R(x,y) —|—7“(.%‘,y)
with
I;(z) + 14(y) for (z,y) € A
) Li(z)+ L(y) —a for z € [Z,1]; vy € [0,00]
64 @) =3 L)+ L) = (a+b) for (wy) € Q
Ii(z) + L(y) —b for z € [0,Z0]; y € [00,0]
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where I;(x), I,(y), I3(x) and I,(y) denote the integrals appearing in for-
mulae (3.15)-(3.18), respectively.

REMARK 6.2. In this remark we give an example of the relations
between the data under which condition (3.14) is satisfied.
Let ¢(z,y) =0 in P. As a consequence (cf. (3.5), (3.12) and (3.13))

F(z) = (8' () {e(@)N (@) + [e(2) M (2)]szuin

6.5 ~ / é(x e(x

O Rw=-f e[S N + SO ]
and hence (3.14) takes the form

(6.6) _ D) pre) = L5 N+ B(@) + Ba(o)

o (x)

(z € [#0,1]) with

Ei(@) = (a <»1ﬂox<ﬂ§f§N@»+e“fM@ﬂ
Ex@=43@»*[<><n
—l—Z{ Y'A, o a(x)F o 7" a(x)]+

+ B,(2)F o p"(x)}

where A\(z) = 87! o a(x) (it follows from Lemma 2 in [2] that A™ — 0
on[0,0) when n — 00).

We shall use the following relations resulting from (3.3) and the def-
inition of A(z):

(6.7)

(6.8) "o a(x) = ao N'(x) € (0,00]; B~ o r"[a(x)] € (0, )
p"(z) € [Zo, 1]

(x € [Zo,x0); nEN).
It easily follows from (6.5)-(6.8) that the equalities

a(z) € [a(Zo), ool; A"(x) € (0, 0]
) €

1+ab@»%'3@)

(6.9) N(@) =~ (5 )

M(z) x€]0,1]
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(6.10) M(z) =0 =z € [xg,1]

imply the validity of (6.6).
As the choice of oq € (0,0) is arbitrary and zy — 1when oy — o

(cf. fig. 1), it is sufficient to assume that there is a number §, € (0, 1) such
that condition (6.10) holds for x € [1 — 4., 1].
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